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PREFACE

Although Maxwell’s equations were formulated more than seventy
years ago, the subject of Electricity and Magnetism has uot remained
static. The progress of the 1930’z on the microscopic constitution of matter,
aund the growth of solid-state physics after World War 11, have led to a
better understanding of electric and magnetic fields II).-:)]CI& matter. The
. advanced undergraduste siudent in Science ($his iy the student to whom
we are directing our attention) approaches the subject of electricity with
a qualitative understanding of atomic phenomena. - At the same time, he
has acquired & good backgreund in mathematics, and for the first time
in his career he is in the positicn of being able t6 solve some of the im-
portaat mathematical problems of classical physice. - It appeared to us
that there was no well-designed text in Electricity and Magnetism to meet
the special needs of this group of students.

The present vobime has evolved from the teacking of a course in Elec-
tricity and Magnetism to physics majors at Case Institute of Technology.
These students have been iniroduced to vector analysis both in mathe-
matics and mechanics courses, they have encountered some of the im-
portant partial differential equatiors in physies, and they have been
insroduced to boundary-value problems. A course in Eiectricity and
Magnetism is ideally suited to a further development of these mathe-
matical concepts, and e have attempied to exploit this ides in the present

“book. Although a previous introduciion to these concepis is desirable, the
sections on vector analysia and boundary-value problems have been written
in such a way that little previous knowledge of the subject is required.

We feel thai the approach of building up Electricity and Magnetism
from the basic experimental laws is still the correct one ut the intermediate
level, and we have followed this approach. Although a rigorous exposition
of the fundamentals is to be preferred to teaching by example. we have
beer. careful to include a substantial number of weli-chosen example
problems to bridge the gap between the formul development of the subject

and the problems. Mxperience has shown that a deficiency of examples can
detract from an otherwise good texthook. '

It is our belief thut a fulil understanding of the electric and magnetic
fields inside matter can be obtained ouly after the atomic nature of matter
is appreciated. Hence we have used elementary atomic concepts freely in
the development of macroscopic. thecwy ”y‘/ & h.we tried to use the physical
.Lporo*mh in our treatment of }.ri)lal“ imi mzd mag,net;ziwmn as well as
it our discussion of the auxiliary veetors U and H. We believe our book
has s omPthmg extra to offer in this sreg
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Separate short chapters have been written on the microscopic theory
of dielectric and magnetic material. This is a subject usually neglected
in a book on formal theory, but it seems to us that many of the concepts
involved are simple, and best presented early. ,

The special features of our book are: (1) a full vector treatment of the
subject, including the use of vector identities to simplify proofs of theo-
rems, (2) a utilitarian approach to boundary-value problems and their
solution, (3) a rigorous development of Electricity and Magnetisth from
experimental laws, with no essential proofs relegated to more advanced
texts, (4) use of atomic concepts to simplify the understanding of macro-
scopic theory of fields inside matter, (5) the relation of the microscopic
and macroscopic pictures of electric and magnetic fields inside matter,
(6) an introduction to plasma physics, and (7) a substantial list of non-
trivial problems which have been carefully related to the textual material.

As an aid to the instructor, the more difficult problems have been labeled
with an asterisk. Sections of the text which are starred are not essential
to its further development, and may be omitted if the course must be
shortened for some reason or other.

J. R. R.
June 1959 F.J M.
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CHAPTER 1
VECTOR ANALYSIS

In the study of electricity and magnetism a great saving in complexity
of notation may be-accoraplished by using the notation of vector analysis.
In providing this valuable shorthand, vector analysis also brings to the
forefront the physical ideas involved in equations. It is the purpose of
this chapter to give a brief but self-contained exposition of basic vector
analysis and to provide the rather utilitarian knowledge of the field which
is required for a treatment of electricity and magnetism. Those already
familiar with vector analysis will find it a useful review and an introdueticn
to the notation of the text.

-1-1 Definitions. In the study of elementary physics several kinds of
quantities have been encountered; in particular, the division into vectors
and scalars has been made. For-our purposes it will be sufficient to define
a scalar as follows:

A scalar is a quantity which 1s completely characterized by its magnitude,

Examples of scalars are numerous: mass, time, volume, ete. A simple
extension of the idea of a scalar is a scalar field, i.e., a function of position
which is completely specified by its magnitude at all points in space.

A vector may be defined as follows:

A vector is a quantity which 18 cemnpletely characterized by its magnitude
and direciion.

As examples of vectors we cite position from a fixed origin, velocity,
acceleration, force, etc. The generalization to a vector field gives a func-
tion of position which is completely specified by its magnitude and direc-
tion at all points in space.

These definitions may be refined and extended; in fact, in more advanced
treatments they are usually replaced by more subtle definitions in terms
of transformation properties. In addition, more complicated kinds of
quantities, such as tensors, are sometimes encountered. Scalars and
vectors will, however, suffice for cur purposes.

1-2 Vector algebra. Since the algebra of scalars is familiar {o the
reader, this algebra will be used to develop vector algebra. In order to
proceed with this development it is convenient to have a representstion
of vectors, for which purpose we introduce a three-dimensional cartesian

1



2 VECTOR ANALYSIS fcaap. 1

coordinate system. This three-dimensional system will be denoted by the
three variables x, y, z or, when it is more couvenient, zy, x5, £3. With
respect to this coordinate system a vector is specified by its z-, -, and
z-components. Thus a vector* V is specified by its components V., V, V.,
where V, = |V]|cos a;, V, = V] cosas, V. = |V| cos a3, the o’s being
the angles between V and appropriate coordinate axes. In the case of
vector fields, each of the components is to be regarded as a function of
z, y, and z. It should be emphasized at this point that we introduce a
representation of the vectors with respect to a cartesian coordinate system
only for simplicity and ease of understanding; all of the definitions and
operations are, in fact, independent of any special choice of coordinates.

The sum of two vectors is defined as the vector whose compenents are
the sums of the corresponding components of the original vectors. Thus
if C is the sum of A and B, we write

C=A-+3 (1-1)
and

C,= A;+ B, C,= 4, B, i, = A, + B,. (1-2)
This definition of the vector sum is completely equivalent to the familiar

parallelogram rule for vector addition.
Vector subtraction is defined in terms of the negative of a vector, which
is the vector whose components are the negatives of the corresponding
components of the original vector. Thusif A is a vector, —A is defined by

(—A); = —4;, ("A)v = —A4y, (“'A)z = —A4,. (1-3)

The operation of subtraction is then defined as the addition of the negative.
This is written

A—-B=A+4(—-B). . (1-4)

Since the addition of real numbers is associative, it follows that vector
addition (and subtraction) is also associative. In vector notation this
appears as

A+B+C =A+B +C=A+C) +B=A+B+C.
' (1-5)

In other words, the parentheses are not needed, as indicated by the last
form.

Proceeding now to the process of multiplication, we note that the
simplest product is a scalar times a vector. This operation results in a

* Vector quantities will be denoted by boldface symbols.
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vector each component of which is the scalar times the corresponding
component of the original vector. If ¢ is a scalar and A a vector, the
product cA is a vector, B = cA, defined by

B, = CAx; Bu = CA«_,,, B, = cA,. (1~6)

Tt is clear that if A is a vector field and ¢ a scalar field then B is a new vector
field which is not necessarily a simple multiple of the original field.

If, now, two vectors are to be multiplied, there are two possibilities,
known as the vector and scalar products. Considering first the scalar
product, we note that this name derives from the scalar nature of the prod-
uct, although the alternative names, inner product aud dot product, are
sometimes used. The definition of the scalar produect, written A - B, is

A-B= A,B,+ 4,B, + A,B.. (1-7)

This definition is equivalent to another, and perhaps more familiar,
definition, i.e., as the product of the magnitudes of the original vectors
times the cosine of the angle between these vectors.

The vector product of two vectors is a vector, which accounts for the
name. Alternative names are outer and cross product. The vector product
is written A X B; if C is the vector product of A and B, then C = A X B,
or

¢, = A,B, — A.B, Cy,= A,B, — A,B,, C, = A,B, — A,B,.
(1-8)

This definition is equivalent to the following: the vector product is the
product of the magnitudes times the sine of the angle between the original
vectors, with the direction given by a right-hand screw rule.*

It is important to note that the cross product depends on the order of
the factors; interchanging the order introduces a minus sign. The vector
product may be easily remembered in terms of a determinant. If i, j,
and k are unit vectors, i.e., vectors of unit magnitude, in the z-, y-, and
z-directions, respectively, then

i j k
AXB=|4, 4, 4, (1-9)
B. B, B,

* Let A be rotated into B through the smallest possible angle. A right-hand
screw rotated in this manner will advance in a dircetion perpendicular to both
A and B; this direction is the direction of A X B.
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If this determinant is evaluated by the usual rules, the result is precisely
our definition of the cross product.

At this point one might well inquire as to the possibility of vector divi-
sion. Division of a vector by a scalar can, of course, be defined as multi-
plication by the reciprocal of the scalar. Division of a vector by another
vector, however, is possible only if the two vectors are parallel. On the
other hand, it iz possible to write general solutions to vector equations and
so accomplish something closely akin to division. Consider the equation

¢c=A-X (1-10)

where ¢ is a known scalar, A a known vector, and X an unknown vector.
A general solution tc this equation is

cA .
X = n + B, (1“11)

where B is a vector of arbitrary magnitude which is perpendicular to A,
“that 1, A -+ B = 0. What we have done is very nearly to divide ¢ by A;
more correctly, we have found the general form of the vector X which
satisfies Eq. (1-10). There is no unique solution, and this fact accounts
for the vector B. In the same fashion we may consider the vector equation

- C=AXX, (1-12)

where A and C are known vectors and X is an unknown vector. The
general solution of this equation is

CXA

X=72a

+ kA, (1-13)

where k is an arbitrary scalar. This again is very nearly the quotient of C
by A; the scaiar k takes account of the nonuniqueness of the process. If
X is required 1o satisfy both (1-10) and (1-12), then the result is unique

d gi by
o nggn Y X — 9}_.4,_[__0:4_. (1-14)
T A-A A-A b ’

The algebraic operations discussed above may be combined in mauy
ways. Most of the results so obtained are obvious; however, there are two
triple products of sufficient importance to merit explicit mention. The
triple scalar product 2 = A -B X C is easily found to be given by the
determinant . :

| A, A, A,

D=ABXxC=|B, B, B, = —-B-AXC (11§
¢ €, €|
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This product is unchanged by an exchange of dot and cross or by a cyeclic
permutation of the three vectors; parentheses are not needed, since the
cross product of a scalar and a vector is undefined. The other interesting
triple product is the triple vector product D = A X (B X C). By a
repeated application of the definition of the cross product, Eq. (1-8),
we find

D=AXBXC =BA-C) — CA- B), {1-16)

which is frequentiy known as the “back cab rule.” It should be noted that
in the cross preduct the parentheses ave vital; without them the product
is not well defined.

1-3 Gradient. The extensions of the ideas intreduced above to differ-
entiation and integration, i.e., vector ecaleulus, will now be considered.
The simplest of these is the relation of a particular vector field to the
derivatives of a scalar field. It is convenient to first introduce the idea of
the directional derivative of a function of several variables. This is just the
rate of change of the function in a specified direction. The directional
derivative of a scalar funetion ¢ is usually denoted by d¢/ds; it must be
understood that ds represents an infinitesimal displacement in the direc-
tion being considered, and that ds is the scalar magnitude of ds. If ds
hsas the components dz, dy, dz, then

de _ jiyp CE ALY + 8y, z -t B2) — plwiy,2)
ds a0 ' As

___8‘&,?’(}_.’13 do dy |, B¢ dz.

T oxds "3y ds ' 9z ds

In order to clarify the idea of a directional derivative, consider a scalar
function of two variables. Thus, ¢(z, y) represents a two-dimensional
scalar field. We may plot ¢ as a function of z and ¥ as is done in Fig. 1-1
for the function ¢lz,y) = 2% + 4% The directional derivative at the
point g, yo depends on the direction. If we choose the direction corre-

sponding to dy/dr = —.ury/y, then we find
dtpi Jo dr | de dy F‘) 3:0] dx -
5 = Tty T o oy = ey - bl B N “i d
dslzeye Ox de ' By ds [ o = 2yo Yol ds 0. (-17a)
Alternatively, if we choose dy/dx = yo/xq, we find
v I“_‘_‘"‘.‘
de — (o L9 yg) |26 _ o 1 ,
ds!wo = \2z0 + 27 R 2WNaE oyl (1-17h)
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dyl _ %

dx i2 Lo

Fic. 1-1. The function ¢(z, y) = x2 -+ y2 plotted against z and y in a three-
dimensional graph.

As a third possibility choose dy/dx = «; then

ol = Qro+ 2000)(1 + a7, (1-170)
S lzo.y0

If sthis result is differentiated with respect to a and the derivative set
equal to zero, then the value of a for which the derivative is a maximurn
or minimum is found. When we perform these operations, we obtain
a == Y3/%o, which simply means that the direction of maximum rate of
change of the function ¢ = x% 4 »? is the radial direction. If the direc-
tion is radially outward then the maximum is the maximum rate of in-
crease; if it is radially inward it is 4 maximum rate of decrease or minimum
rate of increase. In the direction specified by dy/dx = —z,/y, the rate
of change of x? -~ y? is zero. This direction is tangent to the circle
x? 4+ y? = 22 + y2. Clearly, on this curve, ¢ = z2 -+ y*® does not
change. The direction in which dg/ds vanishes gives the direction of the
curve ¢ == constant through the point being considered. These lines,
which are circles for the function 2% +- y%, are completely analogous to
the familiar contour lines or lines of constant altitude which appear on
topographic maps. Figure 1-2 shows the function ¢ = 2?2 4- y? replotted
as a contour map.
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Fia. 1-2. The function ¢(x, y) of Fig. 1-1 expressed as a contour map in
two dimensions. ‘

The idea of contour lines may be generalized to a function of three
variables, in which case the surfaces, ¢(z,y, 2) = constant, are called
level surfaces or equipotential surfaces. The three-dimensional analog to
Fig. 1-2 is the only practical way of graphing a scalar field for a three-
dimensional space.

The gradient of a scalar function may now be defined as follows:

The gradient of a scalar function ¢ is a vector whose magnitude is the
maximum directional derivative at the point being considered and whose
direction is the direction of the maximum directional derivative at the point.

It is evident that the gradient has the direction normal to the level surface
of ¢ through the point being considered. The most common symbols for
the gradient are V and grad; of these we will most often use the latter.
In terms of the gradient the directional derivative is given by

%% = |grad ¢| cos 6, (1-18)

where 6 is the angle between the direction of ds and the direction of the
gradient. This is immediately evident from the geometry of Fig. 1-3.
If we write ds for the vector displacement of magnitude ds, then (1-18)
can be written

do_ gt
I = grad ¢ e (1-19)

This equation enables us to find the explicit form of the gradient in any
coordinate system in which we know the form of ds. In rectangular coor-
dinates we know that ds' = idr + jdy + kdz. We also know that
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¢ =¢; = 9y Ae

Fia, 1-3. Parts of {wo level surfaces of the function ¢(z, ¥, 2). |grad ¢f
at P equals the limit as PQ -+ 0 of Ap/PG, and dg/ds is the corresponding
limit of Ap/PS.

do A . de
Jo = —dx + — dy -+ - dz.
. EY 3y YT 5, ¢

From this and Eq. (1-19) it {ollows that

é é , 0w .
éi;i gr -+ 6: dy 1 3‘—2 de = (grad ¢), do -+ (grad ), dy -~ (grad ¢), dz.

Equating coefficients of differentials of independent variables on both
sides of the equation gives

.0 . O . O¢ o
grad o = 157 +36j R (1-20)

in rectangular coordinates. In a more complicated case the procedure 18
the same. In spherical polar coordinates, with r, 8, ¢ as defined in Fig, 14,
we have '

de , d¢ | dv .
lo = “fogr -+ X8 L2544 (1-21}
de 3 4 %de : 8‘:}0’,: {(1-21;
and
ds = a,dr + agr d6 - azrsin ¢ do, {1-22)

where a,, &5, and a4 are unit vectors in the r, ¢, and ¢ directions respectively.
Applying (1-19) and equating coefficients of independent variables vields
) g 53 3

Ay 1 3¢ i do
== = g~ = - PR (1-2
grad ¢ = 3, o TR as TR e (1-23)

in sphericai coordinates.

1-4 Vector integration. There are, of course, other aspects to differen-
tiation involving vecters; however, it is convenient to discuss vector
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p

;
(
l

Fic. 1-4. Definition of the polar coordinates 7, 4, ¢..

integration first. For our purposes we may consider three kinds of inte-
grals: line, surface, and volume, according to the nature of the differential
appearing in the integral. The integrand may be either 2 vector or a
-scalar; however, certain combinations of integrands and differentials give
rise to uninteresting integrals. Those of interest here are the line integral
of 5 vector, the surface integral of a vector, and the volume integrals of
both vectors and scalars.
If F is a vector, the line integral of F is written

b
4/ .4l (1-24;
e

where (' is the curve along which the integration is performed, a and b
the initial and final points on thé curve, and dl an infinitesimal vector
dispiacement along the curve £. Since F - dl is & scalar it is clear that the
line integral is & scalar. The definition of the lire integral follows closely
the Riemaun definition of the definite integral. The segment of £ between
a and b is divided into a large pumber of small increments Al;; for each
increment an interior point is chosen and the value of F at that point
found. The scalar produet of each increment with the corresponding value
of F is found and the sum of these computed. The line integral is then
defined as the limit of this sum as the number of increments becomes
infinite in such a way that each increment goes to zero. This definition
may be compactly swritten as

b .
N
F.dl = lim F,- Al
/(;g N—«)w; ¢ :

It is important to note that the line integral usually depends nct oaly on
the endpoints a and b but alsc on the curve C along which the integration
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is to be done. The line integral around a closed curve is of sufficient
importance that a special notation is used for it, namely,

fc F-dl. (1-25)

The integral around a closed curve may or may not be zero; the class of
vectors for which the line integral around any closed curve is zero is of
considerable importance. For this reason one often encounters line inte-
grals around undesignated closed paths, e.g.,

f F-dl. (1-26)

This notation is useful only in those cases where the integral is inde-
pendent of the contour £ within rather wide limits. If any ambiguity is
possible, it is wise to specify the contour. The basic approach to the
evaluation of line integrals is o obtain a one-parameter description of
the curve and then use this description to express the line integral as the
sum of three ordinary one-dimensional integrals. In all but the simplest
cases this is a long and tedious procedure; fortunately, however, it is
seldom necessary to evaluate the integrals in this fashion. As will be seen
later, it is often possible to convert the line integral into a more tractable
surface integral or to show that it does not depend on the path between
the endpoints. In the latter case a simple path may be chosen to simplify
the integration.
If F is again a vector, the surface integral of F is written

: /S F-nda, (1-27)

where S is the surface over which the integration is to be performed, da
is an infinitesimal area on S and n is a unit normal to da. There is a two-
fold ambiguity in the choice of n, which is resolved by taking n to be the
outward drawn normal if S is a closed surface. If S is not closed and is
finite then it has a boundary, and the seuse of the normal is important only
with respect to the arbitrary positive sense of traversing the boundary.
The positive sense of the normal is the direction in which a right-hand
‘screw would advance if rotated in the direction of the positive sense on
the bounding curve. This is illustrated in Fig. 1-5. The surface integral
of F over a closed surface S is sometimes denotéd by

st~nda.

Comments exactly parallel to those made for the line integral can be
made for the surface integral. The surface integral is clearly a scalar; it
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usually depends on ‘the surface S, and cases where it does not are particu-
larly important. The definition of the surface integral is made in a way
exactly comparable to that of the line integral. The detailed formulation
is left as an exercise.

If Fis a vector and ¢ a scalar then the two volume integrals in which
we are interested are

J = [V¢du, K = vad‘“ (1-28)

Clearly J is a scalar and K a vector. The definitions of these integrals
reduce quickly to just the Riemann integral in three dimensions except
that in K one must note that there is one integral for each component of
F. These integrals are sufficiently familiar to require no further comment.

n

S Bonmd‘ary

Fic. 1-5. Relation of normal n to a surface, and the direction of traversal
of the boundary.

1-5 Divergence. Another important operator, which is essentially a
derivative, is the divergence operator. The divergence of vector F,
written div F, is defined as follows: :

The divergence of a vector is the limit of ils surfacé integral per unit volume
as the volume enclosed by the surface goes to zero. That is,

divF = lim 1 F-nda.
V-0 |4 S

The divergence is clearly a scalar point function (scalar field), and it is
defined at the limit point of the surface of integration. The above defini-
tion has several virtues: it is independent of any special choice of coor-
dinate system, and it may be used to find the explicit form of the divergence
operator in any particular coordinate system.

In rectangular coordinates the volume element Ax Ay Az provides a
convenient basis for finding the explicit form of the divergence. If one
corner of the rectangular parallelépiped is at the point g, o, 2o, then
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vy ‘ aF,|
Fu(zo + A2, y, 2) == Falwe, y, %) -+ Az ) ’
oz 'm R

aFy

Fyle, yo + Oy, 2) = Fulz, yo, 2) + AI,« —d ‘ (2-29)

ToUs z

oF,|

Fo(x, 4, 20 4 AZ) = F(a,y,20) + Lz .,_?.,El
z STy '0

where highérﬁrder terms in Az, 4y, and Az have been omitted. Since the
area element Ay Az is perpendicular-to the r-axis, Az 4r perpendieular to
the y-axis, and Ax Ay verpendicular to the z-axis,.the definition of the
divergence hecomes

i .
divF = llino :&""&;’Az {/Fx(.‘do, ¥ 2 dydz

aF 3 ¢ Y
-+ Az Ay Az —5\13- + 1 Py v, 2) de dz

+ Ax Ay bz %}-j;" - ‘ / F Az, y, 20) dr dy
sF, . o
- b Ay Az Fra j Felzo, y, 2) dy dz
[’ ad
= | Bl o, 2) d Iz — j P, v, 20) do a‘y} S (1-30)

The minus signs associated with the last three terros account for the fact
that the outward drawu normal is in the direction of the negative axes in
these cases. The limit is easily taken, and the divergence in rectangular
coordinates is found to be

1"'

. _ (7F; ; 3F, offy
div F o= == - "ay o (1-31)

In spherical coordinates the prowdare is simalar. The volurce enclosed
by the coordinate mtert/als Az, A9, A¢ is choseo as the volume of integra-
tion. This volume is 7% sia 6 Ar A8 A¢. Because the area enclosed by the
coordinate intervals depends on the values of the coordinates (note that
this is not the case with rectangular coordinates), it is best to write
F-nAzin its explicit form:

F-ndoc = Fo%sin 6 A0 A -+ Forsin 0 Ap Ar -+ Far Ar Ad. (1-32)

It is clear from this expression that r72F, sin 6, rather than just F,, must
s b
be expanded in Taylor series. Similarly, it is the coeflicient of the products
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of coordinate intervals which must he expanded in the other terms. Mak-
ing these expansions and using thera to evaluate the <'urffwe integral in
the definition of the divergence gives

N {5
. . . e "]
div F = 3)1?0 72 8in 9 Ar A6 A tdr (r® sla 0 A 55 bep
-t %.{ s 3 Ad Ar b + sy L Ar /_‘wi (1-33)

Taking the limit, the explicit foitn of the divergevee ‘u spherical coordi-
nates s found to be

. 1 J o, 25y o ___1“ d t i 31”} e
divF = o G T T R G 6Fs) - Fend e U 34)

This method of Lnding the explicit form of the divergence 1e applicable to
any coordinate system provided the forms of the volume and surface
elements ot, alt em',m vely. the elemenis of iength are knowu.

The physical significance of the divergence is readily seen in terms of an
example taken from fiuid mechanies. If ¥ is fhe velocity of a fluid, given
as v function of position, and £ is iss deasity, then $; pV - nda is clearly
the net amount of fluid per unit time that 1c.a, ves ﬂ:e volume enclosed by S.
If the fluid is incompressible, the surface invegral messures the total
source of fluid enclosed by the surface. The above definition of the diver-
gence then indicates that it nxay be interpreted as the limit of the source
strength per unit volume, or the source density of an incompressible fluid.

An extremely important theorem involving the divergence may now be
stated and proved.

werGENCE: TrroruMm. The integral of the divergence of a vector over a
volume V is egual o the surfrce integral of the normal component of the
veclor over the surjace bounding V. That is,

f div Fdy = F-nda.
iy Js
Counsider the volume to be subdivided into a large number of small cells.

Let the 7th cell have volums ¥, and be bounded by the surface S; It
i clear that

N [ PIRIN
2;_ :{\ ¥ ownde = i; F oo da, 133}
Sy 8

where in each invegral co the et the normal is divected outward from the
volume being cousidered. Since sutward to one cell is inward to the
appropriate adjncent reell, all contributions to the left side of (1--35) vancel
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except those which arise from the surface of S, and Eq. (1-35) is essen-
tially proved. The divergence theorem is now obtained by letting the

number of cells go to infinity in such a way that the volume of each cell
goes to zero.

. 1, .
ng.nda:: lim Z{AV;,ﬁ‘.F.nda}Ah' (1-36)

AV; =0 K

In the limit, the sum on 7 becomes an integral over V and the ratio of the
integral over S; to AV; becomes the divergence of F. Thus,

fs F-nda = /V div F db, (1-37)

which is the divergence theorem. We shall have frequent occasion to ex-
ploit this theorem, both in the development of the theoretical aspects of
electricity and magnetism and for the very practical purpose of evaluating
integrals.

1-6 Curl. The third interesting vector differential operator is the curl.
The curl of a vector, written curl F, is defined as follows:

The curl of a vector is the limit of the ratio of the integral of its cross product
with the outward drawn normal, over a closed surface, to the volume en-
closed by the surface as the volume goes tv zero. That is,

curl F = lim -+ f n X F da. (1-38)
V0 ¥ J S .
The parallelism between this definition and the definition of the diver-
gence is quite apparent; instead of the sealar product of the vector with the
outward drawn normal, one has the vector product. Otherwise the defini-
tions are the same. This definition is convenient for finding the explicit
form of the curl in various coordinate systems; however, for other purposes
a different but equivalent definition is more useful. This alternative
definition is:

The component of curl F in the direction of the unit vector a is the limit of
a line integral per unit area, as the enclosed area goes to zero, this area

being perpendicular to a. That is,
a-culd F = lim — j{ F-d, (1-39)

g0 Je

where the curve C, which bounds the surface S, is in a plane normal to a.
It is easy to see the equivalence of the two definitions by considering a
_plane curve C and the volume swept out by this eurve when it is dis-
placed a distance £ in the direction of the normal to its plane, as shown in
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Fig. 1-6. Volume swept out by displacing the plane curve ' in the direction
of its normal, a.

Fig. 1-6. If a is normal to this plane, then taking the dot product of a
with the first definition of the curl, (1-38), gives

a-curlF = lim ly(a~n><Fala. (1--40)
voo Vs

Since a is parallel to the normal for all of the bounding surface except the

narrow strip bounded by € and ’, only the integral over this surface

need be considered. For this surface we note that a X nda is just £dl,

where dl is an infinitesimal displacement along C. Since, in addition,

V = &8, the limit of the volume integral is just

. 1
a-curl F = ‘lrlino ES%EF dl,
which reduces to the second form of our definition upon cancelling the
¢s. This equivalence can be shown without the use of the special volume
used here; however, so doing sacrifices much of the simplicity of the proof
given above.

The form of the curl in various coordinate systems can be calcuiated in
much the same way as was done with the divergence. In rectangular
coordinates the volume Ax Ay Az is convenient. For the z-component of
the curl only the faces perpendicular to the y- and z-axes contribute.
Recalling that j X k = —k X j = i, the nonvanishing contributions
from the facez of the parallelepiped to the z-component of the cur! give

(curl F), = lim % (—F,(z, y,2 + A2) + Fy(z, y, 2)] Az Ay
. —)0

+[Faulz,y + By, 2) — Fulz,y,2)] Az a2}, (1-41)
Making a Taylor series expansion and taking the limit gives

oF, _ oF,

(curl F), = -5@— 3

(1-42)
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for the r-component of the curl. The y- and z-compouents may be found
in exactly the same way. They are

oF oF oF oF,
{ Ve 2 E T2, o ¥ ZTZ, —
{(curl ), 3z 3 (curl F), 3 3 (1-43)

“he form of the curl in rectangular conrdinates car be easily remembered
if it is noted that it is just the expansion of a three-by-three determinant,
namely,

ij k|

8 a4 8| .
curl F = P a‘a P (1-44)

\F. Fy F

The problem of finding the form of the curl in other coordinate systems is
only slightly more complicaied and is left to the exercises.

As with the divergeuce, we encounter an important and useful theorem
involving the curl, known as Stokes’ theorem

Srokes’ TaHrEorEM. The line integral of a vector around @ closed curve
is equal to the integral of the normal component of its curl over any surface
bounded by the curve. That is,

950 F-dl = /S curl F - n da, (1-45)

where C is a closed curve which bounds the surface 8. The proof of this
theorem is quite analogous to the proof of the divergence theorem. The
surface S is divided into a large number of cells. The surface of the ¢th
cell is called AS; and the curve bounding it is C;. Since each of these cells
must be traversed in the same sense, it is clear that the sum of the line
integrals around the C;’s is just the line integral around the bounding curve;
all of the other contributions cancel. Thus

350 F-dl = Z fci F-dl. (1-46)

It remains only to take the limit as the number of cells becomes infinite
in such a way that the area of each goes to zero. The result of this limiting

process is
}iF-dl: lim ZAsf F - dl AS;

AS8;—0

= /ScurlF- n da, (1-47)
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which is Stokes’ theorem. This theorem, like the divergence theorem, is
useful both in the development of electromagnetic theory and in the
evaluation of integrals. It is perhaps worth noting that both the diver-
gence theorem and Stokes’ theorem are essentially partial integrations.

1-7 Further developments. The operations of taking the gradient,
divergence, or curl of appropriate kinds of fields may be repeated. For
example, it makes sense to take the divergence of the gradient of a scalar
field. Some of these repeated operations give zero for any well-behaved
field. One is of sufficient importance to have a special name; the others
can be expressed in terms of simpler operations. An important double
operation is the divergence of the gradient of a scalar field. This combined
operator is known as the Laplacian operator and is usually written V2.
In rectangular coordinates,

(1-48)

2
Vi = axZ’L

ay? + a~2 ’

This operator is of great importance in electrostatics and will be con-
sidered at length in Chapter 3.

The curl of the gradient of any scalar field is zero. This statement is
most easily verified by writing it out in rectangular coordinates. If the
acalar field is ¢, then

i i k
a o 9 8% a%)
curl grad ¢ = % by 9| (ay % 29y + 0 =0, (1-49)
de o de
iox dy 9z

which verifies the original statement. The divergence of any curl is also
zero. Thig is verified directly in rectangular coordinates by writing

_ 9 (s, aF,,) (_~£ N aF .
div curl F 3 oy 5 -+ 3 \a 4 (1-50)

The other possible second-ovder operation is taking the curl of the curl
of a vector field. It is left as an exercise to show that in rectangular co-

ordinates
curl curl F = grad div F — V7F, (1-51)

where the Laplacist of & veetor is the vector whose rectangular compo-
nents are the Laplacians of the rectangular components of the original
vector. In any coordinate systemn other than rectangular the Laplacian
of & vector is defined by Enq. (1-51).
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Another way in which the application of the vector differential opera-
tors may be extended is to apply them to various produets of vectors and
scalars. There are many possible combinations of differential operators
and products; those of most interest are tabulated in Table 1-1. These
identities may be readily verified in rectangular coordinates, which is
sufficient to assure their validity in any coordinate system.

TazLe 1-1

FormuLas FrOM VECTOR ANALYSIS INVOLVING
DirrERENTIAL OPERATORS

| I-1) Vie+¢) = Ve + V¢

(I1-2) Yo = oVY + ¢YVp

(I-3) div(F+ G) = divF | divG

(I-4) curl (F+4 G) = curl F - curl G

(I-5) YEF-G) = F-V)G+ (G- V)F+-FXcurlG+ G X curl F
(I-6) diveF = @odivF -+ F- Vo

(I-7) div(EFXG) =G -curl ¥ —F-curl G

(I-8) diveurlF = 0

(I-9)  cutloF = geurlF - Vo X F

(I-10) curl(F X G) == FdivG — GdivF -+~ (G- V)F — (F- V)G
(I-11) curlcurl F = grad divF — ¥3F

(I-12) curl Vo = 0

(1-13) $sF-nde = fy divF dv

(1-14) FcF-dt = fgcurlF-nda

(I-15) SFsenda = [y Vody °

(1-16) F5F(G-n)da = Jy Fdiv G dv + fy (G- V)F dv

(1-17) FsnX Fde = freul Fdv

(1-18) Feedl = fsn X Veda

There are several possibilities for the extensinu of the divergence theorerm
and of Stokes’ theorem. The rnost interesting of these is Green’s theorem,
which is

[ YV2e — <p€21,’/) dy == fq ( grad ¢ — o grad y)-nda. (1-52)
y’ AN

This thecrem follows from the application of the divergence thecrem to
the vector

F o= ¢grady — ¢ grad 4, (1-53)

Using this F in the divergence theorem, we obtain
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/ div [y grad ¢ — ¢ grad ¢l dv = f (¢ grad ¢ — o grad ¥) - nda.
(1-54)

Using the identity (Table 1-1) for the divergence of a scalar times a
vector gives

div (f grad o) — div (¢ grad y) = ¢VZp — V3. (1-55)

Combining (1--54} and (1-55) yields Green’s theorem.

This conciudes our brief discussion of veetor analysis. In the interests
of brevity, many well-known results have been relegated to the exercises.
No attempt has been made to achieve a high degree of rigor; the approach
has beeu utilitarian. What we will need we have developed; everything
clse has heen omitted.

ProBreMms

-1. The vectors from the origin to the points A, B, C, D are
A=ifj+x

B = 2% -+ 3,
C = 3i4 5 — 2%,
D=k —j.

Show that the lines A8 and CD are parallel and find the ratio of their lengths.

1-2. Show that the following vectors are perpendirular:

A =i+ 4j 4 3k,
B = 4i-+ 2§ — 4k
1-3. Show that the vectors
A =2 —-j+K
B =1i- 3 — 5k,
C = 3i — 4j — 4k
form the sides of a right triangle.
1-4. By squaring both sides of the equation
=B —C

and interpreting the result geometrically, prove the “law of cosines.”
1-5. Show that

]

A =icosa- jsina,
B icos 3 -+ jsin 3

are unit vectors in the zy-plane meking angles o, 8 with the z-axis. By means
of a scalar product, obtain the formula for cos (e -— 3).
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1-6. If A is a constant vector and r is the vector from the origin to the point
(z, y, 2), show that
r—A)-A=0
s the equation of a plane.
1-7. With A and r defined as in Problem 1-6, show that
r— A)'r=20
is the equation of a sphere.
128. If A, B, C, are vectors from the origin to the points 4, B, C, show that

AXB)+ BXC) + (CXA

is perpendicular to the plane 4 BC.

1-9. Verify that Eq. (1-13) is a solution to (1~12) by direct substitution.
[Note that Eq. (1-12) implies that C is perpendicular to A.]

1-10. Find the gradient of ¢ in cylindrical coordinates, given that ds = dra, +
r dfag + dzk. It should be noted that r and @ have different meanings here
than in Eqgs. (1-21) and (1--22). In spherical coordinates r is the magnitude of
the radius vector from the origin and 6 is the polar angle. In cylindrical coordi-
nates, r is the perpendicular distance from the cylinder axis and 4 is the azimuthal
angle about this axis. )

1-11. From the definition of the divergence, obtain an cxpression for div F
in cylindrical coordinates.

1-12. Find the divergence of the vector

(2% + y2) + j(y% + 22) + k(2 + 2y).
Also find the curl.
1-13. If r is the vector from the origin to the point (r, ¥, 2}, prove the formulas
divr = 3; curlz = (; (u-grad) r = u.

[Note: u iz any vector.]
1-14. 1f A is a constant vector, show that

grad (A-r) = A,
1-15. Prove identities (I-6) and (I-9) in Table 1-1.
1-18. If r is the magnitude of the vector from the origin to the point (z, ¥, 2),
and f{*) is an arbitrary function of r, prove that
, r df
grad f(r) = S
1-17. Verify Eq. (1-51) in rectangular coordinates, where V2F in these

coordinates is as defined in the text.
1-18. Prove identities (I-15) and (I-16) in Table 1-1. [Hint: Use the diver-
gence theorem and one or more identities from the first half of Table 1-1.)



CHAPTER 2
ELECTROSTATICS

2-1 Electric charge. The first observation of the electrification of ob-
jects by rubbing is lost in antiquity; however, it is common experience
that rubbing a hard rubber comb on a piece of wool endows the rubber
with the ability to pick up small pieces of paper. As a result of rubbing
the two objects together (strictly speaking, as a result of bringing them
into close contact), both the rubber and the wool acquire a new property;
they are charged. This experiment serves to introduce. the concept of charge.
But charge, itself, is not created during this process; the total charge, or
the sum of the charges on the two bodies, is still the same as-before elec-
trification. In the light of modern physics we know that microscopic
charged particles, specifically electrons, are transferred from the wool to
the rubber, leaving the wool positively charged and the rubber comb
negatwely charged.

Charge is a fundamental and characteristic property of the elementary
particles which make up matter. In fact, all matter is composed ultimately
of protons, neutrons, and electrons, and two of these parficles bear charges.
But even though on a microscopic scale matter is composed of a large
number of charged particles, the powerful electrical forces associated with
these particles are fairly well hidden in a macroscopic observation. The
reason is that there are two kinds of charge, positive and negative, and an
ordinary piece of matter contains approximately equal amounts of each
kind. From the macroscopic viewpoint, then, charge refers to nct charge,
or excess chargé. When we say that an object is charged, we mean that it
has an excess charge, either an excess of electrons (negative) or an excess
of protons (positive). In this and the followmg chapters, charge will
usually be denoted by the symbol g.

Since charge is a fundamental property of the ultimate particles making
up matter, the total charge of a closed system cannot change.- From the
macroscopic point of view charges may be regrouped and combined in
different ways; nevertheless, we may state that net charge is conserved in
a closed system.

2-2 Coulomb’s law. Towards the end of the eighteenth century tech-
niques in experimental science achieved sufficient sophistication to make
Pdssible refined observations of the forces between electric charges. The
“results of these observations, which were extremely controversial at the
time, can be summarized in three statements. (a) There are two and only

21
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two kinds of electric charge, now known as positive and negative. (b) Two
point charges exert on each other forces which act along the line joining
them and which are inversely proportxona} to the square of the distance
between them. {¢) These forces are also proportional to the product of
the charges, are repulsive for like charges, and attractive for unlike
charges. The last two statements, with the first as preamble, are known
as Coulomb’s law in honor of Charles Augustin de Coulomb (1736-1806),
who was one of the leading eighteenth century students of electricity.
Coulomb’s law for point charges may be concisely formulated in the vector
notation of Chapter 1 as

= 192 a1, _
oLt @-1)

where F; is the force on charge ¢, rs1 is the vector from gp to ¢y, r44 is
the magnitude of 123, and C is a constant of proporticnality about which
more will be said later. In Eg. (2-1) a unit vector in the direction of 1y
has been formed by dividing ry; by its magnitude, a device of which
frequent use will be made. If the force on ¢s is te be found, it is only
necessary to change every subscript 1 to 2 and every 2 to 4. Understanding
this notation is-important, since in future work it will provide a tech-
nique for keeping track of field and source variables.

Coulomb’s law applies to poiot charges. In the macroscopic sense a
“point charge” is one whose spatial dimensions are very small compared
with any other length pertinent to the problers under consideration, and
we shall use the term “point charge” in this sense. To the best of our
knowledge, Coulomb's law also applies to the interactions of elementary
particles such as protons and electrons. Equation (2-1) is found to hold

_for the electrostatic repulsion between nuclei at distances greater than
about 10714 meter; at smaller distances, the powerful, but short—ra,nged
nuclear forces dommate the picture.

Equation (2-1) is an experimental law; nevertheless, there is both
theoretical and experimental evidence to mdlcate that the inverse square
law is exact, i.e., that the exponent of ry; is exactly 2. By an indircct
experiment* it has been shown that the exponent of r5, can differ from 2

by no more than one part in 10°. ‘

The constant C in Eq. (2-1) requires some comment, since it determines
the system of units. The units of force and distance are presumably
those belonging to one of the systems used in mechanics; the most direct
procedure here would be to set C = 1, and choose the unit of charge
such that Eq. (2-1) agrees with experiment. Other procedures are also

" * Plimpton and Lawton, Phys. Rev. 80, 1066 (1936). The same experiment:
was performed earlier by Kelvin and by Maxwell. Maxwell established the
exponent of 2 to within one part in 20,000.-
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possible and 1uay have certain advaniages; e.g., the unit of chargs may
be specified in advance. It was shown by Lﬂcrgx in 1601 that all of the
common eleetrical units, such as the ampers, volt, chm, henry, ete,
can be combined with one of the mechanical : vutems {namely, the mks
or meter-kilogram-second systern) to form a system of units for all elec-
tric and magnetic problems. There is considersble advantage t¢ having
the results of calculations come cut in the sarae uniis as those which
are used in the laboratory; hence we shall vse the rationsl:zed mks or -
Giorgi system of units in the present volume. Since in this system ¢ is
measured in coulombs, r in meters and F in newtons, it is ciear that C
must have the dimensions of newton-meters®/coulorob?.  The zize of
the unit of charge, the coulomb, is established from “magnetic experi-
ments; this requires that ¢ = 8.9874 X 10° n-m”/coul®. We make the
apparmtly complicated substitution, ¢ = 1/4wey, in the inisrest of
future simplicity. The constant e, will oceur Mpeated.V‘ it ragpresents
a property of free spacc known as the permi 'z‘tiwfy of free space, and is
numerically equal to-8.854 X 107%% coul?/n-m? In Appesdix I the
definitions of the coulomb, the ampere, the p:,rmea‘mlit v, and permitiivity
of free space ars related to one another and to the velocity of light in a
iogical way; since a logical formulation of these definitions requires &
knowledge of magnetic phenomnna and of elestromagnetic wave pfv{;—‘
agation, it is not approprlabe to pursue them now. In Appendix II oth
systems of electrical units, in particular the gaussian system, ure disenss ed
If more than two point charges are present, the mutual forces are
determinied by the repeated application of Eq. (2-1). In particular, if
system of N charges is considered, the force on the ith chafge is given by

N
F; = ¢ ;%’é“ 4, (2-2
= W€ T,
where the summation on the right is extended over all of the churges
except the ith. This is, of course, just the superposxtmn principle for
forces, which says that the total force acting on & body is the vector sum
of the individual forces which act on it.

A simple extension of the ideas of N interacting point charges is the
interaction of a point charge with a continuous charge distribution. We
deliberately choose this configuration to avoid certain difficulties which
may be encountered when the interaction of two continuous charge dis-
tributions is considered. Before proceeding further the meaning of a con-
tinuous distribution of charge should be examined. It is now well known
that electric charge is found in multiples of a basic charge, that of the
electron. In other words, if any charge were examined in great detail,
its magnitude would be found to be an integral multiple of the magnitude
of the electronic charge. For the purposes of macroscopic physiecs this
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discreteness of charge causes no difficulties simply because the electronic
charge has a magnitude of 1.6019 X 107° coul, which is extremely small.
The smallness of the basic unit means that macroscopic charges are in-
variably composed of a very large number of electronic charges; this in
turn means that in a macroscopic charge distribution any small element
of volume contains a large number of electrons. One may then describe
a charge distribution in terms.of a charge density function defined as the
limit of the charge per unit volume as the volume becomes infinitesimal.
Care must be used, however, in applying this kind of description to atomic
problems, since in these cases only a small number of electrons is involved,
and the process of taking the limit is meaningless. Leaving aside these
atomic cases, we may proceed as if a segment of charge might be sub-
divided indefinitely, and describe the charge distribution by means of
point functions:

a volume charge density defined by

. Agq N
P = tm 5p e

and a surface charge density deﬁned by

Aq
7= Al,élfo AS’ @)
From what has been said about g, it is evident that p aud o are net charge,
or excess charge, densities. It is worth while mentioning that in typical
solid materials even a very large charge density p will involve a change in
the local electron density of only about one part in 10°.

If charge is distributed through a volume ¥V with a density p, and on the
surface S which bounds V with a density o, then the force exerted by this
charge distribution on.a point charge ¢ located at r is obtained from (2-2)
by replacing g; with p; dv} (or with o; da;) and proceeding to the limit:

= 4 r r — g
Fll 41!'60/;7'1'*—' rilgp('r)dv +47r€ Llr r|30'(7") da (2 5)

The variable r’ is used to locate a point within the charge distribution,
that is, it plays the role of the source point rj in Eq. (2-2). It may appear
at first sight that if point r falls inside the charge distribution, the first
integral of (2-5) should diverge. This is not the case; the region of inte-
gration in the vicinity of r contributés a negligible amount, and the mtegral
is well behaved (see Problem 2-5). '
It is clear that the force on ¢ as given by Eq. (2-5) is proportional to ¢;
the same is true in Eq. (2-2). This observation. leads us, to introduce a
vector field which is independent of g, namely, the forceipér unit charge.
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This vector field, known as the eleciric field, is considered in detail in the
following section.

2-3 The electric field. The electric field at a point is defined as the limit
of the following ratio: the force on a test charge placed at the point, to the
charge of the test charge, the limit being taken as the magnitude of the
test charge goes to zero. The customary symbol for the electric field is E.
In vector notation the definition of E becomes

E = lim Fa, (2-6)
g—0

The limiting process is included in the definition of E to ensure that the
test charge does not affect the charge distribution which produces E. If,
“for example, positive charge is distributed on the surface of 2 conductor
(a conductor is a material in which charge is free to move), then bringing’
a test charge into the vicinity of the conductor will cause the charge on
the conductor to redistribute itself. If the electric field were calculated
using the ratio of force to charge for a finite test charge, the field obtained
woitid be that due to the redistributed charge rather than that due to the
¢riginal charge distribution. In the special case where one of the charges-
of the charge distribution can be used as a test charge the limiting process
i» unnecessary. In this case the electric field at the location of the test
~ charge will be that produced by all of the rest of the charge distribution;
therewill, of course, be no redistribution of charge, since the proper charge
distribution obtains under the influence of the entire charge distribu-
tion, including the charge being used as test charge. In certain other
cases, notably those in which the charge distribution is specified, the
force will be proporticnal to the size of the test charge. In these cases,
too, the limit is unnecessary; however, if any doubt exists, it is always

safe to use the limiting process.

Equations (2-2) and (2-5) provide a ready means for obtaining an ex-
pression for the electric field due to a given distribution of charge. Let the
charge distribution consist of N point charges q,, g2, ..., qv located at
the points ry, 1y, . . . , Iy respectively, and a volume distribution of charge
specified by the charge density p(r’) in the volime V and a surface distri-
bution characterized by the surface charge density o(r’) on the sirface S.
If a test charge ¢ is located. at the point r, it experiences a force F given by

q r—r N dy’
Zq’ r—-r]3 47:-50,/‘rlr—r'l3p(r)dv

=1

r—r
47360 ./:S FE=S7E o) da’, (2-7)
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due to the given charge distribution. The electric field at r is the limit
of the ratic of this force to the test charge q. Since the ratio is independent
of g, the electric field a r is just:

" I Ty 1 { r—1
E) = Z g - = = o{r’) dv
iro— 113

ey L U 5 dmgep Jy it — ]2
r
1 LSRR of .
+ j’ o o) da’. (2-8)
4TEn J 8 [ S

()

“Tre. 2-1 The mapping of an eleetrie field with the aid of lines of force:
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Equation (2-8) is very general; in most cases one or more of the terms
will not be needed.

The quantity we have just defined, the électric field, may be calculated
at each point in space in the vicinity of a system of charges or of a charge
distribution. Thus E = E(r) is a vector point function, or a vector field.
This field has a number of interesting mathematical properties which we
shall proceed to develop in the following sections and in the next chapter.
As an aid to visualizing the electric field structure associated with a
particular distribution of charge, Michael Faraday (1791-1867) intro-
duced the concept of lines of force. A line of force is an imaginary line (or
curve) drawn in such a way that its direction at any peint is the direction
of the electric field at that point.

Consider, for example, the electric. field structure associated with a
single positive point charge ¢;. The lines of force are radial lines radiating
outward from ¢,. Simiiarly, the lines of force associated with an isolated
negative point charge are also radial lines, but this time the direction is
inward (i.e., toward the negative charge). These two examples are ex-
tremely srnpie but they nevertheless illustrate an 1mportant property of
the field lines: the lines of force terminate on the sburces of the electric
field, i.e., upon the charges which produce the clectric field.

Fzgure 2-1 shows several simple eleetric fislds which have been mapped
with the aid of lines of force.

2—4 The electrostatic potential. It has been noted in Chapter 1 that if
the curl of a vector vanishes, then the veetor may be expressed as the
gradient of a scalar. The electric field given by Eq. (2-8) satisfies this
ceriterion. To verify this, we note that taking the curi of Eq (2-8) involves
jiffezcntiaflr\b with respect to r. This variable appears in the equation
only in functions of the form (r — r’) /it — £'|3 and hence it will suffice to
-show that functions of this form have zero curl. Using the formula from
Table 1-1 for the curl of the product (vector times scalar) gives

curl ‘:: 15'{3 =K _1 o curl (r — 1) + fgrad — ,‘31; X [t — r'l.
(2-9)
A direct caleulation (see Problem 1-13) shows that
curl (r — r’) =0, {2-10)
and (see Problem 1-16) that
grad T:l-r—lg = -3 lrr: r‘j';,; (211)



28 ELECTROSTATICS [caar. 2

These results, together with the observation that the vector product of a
vector with a parallel vector is zero, suffice to prove that
r—r :
curl F;—::*;ng = 0. (2—{12)
Since each contribution of Eq. (2-8) to the electric field is of this form,
we have demonstrated that the curl of the electric field is zero. Equa-
tion (2-12) indicates that a scalar function exists whose gradient is the

electric field; it remains to find this function. That is, we now know that
a function exists which satisfies

E(r) = —grad U(r), (2-13)

but we have yet to find the form of the function U. It should be noted
that it is conventional to include the minus sign in Eq. (2-13) and to
- call U the electrostatic potential.
It is easy to find the electrostatic potential due to a point charge ¢;;
it is just

91 ‘o
Ulr) = 41reo r—r’ (2=14)

as is readily verified by direct differentiation. With this as a clue it is easy
to guess that the potential which gives the electric field of Eq. (2-8) is

E LI B 1 R

Ir — r,[ dreg Jvr — 1]

4L f K, (215)

‘%WGO

U@ = 41re0 2

which is also easily verified by direct differentiation. It may seem that
Egs. (2-14) and (2-15) were obtained in n rather arbitrary fashion; how-
ever, since all that is required of U is that ii satisfy (2-13), and since this
has been verified directly, the means by which U was obtained is im-

material.
The electrostatic potential U can be obtained directly as soon as its
existence is established. Since U is known to exist, we may write

f " E@)-dr = — / " grad U- ar, (2-16)
ref ref

where ref stands for a reference-point at which U is zero. Yrom the defi-
nition of the gradient, :
grad U - dr’ = dU. 2-17)

Using (2-17) in Eq. (2-16) converts it into the integral of a perfect dif-
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ferential, which is easily done. The result is
' g . r ~
u[pmuwz—wng/mwmc (2-18)
ref ref

which is really the inverse cf Eq. (2-13). If the electric field due to a point
charge is used in equation (2-18), and the reference point or lower limit
in the integral is taken at infinity, with the potential there zero, the result
is e

Ulr) = Ireq (2-19)
This, of course, is just a special case of Eq. (2-14), namely, the case where
r, is zero. This derivation can be extended to obtain Fq. (2-15); however,
the procedure is too cumbersome to include here.

Another interesting and useful aspect of the electrostatic potential is
its close relation to the potential energy associated with the conservative
electrostatic force. The potential energy associated with an arbitrary
conservative force is

W@:-&mwmg (2-20)

where W(r) is the potential energy at r relative to the reference point at
which the potential energy is arbitrarily taken to be zero. Since in the
electrostatic case F = ¢E, it follows that if the same reference point is
chosen for the electrostatic potential and for the potential energy, then
the electrostatic potential is just the potential energy per unit charge.
This idea is sometimes used to introduce the electrostatic potential; we
feel, however, that the introduction by means cf Eq. (2-13) emphasizes
the importance of the electrostatic potential in determining the electro-
static field. There is, of course, no question about the ultimate equivalence
of the two approaches.

The utility of the electrostatic potentlal in caleulating electric fields
can be seen by contrasting Egs. (2-8) and (2-15). Equation (2-8) is a
vector equation; to obtain the electric field from it, it is necessary to
evaluate three sums or three integrals for each term. At best this is a
tedious procedure; in some cases it is almost impossible to do the integrals.
Equation (2-15), on the other hand; is a scalar equation and involves
only one sum or integral per term. Furthermore, the dencminators appear-
ing in this equation are all of the ferm |[r — r’|, which simplifies the inte-
grals compared with those of Eq. (2-8). This simplification is sometimes
sufficient to make the difference between doing the integrals and not
doing them. It may be objected that after doing the integrals of Eq. (2-15)
it is still necessary to differentiate the result; this objection is readily
answered by observing that differentiation can always be accomplished
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if the derivatives exist, and is in fact usually much easier than integration.
In Chapter 3 it will be seen that the electrostatic potential is even more
important in those problems where the charge distribution is not specified,
but must rather be determired in the process of solving the problem.

In the mks system the unit of energy is the newton-meter or joule.
The unit of potential is joule/coulomb, but this unit oceurs so frequently
that it is given a speciul name, the volt. The unit of the electric field is
the newton/coulomb or the volt /meter

2~5 Conductors and insulators. So far as their electrical behavior is
concerned, materials may be divided into two categories: conductors of
clectricity and insulators {dielectrics). Conductors are substances, like the
metals, which contain large numbers of essentially free charge . carriers.
These charge carriers (electrons in most cases) are free to wander through-
out the conducting material; they respond to almost infinitesimal electrie
fields, and they centinue t¢ move as long as they experience a field. These
free carriers carry the electric current when an electric field is maintained
in the conductor by an external source of energy.

Diclectrics are substances in which all charged particles are bound
rather strongly to coastituent molecules. The charged particles may
shift their positions slightly in response to an electric field, but they do
not leave the vicinity of their molecules. Strictly spesking, this definition
applies to an ideal dielectric, one which shows no conductivity in the
presence of an externally maintained electric field. Real physical dielec-
tries may show.a feeble conductivity, but in a typical dielectric the con-
ductivity is 102° times smaller than that of a good conductor. Since 162°
is a tremendous factor, it is usually suifficient to say that dielectrics are
nonconductors. ]

Certain materials (semiconductors, electrolytes) have electrical prop-
erties intermediate between conductors and dielectrics. So far as their
behavior in a static electric field is concerned, these materials behave very
much like conductors. However, their transient response is somewhat
slower; i.e., it takes longer for these materials to reach equilibrium in a
static field. ’

In this and the following four chapters we shall be concerned with
materials in electrostatic fields. Dielectric polarization, although a basically
simple phenomenon, produces some rather complicated effects; hence we
shall dclay its study untii Chapter 4. Conductors, on the other hand, may
be treated quite easily in terms of concepts which have already been
developed.

Since charge is free to move in a conductor, even under the influence of
very small electric fields, the charge carriers (electrons or ions) move
until they find positions in which they experienee no net force. When
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they ccme to rest, the interior of the conduclor must be a region devoid
of an electric field; this must be so because the charge carrier population in
the interior is by no means depleted, and if a field persisted, the carriers
would continnte to move. Thus, under slafic conditions, ihe eleciric field
in a conductor vanishes. Furthermore, since E = 0 in a conductor, the
potential is the same at all points in the conducting material. In cther
words, under staltc condstions, each conducior ferms an equipoiential region
aof space.

2-6 Gauss’ iaw. An important relationship exists between the integral
of the normal component of the electric field over a closed surface and the
total charge enclosed by the surface. This relaticaship, kaown as Gauss'-
law, will now be investigated in more detail. The electric field at point r
due to & point charge ¢ located at the origin is

EF) = Jx’_; . (@-21)

Consider the surface integral of the normal component of this electric
field over a closed surface (such as that shown in Fig. 2-2) which encloses
the origin and, consequently, the charge ¢; this integral is just

, ¢ & xoa .
fSE -naa-= ‘17(6_(; fb ——;‘,'—da (2—22)‘
n E

Fig. 2-2. An imaginary closed surface S which encloses a point charge at
the origin.

The quantity (r/r) - n da is the projection of da on a plane perpendicular
to 7. This projected area divided by r? is the solid angle subtended by da,
which is written dQ. It is clear from Fig. 2-3 that the solid angle sub-
tended by da is the same as the solid angle subtended by de’, an element
of the surface area of thé sphere S’ whose center is at the origin and
whose radius is . 1t is then possible to write

r'n r-n
—5 da = ﬁ, 3 da’ = 4w,

s T
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Fre. 2-3. Construction of the spherical surface S’ as an aid to evaluation of
the solid angle subtended by da.

which shows*that

= 9 = 2 _

s E:-nd '4‘7';;(;411' = € (2 23)
in the Qpeu:a,l ease described above. If ¢ lies outside of S, it is clear from
Fig. 2-4 that S can be divided into two areas S;-and S, each of which
subtends the same solid angle at the charge ¢. For Sy, however, the
direction of the normal is towards ¢, while for 8 it is away from q. There-
fore the contributions of Sy and S, to the surface integral are equal and
opposite, and the total integral vanishes. Thus if the surface surrounds a
point charge g, the surface integral of the normal component of the electric
field is q/¢,, while if ¢ lies outside the surface the surface integral is zero.

FIG 2-4. The closed surface S may be divided into two surfaces, S1 and Sz,
carl of which subtend the same solid angle at ¢. :

The preceding statement applies to any closed surface, even to so-called:
re-entrant ones. A study of Fig. 2—5 is sufficient to verify that this 1s‘
indeed the case.

If several point charges q;, g2, . .., qv are enclosed by the surface S,
then the total electric field is given by the first term of Eq. (2-8). Each
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(2) (b)

Fie. 2-5. An element of solid angle cutting the surface S more than once.

charge subtends a full solid angle (47); hence Eq. (2-23) becomes

f E-nda = — Z g (2-24)

t==l

This result can be readily generalized to the case of a continuous dis-
tribution of charge characterized by a charge density. If each element of
charge p dv is considered as a point charge, it contributes p dv/€; to the
surface integral of the normal component of the electric field provided it
is inside the surface over which we integrate. The total surface integral
is then the sum of all contributions of this form due to the charge inside
the surface. Thus if S is a closed surface which bounds the volume V,

){E-nda - %/ o dv. (2-25)

Equations (2-24) and (2-25) are known as Gauss’ law. The term on the
left, the integral of the normal component of the electric field over the
surface S, is sometimes called the flux of the electric field through S.

Gauss’ law may be expressed in yet another form by using the divergence
theorem. The divergence theorem (1-37) states that

9€ F-nda = / div F dv.

] v

If this theorem is applied to the surface integral of the normal component

of E, it yields

: 99 E-nda = f div E dv, (2-26)
s v

which, when substituted into Eq. (2-25), gives

. 1
' /V divEdr = ;g[Vpdu. (2-27)
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Equation (227} must be valid for all volumes, that is, for any choice of
the volume V. The only way in which this can be true is if the integrands
appearing on the left and on tke right in the equation ars eqgual. Thus the
validity of Eq. (2-27) for any choice of V impliss that

dgiv E

i
i
®

(2~28)
This result may be thought of as a differential form of Gauss’ law.

2~7 Application of Gauss’ law. Equation {2-28) or, more properly, a
modified form of this equation which will be derived in Chapter 4, is cne
of the basic differe itial equations of electricity and magnetism. fIn this
role it is important, of course; but Gauss’ law alse has practical utiiity.
This practicality of the law lies largely in providing a very easy way to
calculate electric fields in qufﬁdmtly symmetric situations. In other words,
in certain highly symmetric situations of considerable physical interest,
the electric field may be calculated by using Gauss’ law instead of by the
integrals given above or by the procedures of Chapter 3. When this can
be done, it accomplishes a major saving in effort. '

Part of long
i line charge

Fie. 2-6. A cylindrical surfaee to be used with Causs’ law to find the electric
field preduced by a long line charge.

In order that Gauss’ law be useful in calculating the electric field, it
must be possible to choose a closed surface such that the electric field has
a normal component which is either zero or & single fixed value at every
point on the surface. As an example, consider & very long line charge of
charge density A\ per unit length, as shown in Fig. 2-6. The symmetry of
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the situation clearly indicates that the electric field is radial and inde-
pendent of both position along the wire and angular position sround the
wire. These observations lead us to choose the surface shown in Fig. 2-6.
For this surface it is easy to evaluate the integral of the normsl component
of the electric field. The circular ends contribute nothing, since the electric
field is parallel to them. The cylindrical surface contributes 27rlE, since
E is radial and independent of the posmon of the cylindrical surface.
Gauss’ law then takes the form

oxriE, = M. (2-29)
€9 )

Equation (2-29) can be solved for E, to give

A ’
P e (2-30)
The saving of effort accomplished by the use of Gauss’ law will be more
fully appreciated by solving Problem 2-4, which mvohes direct applica-
tion of Eq. (2-8). -
Another important result of Gauss’ law is that the charge (net charge)
of a charged conductor resides on its surface. 'We saw in Section 2-5
that the electric field inside a conductor vanishes. We may eonstruct a
gaussian surface anywhere inside the conductor; by Gauss’ law, the net
charge enelosed by each of these surfaces is zero. Finally, we construct
the gaussian surface S of Fig..2-7; again the net charge enclosed is zero.
The only place left for the charge which is not in contradiction with
Gauss’ law is for it to reside on the surface of the eenductor.

Conductor

Fig. 2-7. A gaussian surface S constructed inside a charged conductor.

" The electric field just outside a charged conductor must be normal to
the surface of the conductor. This follows because the surface is an equi-
potential, and E = —grad U. Let us assume that the charge on a con-
ductor is given by the surface density function o. If Gauss’ law is applied
to the:small pillhox-shaped surface S of Fig. 2-8, then

EAS = (-:-"—)) AS,
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Fic. 2-8. Application of Gauss’' law to the closed, pillbox-shaped surface
S which intersects the surface of a charged conductor.

avhere AS is the area of one of the pillbox bases. Hence, for the electric
field just outside a conductor,

E = (2-31)

&la

2-8 The electric dipole. Two equal and opposite charges separated by
a small distance form an electric dipole. The electric field and potential
distribution produced by such a charge configuration can be investigated
with the aid of the formulas of Sections 2-3 and 2-4. Suppose that a
charge —q is located at the poiut 1’ and a charge ¢ is located at r' + |,
as shown in Fig. 2-9; then the electric field at an arbitrary point r may be
found by direct apphcatlon of Eq. (2-8). The electric field at r is found

to be

g Jr—r —1 r—1
E@m) = 4meo {|r -7 =13 Jr— r’(3}’ (2-32)
This is the correct electric field. for any value of ¢ and any value of the
separation I; however, it is not easy to interpret. What we want is the
dlpole field, and in the dipole the separation I is small compared with
r — 1t’; hence we may expand Eq. (2-32), keeping only the first non-
amshmg term. Since this procedure is of general utility it will be con-
sidered in detail. The primary difficulty in making this expansion is
caused by the denominator of the first term of Eq. (2-32). The reciprocal-
of this denominator can be rewritten as

f—r1 — 7%= [t — 1) — 2(r — ) 14 ]2

o . 1-3/2
e — r’i"s[l - At ]

Ir It —rf?

I
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r—r’

0)

Fie. 2-9. Geometry involved in calculating the electric field E(r) due to two
point charges.

In the last form it is easy to expand by the binomial theorem, keeping
only terms linear in I. The result of this expansion is
f 3(r —1)-1 }
—_ ! - -3 — —y -3 - [ . A— e0 oy S
R e e e T e ERR (2-33)
where terms involving % hbave been dropped. Using Eq. (2-33) in Eq.
(2-32) and again keeping only terms linear in I gives

_ 9 3 — 1)1 T S } o -
E(r)—4ﬂ€0{ It — 1|8 (x — 1) TE=¥g + 2-34)

Bguation (2-34) gives that part of the electric field, due to a finite electric
dipole, which is proportional to the separation of the charges. There are
other contributions proportional to the square, the cube, and higher
powers of the separation. If, however, the separation is small, these
higher powers contribute very little. In the limit .as I goes to zero,
all of the terms vanish unless the charge becomes infinite. In the limit
as ! goes to zero while ¢ becomes infinite, in such a way that ¢! remains
constant, all terms except the term linear in I vanish. In this limit a
point dipole is formed. A point dipole has no net charge, no extent in
space, and is completely characterized by its dipole moment, which
is the limit of ¢l as I goes to zero. We use the symbol p to represent the
electric dipole moment, and write

p=d (2-35)

In terms of, the dipole moment, Eq. (2-34) may be written

. 1 3(1' — r’) -p oo __-_.E_____} , o
E(r) - 47reo ‘r . rl|5 (r r) {r - r,|3 (2 3())
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The potential distribution produced by a point dipole is also iraportant.
This could be found by looking for a function with gradient equal to the
right side of Eq. (2-36). It is, however, easier to apply Eq. (2-15) to the
charge distribution consisting of two point charges separated by a small
distance. Using the notation of Eq. (2-32), the potential distribution is
given by

v q 1 N 1 ] o
‘ U = dreg [lr — "~ 1 lr — r'| (2-37)

By expanding the first term in exactly the same way as was done for the
first term of (2-32) and retaining only the linear term in I, Eq. (2-37)
can be put in the form

_ g (@®—-x)-1
Ulr) = 47rey |r — 1’13

(2-38)

This equation is valid to the same approximation as Eq. (2~34); namely,
terms proportional to 1% and to higher powers of 1 are neglected. For a
point dipole, p, Eq. (2-38) is exact; however, it is better written as

U = o BT (2-39)

dwey v — r[3

Equation (2-39) gives the poteatial U(r) produced by an electric dipele;
from this potential the electric field (Eq. 2-36) may be determined. It is
also interesting to inquire about the potential energy of an electric dipole
which is placed in an exlernal electric field. In the case of two charges,
—gatrand gatr -+ I in an electric field described by the potential fune-
tion U, (r), the potential energy is just

W = —qUen(r) + qUess(r + D). (2-40)

If 7 is small compared with 1, Uex(r -+ {) may be expanded in a power
series in I and only the first two terms kept. The expansion gives

Uexi(r 4 1) = Uext(r) 4 1- grad Uex, (2-41)

where the value of the gradient at point r is to be used. If this expansion
is used in Eq. (2-40), the result is

W = ql - grad Uex. (2-42)
Going to the limit of a point dipole gives simply
W) = p-grad Ues, (2-43)

which is, of course, exact. Since the electric field is the negative gradient
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of the electrestatic potential, an alternative form of Eq. (2-43) is

W) = —p- Eexl?). (2-44)

This, then, is the potential energy of a dipoie p in an external electric
field Eext, where Eqy.(r) is evaluated at the location of the dipole.

It is important to note that two potentials have been discussed in'this
section. In Eqgs. (2-37), {2-38), and (2-39), the electrostatic potential
produced by an electric dipole is considered. In Eqs. (2-40) through (2-43),
the dipole is cousidered to be in an existing electric field described by a
potential funetion Uex(r). This electric field is due to charges other than
those comprising the dipole; in fact, the dipole field must be excluded to
avoid an infinite result. This statement could lead us to rather complicated
questions concerning seli-forces and self-energies which we cannot discuss
here; however, it may be noted that the potenfial energy resulting from
the interaction of an electric dipole with its own field arises from forces
exerted on the dipole by itself. Such forces, known in dynamics as internal
forces, do not affect the motion of the dipole as a whole. For our purposes
further consideration of this question will be unnecessary.

2-9 Multipole ezpansion of electric fields. It is apparent from the
defmition of dipole moments given above that certain aspects of the
potential distribution produced by a specified distribution of charge might
well be expressed in terms of its electric dipole moment. In order to do
this it is necessary, of course, to define the electric dipole moment of an
arbitrary charge distribution. Rather than make an vanmotivated defini-
tion, we shall consider a certain expansion of the electrostatic potential
due to an arbitrary charge distribution. To reduce the number of position
coordinates, a charge distribution in the neighborhood of the ovigin of
ccordinates will be considered. The further restriction will be made that
the charge distribution can be entirely enclosed by a sphere of radius o
which is sodall compared with the distance to the point of observation.
An arbitrary point within the charge distribution will be designated by r’,
the charge density at that point by ¢{r’), and the observation point by r
(see Fig. 2-10). The potential at r is given by

U(e) = o }[ I ) (2-45)
dmweg Jv' jr - 1|
where dv' i3 used to designate an alement of volurae i, the charge distribu-
tion and 177 dennies the entire volume oceupied by the charge distribu-
ticiv. In view of the restriction made sbove Lo points of obhservation which
are remote from the origia, the quantity ¢ — i ! ean be expanded in a
series of ascending powers of /7. The result of such an expansion is
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*
r Observation
point

Fig. 2-10. The charge is localized in the volume V with charge density
p(r). The electric field is to be calculated at point r.

P R G TE e T e
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where only the first three terms are explicitly indicated. It shoulq be
noted that while (' /r)? is negligible gompared with 2t” - r/7%, it may not
be dropped in the first set of brackets because it is of the same order as the
dominant term in the second set of brackets. Using Eq. (2-46) in Eq. (2-45)
and omitting terms involving the cube and higher powers of r’ yields

) L2 ’2
U(r) =_L/V,{l + LI +§—[3<’ o) —L]+--~}p<r'>dv'.

dreg r r3 5 r3
(2-47)

Since r does not involve the variable of integration r’, all of the r depend-
ence may be taken from under the integral sign, to obtain

‘_

14 s 1 ’ 7 VPN~ /
Ur) = {; [V,p(r)dv +-;§-/V,rp(r)dv

TEQ

'

(]

3 - . '
TEIDIEE= f , (3l — sirDp() A, (2-48)
&1 = 2 5 Jy

i

where ;, z; are cartesian components of r, x;, x; are the cartesian com-
ponents of r/, and 3;; is defined as follows:

0, v
8 =

.1: 1=

It is easy to interpret Eq. (2-48). The first integral in the equation is
clearly the tctal charge, and the first ferm is the potential which would
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result if this total charge were concentrated at the origin. The second
integral is very similar to the dipole moment defined in Section 2-7,
and o it is cailed the dipole moment of the charge distribulion. As a
definition, this represents a generalization of the definition given for
two equal and opposite point charges; it ix casy to show, however, that
both definitions give the same result for two equal and opposite poing
charges. The second term in Eq. (2-48) is the potentia! which would
result if a point dipole equal to the dipole moment of the charge distribu-
tion were located at the origin of coordinates. It is interssiing to note
that the dipole moment of & chargs distribution is indeperdent of the
origin of coordinat@s if the total charge is zero. Lo verify this, consider a
new coordinate system with orzgin at R in the old system. Denoting a
point with rezpect to the old system by r’ and the same point with respect
to the new aystem by r’”/, we have

' = 1"+ R. (2-49)
The dipole moment with respect to the old system ie

— F ol d = " + R Ny — o dy -1 R (350 ‘
? ler px, /Vr\ o )p(r,av [V’ pav - Qy { 3)

which m'oves the statement above.
The third term of Eq. (2-48) can be written

8 21z
7 i
DIDIE L L P (2-51)
i==] =1
where Q,, is given by
Qi = [ @ — o) dv. (2-52)

There are nize components of Qg corresponding to 7, J equal o 1, 2, 3.
Of these nine components six arc equal in pairs, leaving six distinet cormn -
veneats. This set of quantities farm the quadrupole mement tensor and
represent an sxtension of the dipole moment concept. There are, of course,
higher-order moments which are generated by keeping higher-order terms
in the expansion of Eq. (2-48). These higher-order ma!tlpoieb are im-
portant in nuclear physics, but will not be considered firther in this book.

The electric multipoles are used, as Eq. (2-48) indicates, to approximate
the electric field of a charge distribution. There are, however, many
other uses, all in the framework of approximating a real exteuded charge
distribution by point charges, point dipoles, ete. These approximations
often make it possible to solve problems swhich wculd otherwise be pro-
hibitively difficult.
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ProsLEMS

2-1. Two particles, each of mass m and having charge ¢, are suspended by
strings of length I from a common point. Find the angle 6 which each string
makes with the vertical.

2-2. Two small identical conducting spheres have charges of 2.0 X 109 coul
and —0.5 X 1079 coul, respectively. When they are placed 4 cm apart, what is
the force between them? If they are brought inte contact and then separated
by 4 cm, what is the force between them?

2-3. Point charges of 3 X 10~? coul are situated at each of three corners of a
square whose side is 15 em. Find the magnitude and direetion of the electric
field at the vacant corner point of the square.

2-4. Given an infinitely long line charge with uniform charge density A per
unit length. Using divect mtogmuoq, find the electric field at a distance r from
the line.

2-5. (a) A circular disk of radius & has a uniform surface charge density o.
Find the electric fieid at a point on the axis of the disk at a distance z from the
planc of the disk. (b) A right circular cylinder of radius R and height  is
oriented along the z-axis. It has a nonuniform volume density of charge given

p(2) = po -+ Bz with reference to an origin at the center of the cylinder.
Fmd the force on a point charge ¢ placed at the center of the cylinder.

2-6. A thin, conducting, spherical shell of radius R is charged uniformly with
total charge . By direct integration, find the potential at an arbitrary point
(a) inside the shell, (b) outside the shell.

2-7. Two point charges, —q¢ and -3¢, are situated at the origin and at the
point {a, 0. 0) respectively. At what point along the r-axis does the electric
field vanish? [n the z, y-plane, make a plot of the equipotential surface which
goes through the point just referred to. Is this point a true minimum in the
potential?

2-8. Show that the U = 0 equipotential surface of the preceding problem is
spherica] in shape. What are the coordinates of the center of this sphere?

2-9. Given a right circular cylinder of radius R and length L containing a
uniform charge density p. Calculate the electrostatic potential at a point on the
cylinder axis but external to the distribution.

2-10. Given a region of space in which the electric ficld is everywhere directed
parallel to the z-axis. Prove that the electric ficld is independent of the y- and
z-coordinates in this region. If there is no charge in this region, prove that the
field is also independent of z. -

2-11. Given that the dielectric strength of air (i.c., the electric field which
produces corona) i3 3 X 10® v/m, what is the highest possible potential of an
isolated spherical conductor of radius 10 em?

2-12. A conducting object has a hollow cavity in its interior. If a point
charge ¢ is introduced into the cavity, prove that the charge —¢ is induced on
the surface of the cavity. (Use Gauss’ law.)

2-13. The electric field in the atmosphere at the carth’s surface is approxi-
mately 200 v/m, directed downward. At 1400 m above the earth’s surface, the -
electric field in the atmosphere is only 20 v/m. again directed downward. What :
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is the average charge density in the atmosphere below 1400 m? Does this

'('aniSt predominantly of positive or negative ions? ‘
{ 2-14. Two infinite parallel conducting plates are separated . y the distance d.
If the plates have uniform charge densities ¢ and -—o, respectively, on their
inside surfaces, obtain an expression for the electric field between the plates.
Prove that the electric field in the regions external to the plates is zero. [Two
charged parallel conducting plates of finite area produce essentially the same
electric field in the region between them as was found above provided the di-
mengions of the plates are large compared with the separation d; such an arrange-
ment is called a capacitor (see Chapter 6).]

2-15. A gpherical charge distribution has a volume charge density which is a
function only of 7, the distanee from the center of the distribution. In other
words, p = p(r). If p(r) is as given below, determine the electric field as a
function of r. Integrate the result to obtain an expression for the electro-
static potential U(r), subjcct to the restriction that U(«) = 0.

(a) p = A/r with A a constant for 0 > r > R;
p = Oforr > R.

(b) p = po (i.e., constant) for 0 > r > R;
p = 0forr > R.

2-16. Using Eq. (2-39) for the potential produced by a dipole p, make a plot
of the traces of equipotential surfaces in a plane containing the dipole. For
convenience, the dipole may be located at the origin. Use the results obtained
to sketch in some of the lines of force. Compare the result with Fig. 2-1.

2-17. (a) Show that the force acting on a dipole p placed in an external
electric field Eexe 15 P+ VEexs. (D) Show that the torque acting on the dipole in
this field is

7 =1 X [p* VEexi] + p X Eext,

where r is the vector distance to the dipole from the point about which the
torque is to be measured. The quantity p X Eext, which is independent of the
point about which the torque is computed, is called the turning couple acting on
the dipole.

2-18. Three charges are arranged in a lincar array. The charge —-2¢ is placed
at the origin, and two charges, sach of ¢, are placed at (0, 0, 1) and (0, 0, —I)
‘respectively. Find a relatively simple expression for the potential U(r) which
is valid for distances [r] 3> I. Make a plot of the equipotential surfaces in
‘the z, z-plane.



CHAPTER 3
SOLUTION OF ELECTROSTATIC PROBLEMS

The solution to an electrostatic problem is straightforward for the case
in which the charge distribution is everywhere specified, for then, as we
have seen, the potential and electric field are given directly as integrals
over this charge distribution:

v 1 [ dg R
V) = 4meq / r— 7]’ (3-1)

1 (r — 1 dg

dmeg [t — 1']3

E@) = (3-2)
However, many of the problems encountered in practice are not of this
type. If the charge distribution is not specified in advance, it may be
necessary to determine the electric field first, before the charge distribution
can be calculated. For example, an electrostatic problem may involve
several conductors, with either the potential or total charge of each con-
ductor given, but the distribution of surface charge will not be known in
general, and cannot be obtained until a complete solution to the problem
is effected.

Our aim in this chapter is to develop an alternative approach to electro-
static problems, and to accomplish this we first derive the fundamental
differential equation which must be satistied by the potential U. For
the present we shall disregard problems invelving dielectric bodies;
problems of this type will be solved in Chapter 4.

3-1 Poisson’s equation. All of the basic relationships which we shall
need here were developed in the preceding chapter. First, we have the
differential form of Gauss’ law,

mE:}p (3-3)

Furthermore, in a purely electrostatic field, £ may be expressed as minus
the gradient of the potential U:

B = — grad U. (3-4)
Combining (3-3) and (2-4), we obtain
divgrad U = -- 3 (3-5a)
0

44
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1t is convenient to think of div grad as a single differential operator,
Vv -V or V2. The latter notation is preferred, and the operator is called

the Loplacian:

VU = - L (3-5b)

€o

It is evident that the Laplacian is a pure scalar differential operator, and
(3-5b) is a differential equation. This is Porsson’s equation. The operator
v? involves differentiztion with respect to more than one variable; hence
Poisson’s equation is a pariial differential equation which may be solved
once we know the functional dependenee of p(x, y, 2) and the appropriate
bovndary conditions.

The operator V, just like the grad, div, and curl, makes no reference
to any particular coordinate systern. In order to solve g specific problem,
we iust write V? in terms of x, 7,z or 7, 4, ¢, or ezc. The choice of the
particular set of coordinates is arbitrary, but substantial simplification of
the problem is usually achieved by choosing a set compatible with the
svmmetry of the electrostatic probiem. The form taken by V*U in various
coordinate systems is easily found by first taking the gradient of U, and
then operating with div, using specific expressions from Chapter 1:

Rectangular coordinates:
a*u a’u
2 == reruie s s & e
ViU = Jdx? T da/— + az? (3-6)

Spherical coordinates:

w19 230) 1 a( ao) 18U ~
VU=GH\" 3/ P eens 5o\ %5/ T mEnt s a2 3-7)

Cylindriesl coordirates:

3 1 8% 8%U o o
VU = - -ﬂ( dr) + 7 G55 -+ vl (3-8)

For the form of the Laplacian in other, more complicated coordinate
systems, the reader is referred to the references at the end of this chapter.
It should be noted that » and 6 have different meanings in (3-7) and (3-8);
in spherical coordinates r is the magnitude of the radius vector from the
origin and 4 is the polar angle. In cylindrical coordinates, r is the per-
pendicalar distance from the eylinder axis and 6 is the azimuthal angle
about this axis.

3-2 Laplace’s equation. In a certain class of electrostatic problers
involving conductors, all of the charge is found either ou the surface of
the conduetors or in the form of fixed point charges. In these cases p is



46 SOLUTION OF ELECTROSTATIC PROBLEMS [caar. 3

zero at most points in space. And where the charge density vanishes,
the Poisson equation reduces to the simpler form

v = 0, (3-9)

which is Leplace’s equation.

Suppose we have a set of N conductors {one or more of which may be
point charges) maintained at the potentials Uz, Urr, ..., Un. Our prob-
lem is to find the potential at all points in space outside of the conductors.
This may be accomplished by finding a solution to Laplace’s equation
which reduces to Uy, Uiy, ..., Un on the surfaces of the appropriate
conductors. Such a solution to Laplace’s equation may be shown to be
unique, i.e., there is no other solution to Laplace’s equation which satisfies
the same boundary conditions. A proof of this statement will be given
below. The solution to Laplace’s equation which we find in this way is
not applicable to the interior of the conductors, because the conductors
have surface charge, and this implies a discontinuity in the gradient of
U across the surface (see Section 2-7). But we have already seen that the
interior of each conductor is a region of constant potential, so the solution
to our problem is complete.

We shall describe in some detail two methods for solution of Laplace’s
equation: the first is a method for compounding a general solution to (3-9)
from particular solutions in a coordinate system dictated by the sym-
metry of the problem; the secoud is the method of images. In addition,
a completely general solution to the problem in two dimensions will be
found. Before taking up these specific procedures, however, we stop to
prove some important properties of the solution to Laplace’s equation.

Tarorem 1. If U, U,, ..., U, are all solutions of Laplace’s equation,
4%
Laen

U = (,'ll'ri + 02[}2 e + C'ﬂr—fn) (3"‘10)

where the £7s are arbitrary eonstants, is also a solution.

The proot o this follows immediately {rom the fact that
VI = VAC, Uy - V20 Uy - -+ - + V3C,U,
Srr v
= 01V~[/1 -4 Cgv?'(/z T CnV2Un
= 0.
Through the uss of Theorem T we may superimpose two or more solutions’
of Laplace’s equation in such a way that the resuiting solution satisfies.

a given set of boundary conditions. Iixamples will be given in the following:
sections.
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TuroreM II (Uniqueness theorem). Two solutions of Laplace’s equa-
tion which satisfy the same boundary conditions differ at most by an
additive constant.

To prove this theorem we consider the closed region V exterior ic the
surfaces Sy, 811, ..., 8y of the various conductors in the problem and
bounded on the cutside by a surface S, the latter being either a surface
at infinity or a real physical surface which encloses V. Let us assume
that Uy and Us are two solutions of Laplace’s equation in Vg which, in
addition, have the same boundary conditions on S, Sy, S11, . . ., Sy. These
boundary conditions may be specified by assigning values of either U or
aU/dn on the bounding surfaces.

We define a new function ® = U,; — U,. Obviously, V¢ = VU, —
V32U, = 0 in V4. Furthermore, either ® or n - grad & vanishes on the
boundaries. Let us apply the divergence theorem to the vector $9$:

[V div (8V®) dV = ®9d - n dS
0

[S+SI+ e Sy
= 0,

since the second integral vanishes. The divergence may be expanded
according to Eq. (I-6) of Table 1-1 to give

div (8V®) = VP - (VP2

But V2® vanishes at all points in Vg, so that the divergence theorem
reduces in this case to

/ (V®)2dV = 0.
Vo

Now (V®)2 must be either positive or zero at each point in V, and since
its integral is zero, it is evident that (V®)2 = 0 is the only possibility.

The theorem is essentially proved. A function whose gradient is zero
at all points cannot change; hence at all points in Vy, ® has the same
value that it has on the bounding surfaces. If the boundary conditions
have been given by specifying U; and U; on the surfaces S, Sy, ..., Sy,
then since & = 0 on these surfaces, it vanishes throughout V,. If the
boundary conditions are given in terms of dU,/dn and 8Ug/dn, then
V& equals zero at all points in Vo and V& -n = 0 on the boundaries.
The only solution compatible with the last statement is & equal to a
constant.

3-3 Laplace’s equation in one independent variable. If U is a function
of one variable only, Laplace’s equation reduces tc an ordinary differential
equation. Consider the case where U is U(x), a function of the single
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reetangular coordinate . Then

d*U
dz?
is the gencral solution, where ¢ and b are constants chosen to fit the
boundary conditions. This is the result already found in the preceding
chapter for the potential between two charged conducting plates oriented
normal to the z-axis.
The situation is no more complicated in other coordinate systems where
U is a function of a single variable. In spherical coordinates where U
equals U(r), Laplace’s equation and its general solution become

=0 and Ulx) = azx + b (8-11)

Lg_»@g __a 3
ax\" )= 0, U{r) = ; -+ b. (3-12)

The general solution to Laplace’s equation in cylindrical coordinates for
a function which is independent of 8 and z, that is, for U(r), is left as an
exercise for the reader.

3-4 Solutions to Laplace’s equation in spherical coordinates. Zonal
harmonics. We next turn our attention to solutions of Laplace’s equation
where U is a function cf more than one variable. Many of the problems
of interest to us deal with conductors in the shape of spheres or cylinders,
and thus solutions of Laplace’s equation in either spherical or cylindrical
coordinates are called for. We first take up the spherical problem, but
we shall find it expedient to limit the discussion to cases in which U is
independent of the azimuthal angle ¢. This limitation restricts the ciass
of problems which we shall be able to solve; nevertheless, many interesting
physical problems fall into this restricted category, and more complicated
problems are really beyond the scope of this book.

For the spherical case, U is U(r, 8), where r is the radius vector from a
fixed origin O and # is the polar angle (see Fig. 3-1). Using Eq. (3-7),
Laplace’s equation becomes in this case

L 2(,20) L2 (4 g20) §
72 Br (r ar) Trsmsag\Sn 05/ = 0. (3-13)
This partial differential equation will be solved by a technique known as
“separation of variables.” A solution of the form U(r, 8) = Z(r)P(6) is
substituted into (3-13), yielding ’

1o 4 2d2 1&Lg(- ﬂj“ "
= PO (’ o) Trsngaa\ 0/ =0 B

Note that the part:al derivatives have been replaced by total derivatives,
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_ Polar
direction

Fra. 3-1. Loeation of the point P in terms of the spherical coordinates r, §,45.
since Z and P’ are each functions of one v&r‘able only. Dividing through
by U{r, 8 anvd muitiplying through by 7%, we transform {3-14) into

1 df 44?)__ 1 af cL)_

7z @\ Fang as \" 03

The left side of this equation is a functicn of » only and the right side is a
funetion of 8; the only way in which a funciion of » caur equal a functicn
of 8 for all values of » and 6 is for both functions to be constant. Hence
iet each sids of (3-15) equal k, where % is the “separation constant.”

Not a1l values of k necassarily yield solutions which are acceptable on
physical grounds. Consider the ¢ eguation first: '

{5-185)

gﬁifé > (sm P ‘2‘: + kP = 0. (3-16)
This is Legendre’s equation, and the only physically accepiable solutions
which are defined over the full range of § from 0 to 7, correspond to
k == n{n + 1), where n is a positive integer. The solation for a particular

n will be deénoted by P,.(8). Solutions of (3-16) for other values of k are
xll~behaved in the vicinity of # == 0 or 6§ = w radiaps, becoming infinite
or even undefined at these values of 8.* These solutions cannot be made
to fit physical boundzwv conditions and hence must be discarded.?

* The discussion here has been all too brief. The interested reader is referred
to move mathematical fexts for a detailed treatment of Legeudre’'s equation.
See, e.g., the bock by Margenau and Mnrpuy (p. 61; listed at the end of this
Lhﬂ.ptdx Legendre’s equation is usually written in a different form by substituting
z = cos 0, and its solutions are then denoted by Pa(zx) or Py(ces 6)

t This statement requires some qualification. In some electrostatic problems
the regions around 6 = 0 and 8 = = may be naturally excluded, for example,
by conducting conical surfaces; under these conditions solutions of (3-18) with
other values of & could be used. Problems of this type wiil not be considered here.
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The acceptable solutions, the P,(6), are polynomials in cos 6, and are
usually referred to as Legendre polynomials. The first four Legendre
functicns are given in Table 3—-1. It is evideut from (3-16) that the P,
may be multiplied by any arbitrary constant.

We now return to the radial equation

a(, fifg) = a7, (3-17)

whera we have used the explicit form of & which gave acceptable 6 solu-
tions. Inspection of (3-17) shows that two independent solutions are

Zn=1" and Z, = r70tY

Solutions of Laplace’s equation are obtained as the product U,(r, ) =
2,{r) X Pn(8), where particular care must be vxersised to have Z and P
correspond to the same value of n. This is mandatory, since both sides of
Eq. (3-15) are equal to the same constant, namely, n{n + 1).

TaBLE 3-1

LEGeENDRE PorLy~NOMIALS FOR n = 0, 1, 2, AND 3

n - Pu(6)

0 1

1 cos 8

2 3 {(3cos?28 — 1)

3 3 (5cos% 8 — 3cosd)

As a result of the above discussion we have solved Laplace’s equation
in spherical coordinates and have obtained the solutions which are known
as zonal harmonics:

Un. = ™P,(6) or U, = r""THP. (), (3-18)

where P,(0) is one of the polynomials listed in Table 3-1, and n is a
positive integer or zero. The zonal harmonics form a complete set of
functions, i.e., a general solution of Laplace’s equation may be constructed
as a superposition of these solutions according to Theorem I provided
the physical problem shows the appropriate azimuthal symmetry. Several
of the zonal harmonics are already well known to us: one of the n = 0
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solutions, namely U = constant, is a trivial solution of Laplace’s equation,
valid in any coordinate system; the zonal harmonic r! is the potential
of a point charge; and »~2 cos 4 is the potential of a dipole.

3-5 Conducting sphere in a uniform electric field. We shall illnstrate
the usefulness of zonal harmonies for electrostatic problems having spheri-
cal symmetry by solving the problem of an uncharged conducting sphere
placed in an #nittally uniform electric field Ey. The lines of a uniform
electric field are parallel, but the presence of the conductor alters the field
in such a way that the field lines strike the surface of the conductor, which
is an equipotential surface, normally, If we take the direction of the
initially uniform electric field as the polar direction (e-direction), and if
we make the origin of our coordinate system coincide with the center of
the sphere, then from the symmetry of the problem it is clear that the
potential will be independent of azimuthal angle ¢, and may be expressed
as a sum of zonal harmonics.

The spherical conductor, of radius e, is an equipotential surface; let
us denote its potential by U,. Our problem is to find a solution to La-
place’s equation in the region outside the sphere which reduces to Uy
ou the sphere itself, and which has the correct limiting form at large
distances away. The solution may be formally written as -

Ulr,0) = A, + Cyr™! 4+ Agrcos @
+ Cor~2cos 6 + ¥ Azr®(3cos? 6 — 1)
+ $Car™3Bcos®9 — 1) + - -+, (3-19)

where the A’s and C’s are arbitrary constants. At large r, the electric
field will be only slightly distorted from its initial form, and the potential
will be that appropriate to a uniform electric field.

[E(?‘, 0)]r—m = EO = Eok,

[U(r, 6)];« = —Egz + constant,
= —FEgr cos § + constant. (3-20)
Hence, in order to make (3-19) and (3—20) agree at large r, A, = —¥;

furthermore, all the 4’s from A3 up must be set equal to zero.

The term Cyr~! produces a radial field which, as we might expect, is
compatible only with a spherical conductor bearing net total charge. Since
our problem deals with an uncharged conductor, the ¢onstant C1 must
be set equal to zero. At the surface of the sphere U = U, and the po-
tential must become independent of angle 8. The two terms involving
¢os 6 may be made to cancel each other, but the terms with higher inverse
powers of r cannot be cancelled one against the other because they contain
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[3)]
o

Fig. 3-2. Lines of electric fiux for the case of a conducting sphere piaced in a
uniform electric field.

different Legendre functions. The only possibility is to set all the C\'s
with ¢ > 3 equal to zero. Equation (3-19) now becomes

Ulr,8) = A, — Eorcos 8 + Car™?cos 6, for r > a,
Ula, 6) = U,. (3-21)-

Since the iwo expressions must be equal at r = a, 4; = U, and
Cz == anl"o,

From the final expression for the potential, we may calculate not only
the electric field at all points in space (see Fig. 3-2) but also the surface
density of charge on the conducting sphere:

. , .
B = — %(;] = E’o(\l +2§-3->cose,
. for » > a, (3-22)
19U
E, —;W—wE’o(l——E)smB,
o(8) = €k, = 3e€gF g cos 8. (3-23)

The total charge on the sphere,
Q = a? /' o(6)2msin 6 do,
0
is obviously zero, which agrees with our initial assumption.
3~6 Cylindrica;l harmonics. Laplace’s equation in- cylindrical co-

ordinates may also be solved by the method of separation of variables.
Here again it will be expedient to work out solutions for only a restricted
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class of problems, namely, those in which the potential is independent
of the coordinate z. These solutions are appropriate for certain problenis
involving a long straight cylindrical conductor or wire, but not for those
dealing with a short eylindrical segment.

If the potential is independent of z, Laplace’s equation in cylindrical

coordinates becomes . \
19 aU) 10°U o
L)+ -0 (329

Substitution of U = Y (r)8(8) reduces the equation to

r df dY 1d38 -
?37(’3;‘ =~"Sa~ b (3-25)

where k again plays the role of a separation constant. The f-equation is
particularly simple; it has the solutions cos k'/2¢ and sin k'/26. But if these
solutions are to make sense physically, each must be a single-valued

function of 8; thus
cos kY/2(8 + 2w) = cos k%,

sin kY/2(8 + 2w) = sin k'/20.

Or, to put it differently, after 8 has gone through its full range from 0
to 27 the function must join smoothly to its value at § = 0. This can<be
the case only if £ = n% n being an integer. We may further require n
to be positive (or zero) without losing any of these solutions.

Returning now to the r-equation, we are able to verify easily that
Y(r) is r® or r™"; unless n = 0 when Y(r) = Inr or Y(r) = constant.
Hence the required solutions to Laplace’s equation, the so-called cylindrical
harmonics, are .

1, Inr,
r" cos nf, r~" cos ng,
r™ sin né, r—" sin né.

These functions form a complete set for the variables », 8 in cylindrical
coordinates, and the potential U(r, 8) may be developed as a superposition
of cylindrical harmenics in accordance with Theorem 1.

*3-7 Laplace’s equation in rectangular coordinates. In rectangular co-
ordinates, the variables may be separated by making the substitution

Uz, y,2) = fi(@)f2(y)f3(2),

whereby Laplace’s equation reduces to

* Starred sections may be omitted without loss of continuity
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_1_ ﬁj;l_ _.l_ C_i_zfz I 1 & j3 (3-26a)
fi(x) dx? © fu(y) dy? Jsla) de?
The left side of this equation is a function of x and ¥, and the right side is
a function of z only; hence both sides must be equal to the same constant,
k. This is the first separation constant. The two equations obtained
froni (3-26a) are

dzZ = 0, (3-26b)

iiﬁ&zk 1 d2f1

f2 dy? Cf de?

The latter equation has been written such that the variables « and y are
separated; each side of this equation is now set equal to —m (the second
separation constant). Thus,

2
%—% -+ mfy = 0, (3—-26¢)

2f
L (k + m)f, = 0. (3-26d)

Tduations (3-26b), (3-26¢), and (3-26d) are easily solved. One of the
typical solutions for Ul(z, y, 2) is

Ulx,y,2) = Ae'(k”‘ﬁ’ cos m'?%y cos k%2, (3-27)

The ether seven independent solutions for a pair of separation constants
(k, m) sre obtained by making one or more of the following substitutions:
+(k + m)Y 2z for — (k 4+ m)Y2x, sin m'?y for cos m'?y, and sin k"%
for cos k'/%z.

Thus far there are no restrictions on k or m, but boundary conditions
on the problem usually restrict & (or m) to a discrete set of positive or
negative values. It is worth while making the point that it is the boundary
conditions which really pick out the pertinent solutions to a partial differ-
ential equation; the function

Ule, y, 2) = Z D Apge PR B COS PY COS ¢2
» q

for fixed x and ¥ is just the Fourier series expansion for an arbitrary even
function of 2.

The individual soluticns, (3-27), do not represent particularly simple
potentials, and we shall not try to correlate them with physical situations.
The case where both separation constants are zero is more interesting;
hence we turn our attention to this case. From (3-26d), it is evident that
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fi(x) = ayx, or fi(x) = constant, is a solution; from (3-26c¢), we obtain
fo(y), ete. Thus,

Uz, y,2) = Aijzyz + Agxy + Asgyz + Aazxz
+ Agr + Agy + A7z + A, (3-28a)

where the A’s are arbitrary constants. This solution may be applied to
the case where three conducting planes intersect at right angles. If these
planes are the coordinate planes xy, ¥z, and zr, and are all at the same
potential, then

Ulz, y,2) = Aayz + As. (3-28b)

It is left as an exercise for the reader to determine the surface charge density
on the coordinate planes that is compatible with (3--28b).

*3-8 Laplace’s equation in two dimensions. General solution. If the
poteintial is a function of only two rectangular coordinates, Laplace’s
equation is written

3’U | &°U

—(—9—:{‘? 6y2 == 0. (3—29&)

Tt is possible to obtain the general solution to this equation by means of a
transformation to a new set of independent variables; nevertheless, it
should be emphasized that such a transformation leads to a simplification
of the original equation only in the two-dimensional case. Let

=x+.7y) n =z — jy,

where j = v/—1 is the unit imaginary number. In terms of these rela-
tionships,

a2 32 2 a
ML g

axz = 3E2 9tay | ay

2 2 2 2

9 _ _,‘?..Jrg__?_.__.:i_,

ay? g2 3ty dn?
and 02U

2 == { — I S
ViU = 35 9r 0. (3-29b)

It is evident that the general solution to (3-29b) is
U= F(t) + Fx(n) = Filx + jy) + Fala — jy), (3-30)

where F; and Fg are arbitrary functions. The functions F; and Fg are
complex quantities in general, but two real functions may be constructed
in the following way. First let Fo(x — jy) = Fi(x — jy), that is, let
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the two functions F; and F, have the same dependence on their argu-
ments; then

Uy = Fi(c +jy) + Fi(x — jy) = 2Re[Fi(x 4 jv)],

where Re stands for “real part of.” Furthermore, the second real potential
function is

Us = —jlF1(@ +5y) — Fi(z — j] = 2Im [F (= + jy)],

where Im stands for “imaginary part of.” Thus the real and imaginary
parts of any complex function F(x + jy) are both solutions of Laplace’s
equation.

The solutions found in this way are not restricted to any particular
coordinate system. For example, the cylindrical harmonics of Section
3-7 are obtained from the complex functions* (z + jy)* = r"’™, and
In (x + jy) = Inr -+ 78. On the other hand, when it comes to solving a
particular two-dimensional problem, there is no standard procedure fqr
finding the appropriate complex function. This method generates so many
solutions that it is not possible to enumerate them all and cast out those
which do not agree with boundary conditions on the problem. In simple
cases, the required functions may be found by trial and error; in other
cases, the method of conformal mapping (which is beyond the scope of
this book) may be useful.

3-9 Electrostatic images. Ior a given set of boundary conditions,the
solution to Laplace’s equation is unique, so that if one obtains a solution
U(z, y,2) by any means whatever, and if this U satisfies all boundary

~conditions, then a complete solution to the problem has been effected.
The method of images is a procedure for accomplishing this result without
specifically solving a differential equation. It is not universally applicable
to all types of electrostatic problems, but enough interesting problems fall
into this category to make it worth while discussing the method here.

Suppose the potential may be written in the following way:

J ’
0@ = Ui + g [ 720, (3-31)
where U is either a specified function or easily calculable, and the integral
represents the contribution to the potential from surface charge on all
conductors appearing in the problem. The function o is not known. It
may happen, and this is the essence of the image-charge method, that
the last term in (3-31) can be replaced by a potential U, which is due to

* The cylindrical and rectangular coordinates are related in the usual way:
z =rcosb,y = rsiné.
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a specified charge distribution. This is possible so long as the surfaces of
all conductors coincide with equipotential surfaces of the combined
Uy -+ Ua. The specified charges producing U, are called image charges.
They do not really exist, of course. Their apparent location is “inside” the
various conductors, and the potentlal U= Uy -+ Uyis a valid solumon
to the problem only in the exterior region.

As an example of this method, we shall selve the problem of a pomt
charge ¢ placed near a conductmg plane of infinite extent. To formulate
the problem mathematically, let the conducting plane coincide with the
yz-plane, and let the point charge lie on the 2-axis at © = d (see Fig. 3-3a).

(x,y, 2)
7'1/

(z,y,2)

NNSSNNNNNNN

Fia. 3-3. Problem of a point charge and condueting plane solved by means
of the image-charge method: (a) original problem, (b) location of image charge,
(¢) lines of force (dotted) and equipotential surfaces (solid).
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The potential fits the prescription (3-31), with

Ui, y, 2) = —a— = g . (3-32)

dreors  4mwepV/ (z — d)2 + y? + 22

Consider now a different problem, that of two point charges (¢ and —g¢)
a distance 2d apart, as shown in Fig. 3-3(b). The potential of these two
charges,

7 S’ SN SR _
Uz, y,2) = dmegr,  4mwegrs (3-33)

not oaly satisfies Laplace’s equation at all points exterior to the charges,
but also reduces to a constant (namely, zero) on the plane which perpen-
dicularly bisects the segment joining the two charges. Thus (3-33) satisfies
the boundary conditions of the original problem. Because solutions to
Laplace’s equation are unique, (3-33) is the correct potential in the
entire half-space exterior to the conducting plane. The charge —g¢ which
gives rise to the potential

q q
- = - 3-34)
4meors ame/ (@ + d)2 + 4 + 22 (

Us(x, y,2) =

is called the image of the point charge ¢. Naturally, the image does not
really exist, and (3-32) does mo! give correctly the potential inside or
to the left of the conducting plane in Fig. 3-3(a).
The electric field E in the exterior region may be obtained as the negative
gradient of (3-33). Since the surface of the conducting plane represents
an interface joining two solutions of Laplace’s equation, namely, U/ = 0
and (3-33), the discontinuity in the electric field is accommodated by a
surface charge density o on the plane:
- _ qd .
z=0 om(d2 & y? + 22)3/2

oy, 2) = €k, (3-35)

The lines of force and equipotential surfaces appropriate to the original
problem are shown in Fig. 3-3(c). These are the same lines of force and
equipotential surfaces appropriate to the two point charge problem in
Fig. 3-3(b) except that in the latter case the flux lines would continue
into the left half-plane. It is evident from the figure that all of the electric
flux lines which would normally converge on the image charge are inter-
cepted by the plane in Fig. 3-3(c). Hence the total charge cn the plane
is equal to that of the image charge, —¢. This same result may be ob-
tained mathematically by integrating (3-35) over the entire surface (see:
Problem 3-10).

It is evident that the point charge ¢ exerts an attractive force on the,
plane, because the induced surface charge is of the opposite sign. By
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Newton’s law of action and reaction, this force is equal in magnitude to

the force exerted on ¢ by the plane. Since the point charge experiences
no force due to its own field,

F = —qggrad U,, (2-36)

which is just the force exerted on it by the image charge.

Another problem which may be solved simply in terms of images is that
of determining the electric field of a point charge ¢ in the vicinity of & right-
angle intersection of two conducting planes (see Fig. 3—4a). The positions
of the necessary image charges are shown in Fig. 3—4(b). 1t is readily seen
that the two planes shown dotted in the figure are surfaces of zero poten-
tial due to the combined potentials of ¢ and the three image charges.

—qe

qe

i

(a)

—
Paig

Fre. 3-4. Point charge in a right-angle corner.

3-10 Point charge and conducting sphere. The principal difficulty’ in
solving a problem by image technique is that of finding a group of image
charges which, together with the originally specified charges, produce
equipotential surfaces at the conductors. The problem is straightforward
only in cases where the geometry is simple. Such is the case, however,
for a point charge ¢ in the vicinity of a.conducting sphere; it requires a
single image charge to make the sphere a surface of zero potential. An
additional image charge is needed to change the potential of the sphere
to some other constant value. .

We shall first determine the magnitude and location of the image ¢’
which together with the point charge ¢ produces zero potential at all
points on the sphere. The geometry of the situation is shown in Fig. 3-3.
The point charge ¢ is a distance d from the center of the sphere, and the
radius of the sphere is a. It is apparent from the symmetry of the problem
that the image charge ¢’ will lie on the line passing through ¢ and the center
of the sphere.

The desired results are most easily obtained by means of spherical
~coordinates, with the origin of coordinates at the center of the sphere.
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A
(=

Fia. 3-5. Point charge ¢ in the vicinity of a condueting sphere; ¢ is the
3 & ¢
image charge.

P(r, 8, ¢)

ESX

. S

Let the polar axis be taken as the line joining ¢ to the origin. The distance
b and the magnitude of ¢’ are to be determined in terms of the specified
quantities: g, d, a. The potential at an arbitrary point P due to g and 7'
s given by

q 7

Uir, 8, Ly L
* ¢) 47"65.71 ' dmeers

ol 7 7 |
dmen L /75 1 g2 — 2rd cos e \/ 72+ 52 — 2rbcos §
(3-37)

On the surface of the sphere, r == a, and U(a, 6, ¢) = 0 for ali 9 and ¢.
But from expression {3-37), Ula, 6, $; can equal zero for ali 6 only if the
two square roots are proportional to each other. This is the case if
b = a?/d, for then

Ve? + B2 — 2abcus § = 'Z;\/dz + a? — “ad cos 6.

Hence,
o2
b = = (3-38)

and furthermore,

e Q3T
g = d (O -59)

‘These equations serve to specify the location and magnitude of the first
image charge.

A second image charge ¢’ may be placed at the center of the sphere
without destroying the equipotential nature of the spherical surface. The
magnitude of ¢” is arbitrary; it may be adjusted to fit the boundary
conditions on the problem. Thus a complete solution to the point charge-
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conducting sphere problem has been effected; the potential at all points
exterior to the sphere is

y_1e ¢ g__] ;
U, 6, ¢) = Ire, [rl + r2 -+ r (3-40)
The potential of the spherical conductor itself is
S A
U(ar 0’ ¢) - 47('600: ’ (3—41)

and the surface density of charge on the sphere is

oU | ,
o6, ¢) = —€o 5| . (3-42)
All the lines of force which would normally eonverge on the image charges
are intercepted by the sphere; hence the total charge on the sphere, @,
is equal to the sum of the image charges:

Q=4¢+4q" (3-43)

This result may be verified by direct integration of (3-42).
Special cases of interest are the grounded sphere: U(a) = ¢, ¢/ = 0;
and the uncharged spherical conductor: ¢/’ = —¢'.

3-11 Line charges and line images. Thus far, our image technique
has been limited to problems involving point charges, and hence point
images. 1n this section we shall take up several problems which may be
solved by means of line image charges. Consider two infinitely long,
paralle], line charges, with charges A and —\ per unit length, respectively,
as shown in Fig. 3-6. The potential at any point is given by

A A
= - _QTFE_o[ln ry — lu 7‘2] == - -2-;-’_6—111 (3—44)
Pz, y)

Equipoteniia:
«" surface II

/ d

o g
—\ .

Equxpotentla.l
surface I

F1e. 3-6. Two infinitely long, parallel line charges (of charge A and —A
per unit length) are shown cutting the plane of the paper.
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where r; and r are the perpendicular distances from the point to the two
line charges. The equipotentials are obtained by setting (3-44) equal
to a constant, a procedure which is equivalent to requiring that.

A VA (3-15)

[

where M is constant. Hence the equipotentials may be specificd by (3-45).

The equipotential corresponding to M = 1 is the plane located haifw. ay
between the two line charges, shown as equipotential surface I in the figure.
The potential of the plane is zero. Hence the problem of a long line charge
oriented parallel to a conducting plane has been effectively solved. The
potential in the half-space is given correctly by (3-44). Let us assume
that the line charge shown on the right side of the figure is the specified
charge, which is at a distance d from the conducting plane. Then the line
charge on the left side of the figurc plays the role of an image. Again, the
total charge on the plane is equal to that of the image charge.

Let us next consider equipotential surfaces corresponding to other values
of M. The general form of the surface may be found by expressing r,
and ry in rectangular coordinates, For convemer'ce, we choose the origin
of the coordinate system on the positive line charge, and make this charge
coincide with the z-axis; we let the sccond line charge be located at

= —2d,y = 0.- Now

1= 2%yt
and .
3 = (z + 2d)% + %,
so that (3-45) becomes, after a little algebraic manipulation,

o, o 4M%xd 4312%4*
Y Ty TR T T T (3-46)

This is the equation of a circular cylinder extending paraliel to the z-axis.
If M is less than one, the cylinder surrounds the positive line charge, as

does equipotential surface I of the figure. The axis of the eylinder goes
through the point

2
@ = "'_J_I ﬂd{& y = 0; (3—47)
and the radius of the cylinder is
2Md
Rc = mﬁ . (3-"48)

We are now in a position to solve a number of interesting problemg&
involving cylindrical conductors, but only one of this type will be dis-
cussed. Consider the problem of a long cylindrical conductor in the
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vieinity of a conducting plane, and oriented parallel to it. The cylinder
bears the charge A per unit length. Figure 3-6 may serve to illustrate the
problem, the two conductors coinciding with the dotted surfaces. Both
of the line charges are images in this case, and the potential in the region
surrounding the eylinder and to the right of the planc is given by (3-44).
It is evident that the charge induced on the plane is equal.to —\ per unit
distance in the z-direction.

3-12 System of conductors. Coefficients of potential. In the preceding
sections several important methods for obtaining solutions to Laplace’s
equation have been discussed. Although general in scope, these methods
are limited by practical considerations to problems in which the con-
ductors have rather simple shapes. When their shapes are complicated,
complete mathematical solution is out of the question; nevertheless, cer-
tain conclusions can be drawn about the system just because the potential
satisfies Laplace’s equation. In fact, we shall prove here that a linear
relationship exists between the potential of one of the conductors and the
charges on the various conductors in the system. The coeflicients in this
relationship, the so-called coefficients of polential, arc functions only of
the geometry and, although not always calculable, may be determined
directly from experiment. :

Suppose there are N conductors in fixed geometry. Let all of the con-
ductors be uncharged except conductor 7, which bears the charge Q;0. The
appropriate solution to Laplace’s equation in the space exterior to the
conductors will be given the symbol U (x, y. 2), and the potential of each
of the conductors will be indicated by U, U, ... U9, ..., U, 2.
Now let us change the charge of the jth conductor to M);y. The function
AUV (x, y, 2) satisfies Laplace’s equation, since A is a constant; that the
new boundary conditions are satisfied by this function may be seen from
the following argument. The potential at all points in space is multiplied
by A; thus all derivatives (and in particular the gradient) of the potential
are multiplied by A. Because ¢ == €y, it follows that all charge densities
are multiplied by Xx. Thus the charge of the jth conductor is AQ;o and
all other conductors remain uncharged.

A solution of Laplace’s equation which fits a particular set of bound-
ary conditions is unique; therefore we have found fhe correct solufion,
AU (x, y, 2), to our modified problem. The interesting conclusion we
draw from this discussion is that the potential of each conduetor is pro-
portional to the charge Q; of conductor j, that is,

(]gj) = pifQj’ (7' = l) 2: LR ’Zv)l (3_49)

where p;; is a constant which depends only on the geometry.
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The same argument may be applied to the case where couductor % is
charged: O = vQxo, all other conductors being uncharged. Here the
appropriate solution to Laplace’s equation is »U%(z, y, 2), where U®
is the solution for » = 1. It is appareut, then, that

)‘[{Y(j)(x: Y, Z) "*" VUrk)<x1 Y, 25) (3_50>

is a solution appropriate to the case where both conductors are charged.
Again we appeal to the uniqueness of a solution for a given set of boundary
conditions. Thus (8-50) is the soluiion {or this case, and the potential of
each conductor may be written as

Ui = piiQ;i + pal, (t=1,2,...,N). (3-51)

This result m}xy be géneralized immediately to the case where all N
conductors are charged:

Ui = 3 piss (3-52)

This is the linear relafionship between potential and charge which we
have been seeking; the coefficients p;; are called the cosfficients of polential.
In Chapter 6 it will be shown that the array of these coefficients is sym-
metrical, i.e., that p;; = pj.

3-13 Solutions of Poisson’s equation. In the preceding sections, we
have dealt exclusively with Laplace’s equation and its solution. Laplace’s
equation is applicable to those electrostatic problems in which all the charge
resides on surfaces of conductors or is coucentrated in the form of peoint
or line charges. We shall see in the next chapter that it is necessary for
only the free charge (i.e., the charge which is free to move or to be trans-
ferred from one objeci to another) to be distributed in this manner; if
the region between the conductors is filled with cne or more simple dielec-
tric media, then Laplace’s equation still bolds in these media.

Let us consider, now, an electrostatic problem in which part of the
charge (the prescribed charge) is given by p(r, ¥, 2), a known function,
and the rest of the charge (the induced charge) resides on the surfaces of
conductors. Such a problem requires the solution of Poisson’s equation.
The general solution to this problem may be written as an integral of the
type (3-1) over the prescribed charge plus a general solution to Laplace’s
equation. The solution to Laplace’s equation must be chosen, however,
50 that the entire potential satisfies all boundary conditions.

When all of the charge is prescribed, i.e., when dg == p(x,y,2) dv is
known at all points.in space, then Iiq. {3—1) represents the entire solution
to Poisson’s equation, and this integral may be performed (either ana-
lytically or numerically). There is one case, however, where the solution
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to Poisson’s equation may be obtsined more direcly than by means of
+he formal solution (3-1); this occurs when both p and U are functions of
only one independent variable. As an example of this case, let p be a
function of the spherical ccordinate, r, only, and let the entire charge be
distributed in a spherically syrametric way. Then (3-5b) becomes

1 dszv) I SV 35:
2o\ d@ )T 60p ). (3-53)

We shall assume thaf the total charge is bounded, i.e., that either the
charge does not extend $o infinity ov the charge density drops off sufficiently
rapidly at large radii. Equation (3-55) may then be integrated directly,
assuming the function g(r; given, and the two constants of integration
may be determined (1) froin Gauss’ Law for the eleétric field at some
radius, and (2) from the fact that 7/ — G as r - oo.
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ProBrEMS

3-1. Two spherical conducting shells of radii r, and 7, are arranged con-
centrically and are charged to the potentials U, and U, respectively. 1f ry > rg,
find the potential at points between the shells, and at points r > 7.

3-2. Two long cylindrical shells of radii r, and ry are arranged coaxially and
are charged to the potentials U, and Us, respectively. Find the potential at
points between the cylindrical shells.

3-3. If Uy is a solution to Laplace’s equation, prove that the partial deriva-
tive of Uy with respect to one or morc of the rectangular coordinates (e.g.,
dU1/0z, 02U 1/022, 32U | /dxdy, ete.) is also a solution.

3-4. Show that half the zonal harmonics are generated by differentiating

r—! successively with respect to the rectangular coordinate z (z = r cos 0).

3-5. Obtain V2U in cylindrical coordinates (Eq. 3-8), from the rectangular
form, (3-6), by direct substitution: z = rcos 8, y = rsin 6.

3-6. Find the potential of an axial quadrupole: point charges q, —2¢, ¢ placed
on the z-axis at distances I, 0, —[ from the origin. Find the potential only at
distances r >> [, and show that this potential is proportional to one of the zonal
harmonics.

3-7. A conducting sphere of radius a bearing total charge @ is placed in an
initially uniform electric field E¢. Find the potential af, all points exterior to the
sphere.

3-8. A long cylindrical conductor of radius a bearing no net charge is placed
in an initially uniform electric field Eg. The direction of E¢ is perpendicular
to the cylinder axis. Find the potential at points exterior to the cylinder, and
find also the charge density on the cylindrical surface.

*3-9. Show that Im A[(z + jy)]/? = Ar'/Zsin 30 satisfies Laplace’s equa-
tion, but that the electric field derived from this function has a discontinuity
at § = 0. (Note that » and 9 are eylindrical coordinates here.) The function
may be used to describe the potential at the edge of a charged conducting plane.
The conducting plane coincides with the zz-planc, but only for positive values
of z. Find the charge deunsity on the plane. Make a sketch showing several
cquipotential surfaces and several lines of force.

3-10. A point charge ¢ is situated a distance d from a grounded conducting
plane of infinite extent. Obtain the total charge induced on the plane by direct
integration of the surface charge density.

3-11. Two point charges, g1 and ¢g, are located near a conducting plane of
infinite extent. Find the image charges which are needed to make the plane a
surface of constant potential. From the result just obtained, can you predict
the image charge distributicn required for the case of a body of arbitrary shape
with charge density p situated near a conducting plane of infinite extent?

3-12. Find the force between s point charge ¢ and an uncharged conducting
sphere of radius a. The point charge is located a distance r from the center of
the sphere, where r > a.

* Starred problems are more difficult.
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3-13. Show that the problem of an uncharged conducting sphere in an initially
uniform electric field Eg may be solved by means of images. [Hint: A uniform
electric field in the vicinity of the origin may be spproxirasted by the field of
two point charges @ and —@Q placed on the z-axis at 5 = —L and 2z = 1L,
respectively. The field becomes more nearly uniform as £, — so. 1t is evident
that Q/2recl? = Kyl

3-14. A point charge ¢ is located inside and at distanes r from the center of a
spherical conducting sheli. The inner radius of the sheil is . Show that thiz
problem can be selved by the image technique, and find the charge density &
mduced on the inside surface of the shell. {The potential of the spherical sheil
cannot be completely specified in terms of ¢ and iis image, bécause exterior
fixed charges can also contribute. Nevertheless, these exterior charges will add
only & constant term to the potential.) Find the total charge induced on the
inside surface of the shell (a) by physical arguments, and (b) by intcgration
of o over the surface.

3-15. A long conducting cylinder bearing a charge N per unit length is ortented

paralicl tc a grounded conducting plane of infinite exicnt. The axis of the
a__vlinder is at distanee zo from the plane, and the radius of the cyilnder is o.
Fiad the location of the line image, and find also the coustant A {which de-
termines the potential of the cylinder) in terms of @ and z¢.

3-16. A spherical distribution of charge is characterized by a constant charge
density p forr < R. For radii greater than R, the charge density is zero. Find
the potenti a! U(r) by integrating Poisson’s equation. Check this resuit by
evaluating the integral (3—1). [Hini: To pereform (3-1), divide the charge region
into Qphenm’( concentric shells of thicknass dr.]

3-17. A dipcle p is oriented normal to and at distance d from an infinite
conducting plane. The planc is grounded (i.e., at zers potential). Cairulsie the
force exerted on the plane by the dipole.

3-18. A thunderstorm contains a charge --@ at altitude %; and, directly
below this, a charge —# at altitude %2. Find an expression for ihe vertical
cieetric field K, at the earth’s surface at distance d from the storin. Tor
hy == 5000m, hg = 3000m, and @ = 15 coul, make a graph showing how I,

raries, from d = 0 tc d = 20 km.



CHAPTER 4
THE ELECTROSTATIC FIELD IN DIELECTRIC MEDIA

Thus far, we have ignored problems involving dieclectric media, and
have dealt with cases in which the electric field is produced exclusively
by free charges: either by a specified distribution of thera or by free charge
on the surface of conductors. We now wish to remedy this situation and
take up the more general case.

An ideal dislectric material i one which has no free charges. Neverthe-
less, all material media sre composed of molecules, these in turn being
composed of charged entities (atomic nuclei and electrons), and the
molecules of the dieleciric are certainly affected by the presence of an
eleciric field. The electric field causes a force to be exerted on each charged
particle, positive particles being pushed in the direction of the field, nega-
tive particles oppositely, sc that the positive and regative parts of each
molecule are displaced fror their equilibrium positions in opposite direc-
tions. These displucements, however, are limited (in most cases to very
small fractions of a molecular diameter) by strong restoring forces which
are set up by the changing charge configuration in the molecule. The over-
all effect from the macroscopic point of view is most easily visualized
25 a displacement of the entire positive charge in the dielectric relative
to the negative charge. The dielectrie is said to be polarized.

A polarized dielectric, even though it is electrically neutral on the
average, produces an electric field, both at exterior points and inside the
dielectric as well. ' As a result, we are confronted with what appears to
he an awkward situation: the polarization of the dielectric depends on
the total electric field in the medium, but a part of the electric field is
produced by the dielectric itself. Furthermore, the distant electric field
of the dielectric may modify the free charge distribution on conducting
bodies, and this in turn will change the electric field in the dielectric. 1t is
the main purpose of this chapter to develop general methods for handling
this curious situation.

4-1 Polarization. Consider a small volume element Av of a dielectric
medium which, as a whole, is electrically neutral. If the medium is polar-
ized, then a separation of positive and negative charge has been effected,
and the volume element is characterized by an electric dipole moment

Ap = A _rdg. (4-1)

According to Section 2-9, this quantity determines the electric field -
68
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produced by Av at distant points (i.e., at distances from Av large com-
pared with the dimensions of the volume element).

Since Ap depends on the size of the volume element, it is more con-
venient to work with P, the electric dipole moment per unit volume:

_ Ap ‘
P = ”A-; . ' 4 (4“2)

Strictly speaking, P must be defined as the limit of this quantity as Av
becomes very small from the macroscopic viewpoint. In this way P
becomes a point function, P(x, y, z). P is usually called the electric polar-
izatton, or simply the polarization, of the medium. Its dimensions are
charge per unit area; in mks units, coul/m2.

Itis apparent that P(z, y, 2) is a vector quantity which, in each volume
element, has the direction of Ap. This, in turn, has the direction of dis-
placement of positive charge relative to negative charge (sec Fig. 4-1).

Fic. 4-1. A picee of polarized dielectric material. Tach volume element is
represented as a dipole Ap.

Although Av is assumed very small from the macroscopic point of view,
it still contains many molecules. It is sometimes desirable to speak about
the electric dipole moment of a single molécule, that is,

Pn = /moleculer dq’ (4‘3)

since a molecule is one of the small, electrically neutral entities which
make up the dielectric material. It is evident from (4-1) that the dipole
moment associated wigh Av is given by Ap = Y p,,, where the summation
extends over all molecules inside the element Av. Hence,

1 , .
=12 Pn. (4-4)

This approach will be developed further in Chapter 5.

Although Fig. 4-1 represents each volume element of the polarized
dielectric as a small dipole, it may be more instructive to visualize the
dielectric in terms of its molecules, and to imagine that each dipole of
Tig. 4-1 represents a single molecule.
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4-2 External field of a dieléctric medium. Consider now a finite piece
of dielectric material which is polarized, i.e., which is characterized at
each point r’ by a polarization, P(x’). The polarization gives rise to an
electric field, and our problem is to calculate this field at point r, which
is outside of the dielectric body- (see Fig. 4-2). As in Chapter 2, we shall
find it more convenient to calculate first the potential U(r), &nd obtaln
the electric field as minus the gradient of U.

Each volume element, Av’ of the dielectric medium is characterized by
a dipole moment Ap = P A/, and since the distance between (z, y, 2)
and Av’ is large compared with the dimensions of Av’, this quantity (the
dipole moment) completely determines A»"’s contribution to the potential:

Ap-(r — 1) _P@E)-(r —1) A (4-5)

AU(r) = dmeglr — '3 T dweplr — 1|3

Here r — r’ is the vector, directed cut from Ay, whose magnitude is
given by

f—r=~—-a)V+—y)*+kE—7)>2 (4-8)

The entire potential at point r is obtained by summing the contributions
from all parts of the dielectric:

1 / CP(X) - (r —r)dv )

4mey [r — /|3

U() =

This result is correct, and U may be evaluaied directly from (4-7) if the
functional form of P is known. It will be to our advantage, however, to
express (4-7) in a rather different way by means of a simple mathematical
transformation. '

Fie. 4-2. The electric field at (z, ¥, 2) may be calculated by summing up the
contributions due to the various volume elements AV’ in Vo. The surface of
Vo is denoted by So.
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If [r — r'| is given by (4-6), then

1 r—r
v’ <l_f-__‘_;;T) = + Tr—:_r'l_i* ’ (4-8)
as may be seen by direct application of the gradient operator in cartesian
coordinates. The V’ operator involves derivatives with respect to the
primed coordinates. In certain circumstances it may be desirable to per-
form a gradient operation with respect to the unprimed coordinates;
this will be indicated in the usual way by V. Evidently, V’ operating on a
function of |r — 1’| is equal to —V operating on the same function. We
shall require the V operator later in order to get the electric field at point
r. However, in performing the integral (4-7) over the dielectric volume
Vo, the point r is held fixed; hence the integrand of (4-7) may be trans-
formed by means of (4-8):
7
p.(r_-r):P_v,< 1 ) (4-9)

T F=71

Equation (4-9) may be further transformed by means of the vector
identity (I-6) of Table 1-1:

div' (fA) = fdiv'A 4 A . Vf, (4-10)

where f is any scalar point function and A is an arbitrary vector point
function. Here again the prime indicates differentiation with respect to
the primed coordinates. Letting f = (1/]r — r']) and A = P, the inte-
grand, (4-9), becomes

P-—r) _ giv ( ) — L _awp @)
fr — 1 r—r
Finally, the potential, (4-7), may be written as

. 1 T "
Ut = ,J__y{ Pondd | L / (—divPyar
dweg Jsyix — 1| T dweg Jyy,  |r - 1)

where the volume integral of div’ (P/|r — 1’|) has been replaced by a
surface integral through application of the divergence theorem, and n,
of course, is the outward normel to the surface element du’ (outward
means out of the dielectric). ) . .

The quantities P - n and —div P which appear in the integrals of (4-12)
are two scalar functions obtained from the poiarization P. It seems
expedient to give these quantities special symbols, and since they have
the dimensiong charge per unit area and charge per unit volume, re-
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* spectively, we write

op=P-n= P, (4-13)
and \

pp = —div P, (4-14)

and call op and pp polarization charge densities or bound charge densities.
The term “bound charge” is used to emphasize that the charges are not
free to move around or be extracted from the dielectric material. The
surface density of bound charge is given by the component of polarization.
normal to the surface, and the volume density of bound charge is a measure
of the nonuniformity of the polarization inside the material.

The potential due to the dielectric material,

'__ 1 Upda' , / ppdv’]
Ul = 47eg [ﬁo It =117 Jy,lr — [l

L dgp

= g T
dweg J |r — 1]

(4-15)

is now written in such a way that it is evident that it arises from a charge
distribution. In other words, the dielectric material has been replaced
by an appropriate distribution of bound charge.

Although (4-15) has been obtained by means of a mathematical trans-
formation, it should be possible to understand op and pp on purely physical
grounds. That a surface charge density o p exists is evident from Fig. 4-1,
where it is seen that this charge is made up from the ends of similarly
oriented dipoles. In this way a charge density is developed on every
surface which is not parallel to the polarization vector. Turning now to
pp, we expect that pp Av” represents the excess or net charge in the volume
element Av’. That this is truly the case may be seen in the following way:
let us define two charge densities p* and p~ as representing the total
positive charge and the total negative charge per unit volume, respec-
tively. That is, p* represents all the atomic nuclei in unit volume of the
dielectric and, similarly, p™ counts all the electrons. In the unpolarized
state, each volume element of the dielectric is electrically neutral; hence

pd @, Y, 7)) -+ po (@, ¥, 7)) = 0, (4-16)

where the subscript zero denotes densities in the unpolarized configuration.
Let us assume that as a consequence of polarization the positive charge
is displaced by 8% (x, y, 2) and the negative charge by 6 (z,y, z). The
positive charge crossing an element of area da’ is p 6+ - nda’, and thus
the gain of positive charge by the volume elernent Ay’ during the polariza-
tion process is i

— f pd 6t - nda, (4—17)"
AS i
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where AS is the surface bounding Av’. Similarly, the displacement of
negative charge increases the charge (decreases the negative charge) in
Av' by

$  (—p3) & - nda. _ (4-18)

The total gain in charge by the volume element Av’ is the sum of (417)
and (4-18), and as a consequence of (4-16) may be written as

— fm pd (8% — 87) nda’ = —div[pg (6% — )] AV, (4-19)

But 6 — 6 is just the relative displacement of positive and negative
charge densities, and pf (87 — 67) is equivalent, therefore, to what we
have called the polarization P. Thus pp Av’ is the net charge in 2 volume
element of the polarized dielectric.

At first sight it may seem rather strange that bhaving started with
electrically neutral volume elements of dielectri¢ material, we end up with
volume elements which bear a net charge. According to ouroriginal peint
of view, the dielectric is composed of elemental dipoles Ap, and it was
essential that each Ap be electrically neutral in order that Eq. (4-5) give
the potential correctly. Now we find that so long as div P does not vanish,
the individual volume elements appear to be charged. The origin of this
seeming paradox is found in the mathematical transformation (4-11);
the contribution from ‘each volume element is transformed to a different
volume term and a surface term. The total charge in the volume and
surface of the element is still zero; but when we stack various volume
elements together to form a macroscopic piece of dielectric material, ‘we
find that the contributions to the potential from the various “internal
surfaces” cancel out. We are left with effectively charged volume elements
and a surface contribution from the external boundary.

The total polarization charge of a dielectric body,

Qp = [ (—divP)d/ +¢ P-ada, (4-20)
Vo . S()

must equal zero, since jt was our premise that the dielectric, as a whole,
is electrically neutral. This result is immediately obvious from the form
of (4-20), which clearly vanishes as a consequence of the divergence
theorem. . ' :

We now have two distinct expressions for the electrostatic potential
U(r) due to a polarized dielectric specimen, namely, (4-7) and (4-15).
Both are correct, but we shall find the latter expression more convenient
in most cases. The electric field E may be obtained as minus the gradient
of (4-15). Since U is a function of the coordinates (z, ¥, z), the appropriate
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gradient is —V. The unprimed coordinates appear only in the function
1/|[t — r/|. Hence, noting that V(1/jr — r'|) = —V/(1/|r — r']) and
using (4-8), we obtain ,

B0 - 2| [ T p"f::,’f,)ad"']- (a-21)

4meg lf - r"3 Vo

4-3 The electric field inside a dielectric. Before we can write an ex-
pression for the electric field inside a polarized medium, it is necessary to
define this electric field precisely. What we are interested in, of course,
is the macroscopic electric field, i.e., the average electric field. in a small
region of the dielectric which, nevartheless, contains a large number of
molecules. An alternative and perhaps preferable approach is to define
the electric field directly in terms of a macroscopic experiment: the (macro-
scopic) electric field is the force per unit charge on a lest charge embedded in
the dielectric, in the limit where the test charge is so small that it does not itself
affect the charge distribution. This test charge must be dimensionally small
from the macroscopic point of view (what we shall call a “point” charge),
but it will be large compared with the size of a molecule.

Although the above statement is the fundamental definition of the
macroscopic electric field E, it is difficult to use this definition directly to
obtain an expression for the field, since we would have to calculate the
force on a charged body of extended size, and then go to the limit as the
size of the object decreased. Hence we find it expedient to use another
property of the electric field to help us obtain the analytic expression
we are seeking, and in this way we shall get E in terms of the polarization
charges of the medium. Later, in Section 4-10, it will be shown that the
quantity we have called E is indeed in agreement with the fundamental
“force definition.”

The electrostatic field in a dielectric must have the same basic properties
which we found applied to E in vacuum; in particular, E is a conservative
field, and hence derivable from a scalar potential. Thus,

curlE = 0
or, equivalently, A :
fE -dl = 0.

Let us apply the last equation to the path ABCD shown in Fig. 4-3,
where the segment AB lies in a needle-shaped cavity cut out of the dielec-
tric, and the segment C'D lies in the dielectric proper. Since the segments
AD and BC may be made arbitrarily small, the line integral reduces to

E,-1 — E;:1=0
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Fic. 4-3. The path ABCD lies partly in the needle-shaped cavity, and partly
in the dielectric. In an isotropic dielectric (see Section 4-5) the polagization P
has the direction of E, so that, for the orientation of the needle shown, op = 0
on the cylindrical walls. In an anisotropic dielectric, ¢p is not necessarily zero,
but its value does not affect the longitudinal component of electric field in the
cavity.

or, equivalently,
Ew = Ea, ' (4-22)

where the subscripts » and d refer to vacuum and dielectric respectively,
and the subsecript ¢ stands for tangential component.

Equation (4-22) is valid regardless of the orientation of the needle-
shaped cavity. If the “needle” is oriented along the direction of E, then
Eq4 = Eg; furthermore, by symmetry, the field in the cavity is along the
direction of the needle, that is, E,, = E,. We are thus led to an important
conclusion :*

‘The eleciric field in a dielectric is equal to the eleciric field inside a needle-
shaped cavity in the dielectric provided the cavity axis is oriented paraliel
to the direction of the electric field.

Evidently, the problem of calculating the electric field inside a diefectric
reduces to calculating the electric field inside a needle-shaped cavity in
the dielectric. But the electric field in the cavity is an external field, and
hence may be determined by means of the results of Section 4-2. Just
as in Section 4-2, we assume here that the polarization of the dielectric
is a given function P(z’, ¥/, 2'),-and we calculate the potential and electric
field arising from this polarization. Taking the field point r at the center
of the cavity and using Eq. (4-15), we obtain for the poiential

* This statement is strictly true only for isotropic dielectrics (see Section 4-5).
For anisotropic dielectrics the symmetry argument fsils, and our conclusion
must be generalized: the electric field in & dielectric iz equal to the Jongitudinal
component of the electric field inside a needle-shaped cavity in the dielectric
provided the cavity axis is oriented parallel to the direction of the electric field
in the dielectric. .
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w4 A4 ’
U(r) = —— / pr(Y, ¥, &) dif
Vo~"

4mreg r — /|
1 ap(x’, v, &) da’ o
471'60 So+8’ ll‘ —_ 1"! ’ (4_..‘3)

where Vo — V; is the volume of the dielectric excluding the “needle,”
Sy is the exterior surface of the dielectric, and 8’ = 8; + 83 + S, are
the needle surfaces. But from Fig. 4-3 it is seen that 0p = 0 on the
cylindrical surface S, of the needle; furthermore, the needle may be made
arbitrarily thin so that the surfaces S; and S, have negligible area.
Thus only the exterior surfaces of the dielectric contribute, and the
surface integral of Eq. (4-23) becomes identical in form to the surface
integral of Eq. (4-15). The volume integral of Eq. (4-23) excludes the
cavity ; however, the contribution of the cavity to this integral is negligible,
as may readily be seen. The charge density pp is bounded; the quantity
dv’/lr — 1’| does not diverge at the field point (i.e., when r’ = r) because
the volume of a point is a higher-order zero than the lim |r — r’|; and
finally volume V' of the needle may be made arbitrarily small by making
the cavity thin. Thus we need not exclude the volume Vy, and Eq. (4-23)
becomes similar in form to Eq. (4-15). In other words, Eq. (4-15) gives
the potential U(r) regardless of whether the point r is located inside or
external to the dielectric. ‘

The electric field E(r) may be calculated as minus the gradient of Eq.
(4-23). 'But this differs only by a negligible amount from Eq. (4-21).
Thus (4-21) gives the medium’s contribution to the eleciric field at r, inde-
pendently of whether t is inside or ouiside the medium.

The caleulations indicated in Egs. (4-15) and (4-21) are straight-
forwaid for cases in which P(z, y, 2) is a known function of position. (Some
examples of this type are to be found among the problems at the end
of this chapter.) In most cases, however, the polarization arises in re-
sponse to an electric field which has been imposed on the dielectric medium
{that is, P(+', 3/, 2') is a function of the total macroscopic electric field
E(2, ¥/, 2")], sud under these conditions the situation is much more
complicated. Iirst, it is necessary to know the functional form of P(E);
but this is known experimentally in most cases and hence is not a source
of difficulty. The real complication arises because P depends on the toful
electric field, including the contribution from the dielectric itself, and it
is this contribution which we are in the process of evaluating. Thus we
cannot determine P because we don’t know E, and vice versa.

It is evident that a d:fferent approach to the problem is needed, and |
this will be provided in th+ following sections.
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4—4 Gauss’ law in a dielectric. The electric displacement. In Chapter
2 we derived an important relationship between electric flux and charge,
namely, Gauss’ law. This law states that the electric flux across an arbi-
trary closed surface is proportional to the total charge enclosed by the
surface. In applying Gauss’ law to a region containing free charges em-
bedded in a dielectric, we must be careful to include all of the charge in-
side the gaussian surface, bound charge as well as free charge.

Fia. 4-4. Construction of a gaussian surface S in a dieleetric medium.

In Fig. 4-4 the dashed surface S is an imagiuary closed surface located
inside a dielectric medium. There is a certain amount of free charge, Q,
in the volume bounded by S, and we shall assume that this free charge
exists on the surfaces of three conductors in amounts ¢, gz, and ¢3. By
Gauss’ law,

f E-nda= =@+ Qr), (4-24)
S €0 ’
where @ is the total free charge, i.c.,

Q = q1 + 92 + g3,

and Qp is the polarization charge:
Qp = / P-nde + [ (—div P) do. (4-25a)
81482483 14 ¢

Here V is volume of the dielectric enclosed by S. There is no boundary
of the dielectric at S, so that the surface integral in (4-25a) does not
contain a contribution from S.

If we transform the volume integral in (4-25a) to a surface integral by
means of the divergence theorem, we must be careful to include contribu-
tions from all surfaces bounding V, namely, S, S, Sz, and S;. It is evident
that the last three contributions will cancel the first term of (4-25a), so that

Qp = — ?53 P-nda. (4-25b)
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Combining this result with (4-24), we obtain

jb (6F + P) -nda = Q. (4-26)

Equation (4-26) states that the flux of the vector ¢E - P through a
closed surface is equal to the letal free charge enclosed by the surface. This
vector quantity is important enough to warrant a name and a separate
symbol. We define, therefore a, new macroscopic field vector D, the

electric displacement:
D = E + P, (4-27)

which evidently has the same units as P, charge per.unit avea.
In terms of D, Eq. (4-26) becomes

7{@ D nda = Q, (4-28)

and this result is usually refer:od to as Gauss’ law for the electric displace-
ment, or simply Gauss’ law. Equation (4-28) is applicable to a region of
space bounded by any closed surface S; if we apply it to a small region in
.which all of the free charge enclosed is distributed as a charge density p,
then Gauss' law becomes

fst-nda = pAV.

Dividing this equation by AV and proceeding to the limit, we obtain
divD = p, (4-29)

a result which is sometimes called the differential form of Gauss’ law.

The advantage of the procedure just {ollowed is that the total electro-
static field at each point in the dielectric medium is expressed as thLe
sum of two parts,

. 1 i
E(x’ Y, z) = E; D(x¢ Y, z) _ -5_(; P(SC, Y, z)) (4“30)

where the first term, (1/¢,)D, is related to the free charge density through
its divergence, and the second term, (—1/€)P, is proporticnal to the
polarization of the medium. In a vacuum the electric field is given entirely
by the first term in (4-30).

4-5 Electric susceptibility and dielectric constant. In the introduction
to this chapter it was stated that the polarization of a dielectric medium
occurs in response to the electric field in the medium. The degree of
polarization depends not only on the electric field, but also on the proper-
ties of the molecules which make up the dielectric material. From the;
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macroscopic point of view, the behavior of the wmaterial is completely
specified by an experimentally determined relationship, P = P(E), where
E is the macroscopic electric field. This is a point relationship, and if E
varies from point to point in the material, then P will vary accordingly.

For most materials, P vanishes when E vanishes. Since this is the usual
behavior, we shall limit our discussion here to materials of this type.
(Dielectrics with a permanent polarization will be discussed briefly in
Section 5—4.) Furthermore, if the material is isotropic, then the polariza-
tion should have the same direction as the electric field which is causing it.
These results are summarized by the equation

P = x(E)E, (4-31)

where the scalar quantity X(E) is called the electric susceptibility of the
material. A great many materials are electrically isotropic; this category
includes fluids, polycrystalline and amorphous solids, and some crystals.
A treatment of the electrical properties of anisotropic materials is beyond
the scope of this text.

Combining (4-31) with (4-27), we obtain an expression for D in iso-

tropic media:
D = €«(E)E, (4-32)
e(E) = ¢ + X(E), (4-33)

where e(E) is the permittivity of the material. It is evident that ¢, €, and

x all have the same units. 4

Although we have been careful to write X and € in the form X(E) and
¢(E), nevertheless it is found experimentally that X and e are frequently
independent of the electric field, except perhaps for very intense fields.
In other words, X and € are constants characteristic of the material. Ma-
tersals of this type will be called linear diclectrics, and they obey the

relations
P = XxE, (4-31a)
D = €E. (4-32a)

The electrical behavior of a material is now completely specified by either
the permittivity € or the susceptibility x. It is more convenient, however,
to work with a dimensionless quantity K defined by

€ = Ke. (4-34)

K is called the dielectric coefficient, or simply the dzelectric constant. From
(4-33) it is evident that

£
€

K=S=1+ (4-35)

o
&=
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The dielectric constants for a few commonly encountered materials are
given in Table 4-1. Except for a few examples in which the polarization P
of the material is specified, the problems in thls book deal with linear
dielectrics.

If the electric field in a dielectric is made very intense, it will begin to
pull electrons completely out of the molecules, and the material will be-
come conducting. The maximum electric field which a dielectri¢ caun
withstand without breakdown is called its dielectric strength. The dielec-
tric strengths Enax, of a few substances are also given in Table 4-1.

TABLE 4-1

ProPERTIES OF DIELECTRIC MATERIALS*
(Dielectric constant K and dielectric strength Fax)

5§
3

Material K E pax, volts/m

Glasst 5-10 9 X 108
. Mica 6.0 5-20 X 106

Nylon 3.5 16 X 108

Rubbert 2-3.5 © 16-40 X 108

Sulfur 4.0

Woodt 2.5-8.0

Alcohol, ethyl (0°C) 28.4

Benzene (0°C) 2.3 .

Petroleum oil 2.1 12 X 108

Water (distilled, 0°C) 88.0

Water (distilled, 20°C) 80.0

Air (1 atm) 1.00059 3 X 108

Air (100 atm) 1.0548

CO2 (1 atm) 1.000985

* Data from the Handbook of Chemistry and Physics, 33rd edition, Chemical
Rubber Publishing Co., Cleveland, Ohio.
t For materials such as glass, rubber, and wood, the chemical composition

varies; hence the range of dielectric constants. It is not to be inferred that the
material is nonlinear.

4-6 Point charge in a dielectric fluid. One of the simplest preblems
mvolvmg a dielectric which we might consider is that of a point charge
g in a homogeneous isotropic medium of infinite extent. The dielectric
medium will be assumed to be linear and characterized by a dielectric
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constant K. Although this problem is quite simple, it will nevertheless
prove instructive.

If the point charge ¢ were situated in a vacuum, the electric field would
be a pure radial field. But since E, D, and P are all parallel to one another
at each point, the radial nature of the field is not changed by the presence
of the medium. Furthermore, from the symmetry of the problem, E, D,
and P can depend only on the distance from the point charge, not on any
angular coordinate. Let us apply Gauss’ law, Eq. (4-28), to a spherical
surface of radius r which is located concentrically about ¢. For con-
venience, ¢ will be located at the origin. Then

4rr’D = ¢
and .
D= Ir2’
or
D= Liir (4-36)

The electric field and polarization may now be evaluated quite casily:

q
= TR " i
K —1 .
po £ g, (4-38)

Thus the eclectric field is smaller by the factor A than would be the case
if the medium were absent.

At this point, it will be instructive to look at the problem in more
detail, and try to see why the dielectric has weakened the electric field.
The electric field has its origin in all of the charge, bound and free. The
free charge is just the point charge ¢. The bound charge, however, is
made up from two contributions, a volume density pp = -- div P, and
a surface density op = P - n on the surface of the diclectric in contact
with the point charge. Using Eq. (4-38), we find that div P vanishes, so
there is no volume density of bound charge in this case.

Our point charge ¢ is a point in the macroscopic sense. Actually, it is
large on a molecular scale, and we can assign to it a radius b which even-
tually will be made to approach zero. The total surface bound charge is
then given by
(K =g

Qp = lim 47b*(P - n),=p = - —
b—0 1 ¢

(4-39)

The total charge, 1
Qp + 9 = T (4-40)
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%gs

Fic. 4-5. Schematic diagram showing the orientatiom of polarized molecules
in a dielectric medium surrounding a “point charge” g¢.

appears as a point charge from the macrescopic point of view, and it is
now clear why the electric field is a factor K smaller than it would be if
the medium were absent. A schematic diagram of the point charge ¢
in a dielectric medium is shown in Fig. 4-5.

4-7 Boundary conditions on the field vectors. Before we can solve
more complicated problems, we must know how the field vectors E and D
change in passing an interface between two media. The two media may be
two dielectrics with different properties, or a dielectriec and a conductor.
Vacuum may be treated as a dielectric with permittivity e,.

Censider two media, 1 and 2, in contact as shown in Fig. 4-6. We shall
assume that there is & surface density of free charge, o, which may vary
from point to point on the interface. Let us construct the small pillbox-
shaped surface § which intersects the interface and encloses an arca AS
of the interface, the height of the pilibox being negligibly small in com-
parison with the diameter of the bases. The free charge erclosed hy S is

o AS -+ 3Hpy + pg) X volume,

but the volume of the pillbox is negligibly small, s that the Jast term may
be neglected. Applying Gauss’ law to S, we find

Dz 1R 1 9 AS - Dl Iy A8 = O'AS,
or _
(Dg — Dy) 'ng = o {4-41a)
Since ng may serve as the normal to the interiace,

. Dgn — Din = 0. (4-41b(
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( B , A i

F1a. 4-6. Boundary conditions on the field vectors at the interface between
two mnedia may be obtained by applying Gauss’ law to 8. and integrating
E - dl around the path ABCD A,

Thus, the discontinuity in the normal component of D is given by the
surface density of free churge on the interface. Or. to put it anolher way,
if there is ni free charge on the interface betweep two mediu, the normal
component of D is continucus.

Beeause the electrostatic field E may be obtaired as minus the gradient
of a potential, the iine integral of E < dl around any closed path vanishes.
Let us apply this result to the rectangular path ABCD of Fig. 4-6. On
this path, the lengths AB and CD will be taken equal to Al and the seg-
ments AD and BC will be assumed to be negligibly small. Therefore

B, Al E; - (—Al) = 0,

or
(Eg — E1> <Al == 0. (4‘42&)

Hence, the desired result:
.Em == E”, (4“421))

that is, the tangential component of the electric field is continuous across
an interface.

The above results have been ohtained for two arbitrary media, but it
is worth our while to specialize the equations for the case where one of the
media is a conductor. If medium 1 is taken as the coaducior, then
B} = 0. Since E; vanishes, there is no polarization, aud by Eq. (4-27)
D, also vanishes. Thus (4--41h) and (4—42b) become

Dgr, = g, (4-43)
Ey =0, (4-44)

for the displacernent and electric field in a dielectric just cuiside of a
conductor.
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It is evident on purely physical grounds that the potential U must be
continuous across an interface. This follows because the difference in
potential, AU, between two closely spaced points is —E - Al, where Al
is the separation of the two points, and from what has been said above .
there is no reason to expect E to become infinite at an interface. Actually,
the continuity of the potential is a boundary condition, but not inde-
pendent of those already derived. It is equivalent in most cases to (4-42b).

T'rom the discussion above and in preceding sectliouns, it may be inferred
that the electric displacement D is closely related to free charge. We
should now like to prove an important property of D, namely, that the
flux of D is continuous in regions containing no free charge. To do so, we
again resort to Gauss’ law. Let us focus our attention on a region of space
and construct lines of displacement, which are imaginary lines drawn in
such a way that the direction of a live at any point is the direction of D
at that point. Next we imagine a tube of displacement, a volume bounded
on the sides by lines of D but not cut by them (see Fig. 4-7). The tube
is terminated at its ends by the surfaces S; and S,. Applying Gauss’ law,
we nbtain

D-nda —-[S D-n'da = Q. (4-45)
1

=
\

Sa

\
_—

S:,!

— \

N

Fia. 4-7. A tube of displacement flux.

If there is no free charge in the region, then @ = 0, and the same amount
of flux enters the tube through S; as leaves through S;. When free charge
is present, it determines the discontinuity in displacement flux; thus
lines of displacement terminate on free charges. The lines of force, on
the other hand, may terminate on free or bound charges.

4-8 Boundary-value problems involving dielectrics. The fundamental
equation which has been developed in this chapter is

divD = p, (4-46).
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where p is the free charge density. If the dielectrics wi\iih’which we are
councerned are linear, isotropic, and homogeneous, then D = €E, where
€ is a constant characteristic of the material, and we may write

dvE = Zp. (4-47)

But the electrostatic field E is derivable from a scalar potential U, i.e.,

E = —grad U;
so that

ViU = — i—p. (4-48)

Thus the potential in the dielectric satisfies Poisson’s equation; the only
difference between (4-48) and the corresponding equation for the poten-
tial in vacuum is that e replaces €.

In most cases of interest the dielectric contains no free charge dis-
tributed throughout its volume, that is, p = 0 inside the dielectric ma*
terial. The free eharge exists on the surfaces of conductors or is concen-
trated in the form of point charges which may, to be sure, be embedded
in the dielectric. In these circumstances, the potential satisfies Laplace’s
equation throughout the body of the dielectric:

VU =0. - (4-49)

In some problems there may be a surface density of free charge, o, on the
surface of a dielectric body or on the interface between two dielectric
materials, but this does not alter the situation, and Eq. (4-49) still applies
solongasp = 0.

An electrostatic problem invelving linear, isotropic, and homogeneous
dielectrics reduces, therefore, to finding solutions of Laplace’s equation
in each medium, and joining the solutions in the various media by means
of the boundary conditions of the preceding section. There are many
problems which may be solved by this method; one example will be dis-
cussed here and additiondl examples will be found in the problems at the
end of the chapter.

4~9 Dielectric sphere in a uniform electric field. We should like to
determine how the lines of force are modified when a dielectric sphere of
radius a is placed in & region of space containing an tnitially uniform elec-
tric field, Eo. Let us assume the dielectric to be linear, isotropic, and
homogeneous, and to be characterized by the dielectric constant K.
Furthermore, it bears no free charge. The origin of our coordinate system
may be taken at the center of the sphere, and the direction of Eq as the
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polar direction (z-direction); the potential may then be expressed as a
sum of zonal harmonics. Just as in Section 3-5, all boundary conditions
can be satisfied by means of the two lowest-order harmonics, and we write

Ui(r, 0 = Ayrcos 8+ Cir— 2 cos 8 (4-50)

for the vacuum region (1) outside the sphere, and
Us(r, 6) = Agrcos 8 + Cor~%cos 8 (4-51)

for the dielectric region (2). The constants 4, 43, C1, and C'z are unknown
and must be determined from the boundary conditions. The harmonic

"¢~ is not required, since its presence implies a net charge on the sphere.
A constant term may be added to (4-50) and to (4-51), but since the
same constant is required in both equations, we may, without loss of
generality, take it to be zero.

At distances far from the sphere, the electric field will retain its uniform
character, and U; — —Egrcos 6. Hence ‘A; = —E,. Furthermore,
unless C; = 0, the potential and associated electric field would become
infinite at the center of the sphere, and this would imply the existence of
a macroscopic dipole at the center, ie., a dipole whose moment is not
proportional to AV. Certainly, this is not the case; as has already been
discussed in Section 4-3, the po%ntial and macroscopic field do not
become infinite in a dielectric devoid of free charges. Hence C; = 0, and
the remaining constants, Az and C';, may be obtained from the boundary
conditions of Section 4-7.

Continuity of the potential across the interface between the dielectric
and vacuum requires that U; = Uz atr = q, or

—*an + 010—2 = Aga (4—52)

Since the normal component of D at the interface is D, = —e(aU/dr),
the continuity of D, (there is no free charge on the surface of the dielectric)

requires that Dy, = Dj, at r = @, or

Eo 4+ 201(1_3 = —KA 2. (4.“'53)

Continuity of E, at r = a is equivalent to (4-52).
Combining Eqgs. (4-52) and (4-53), we obtain

' . 3Eo
Az = - m (4"54)
and
(K - l)a‘qEQ_.

Go=Tgre (4-55)
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\\\/ - —
o~

(b)

F:ig. 4-8. A uniform electric field is distorted by the presence of a dielectric
sphere: (a) lines of electric displacement, (b) lines of the electric field.

Thus the problem has been solved. The pot;entlal is given by (4-50) or
(4-51), and the constants Ay, Cy, A2, and Cs are all known. The com-
ponents of E and D may be cbtained at any point (r, 6, $) by differentia~
tion. It is evident from (4—54) and because Cs = 0 that the electric field
inside the sphere has the direction of E; and is given by

E, = -5 E,. (4-56)

K42

The lines of displacement and the lines of force are shown in Fig. 4-8.

4~10 Force on a peint charge embedded in a dielectric. We are now in
a position to determine the force on a small, spherical, charged conductor
embedded in a linear, isotropic dielectric. In the limit in which the con-
ductor is negligibly small from the macroscopic viewpoint, this ealculation
gives the force on a point charge.

The electric field and surface charge density at a representative point
of the conductor surface will be obtained by the boundary-value pro-
cedure of the preceding section, and the force F may then be obhtained
from the integral over the surface:

F = 35 E'c da. (4-57)
8
Here E’ stands for the electric field at the surface element da minus that
part of the field produced by the element itself. In other words,
E' = E — E, (4-58)

where E, is the electric field produced by the surface element of charge,
o da. 1t is important that E, not be included in the field E’, because the
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quantity E.o da represents the interaction of the charge element o da
with its own field; this self-interaction clearly produces no net force on
the element, but gives rise to a surface stress

¥, == ok, {4-59)

which is due to the mutual repulsion of the electrons {(or of the excess
positive ions) in the surface layer. This stress is balanced by strong co-
hesive forces in the material of which the element is composed. It should
be pointed out that when calculating forces on charged objects in Chapters
2 and 3, we implicitly subtracted the seil field E,; thus, when calculating
the force on a point charge, the field produced by the point charge was
not included. A further discussion of the forees on charged objects will
be taken up in Section 6-8.

It may appear that the self field of the charged surface element o da
is negligible because the element is of infinitesimal size. This, however,
is not the case. The element is small from the macroscopic point of view,
to be sure, but one never quite goes to the limit. At a point directly on
its surface, the clement appears to be an infinite plane, i.e., the element
subtends an angle of 27; hence,

E, = -2211, (4.”60)
where n 1s 8 normal to the element and € is the permittivity of the dielectric
in contact with it. Thus the stress 5, is proportional to o2 and is always
a tension regardless of the sign of 0.

1t is our purpose here to calculate the force on a conductor. Using the
boundary couditions of Section 4-7, the total electric field at the con-
duetor is given by

E=2
€

n. (4-61)
Coembining (4-58), 4-60), und .(4--61}, we vbtain

El =z '}:E,

and the force on the conductor becomes
F = 19€ Eo da. (4-572)
s

Let us now fix our attention on a small spherical conductor embedded
in a dielectric of infinite extent. The total charge on the conductor is Q;
its radius is a. Since we shall eventuslly go to the limit in which o becomes
very small, and since variations in the electric field (if they exist) are on
a macroscopic scale, it is sufficient to consider the case in which the electric
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field is initially uniform in the neighborhood of the conductor. Let us
denote this uniform field by the symbol Ey. The picture is similar to that
of the boundary-value problem we solved in Section 3~5, except that here
the conducting sphere is embedded (or immersed) in a dielectric of per-
mittivity €, and in addition bears a net charge Q.

By analogy with Section 3-5 we easily determine:

the potential, ‘
U, 8) = U ——Ercoso+é'9£cosﬁ+—g—' (4-62)
’ 0 0 r2 dmer ’ -
the electric field,
E; = Eo(1 + 2a°/r%) cos 0 + Q/4wer?, (4-63)
Ey = —Eo(1 — a®/r3) sin §;
and the surface charge density on the surface of the sphere,

() = ek, , = 3¢l cos 8 4 Q/4ma2. (4-64)

= a

The force may now be determined from Eq. (4-57a). By symmetry, the
only nonzero component of force is that in the direction 8 — 0, i.e., in
the z-direction:

F,=1% [ " (By)yma c08 60(6)2ma® sin 6 d6
0
= EoQ, (4-65a)
or .
F = QE,. (4-65b)
This result is unchanged as we go to the limit of small . Thus the electric

field in the dielectric, Eg, is in agreement with the fundamental definition,
namely, the force on a small test charge Q divided by the magnitude of Q.
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ProsurmMs

4~1. A thin dieleciric rod of cross section A extends along the z-axis from
» = 0 to x = L. The polarization of the rod iz along its length, and is given
by P, = az? 4+ b. Find the volume density of polarization charge and the
surface polarization charge on each end. Show explicitly that the {otal bound
charge vanishes i this case.

4-2. A dielectric cube of side L has a radial polarisation given by P = Ar,
where A4 i3 a constant, and r =iz + jy + kz The origin of coordinates is at
the center of the cube. Find all beund charge densitics, and show explicitly that
the total bound charge vauishes,

4-3. A dielectric rod in the shape of a right circular cyiinder of length L
and radius R is polarized in fthe direction of its length. If the polarizatiop is
uniform and of magnitude P. calculate the electric fleld resulling from this
polarization at 8 point on the axiz of the vod.

4-4, Prove the following relationship between the polarization, B, and the
hound charge densities pp and op, for a dielectric specimen of volume ¥V and
surfuce S.

/V Pdv = fV ppidv + ,I:g opr da.

Here, r == iz -+ jy -+ kz 8 the position veetor from any fixed crigin. [Hint:
Expand div (2P) acenrding to Eq. (4-10).} .
4-5. Two semi-infinite blocks of dielectric are placed almost in contact so
that there exists a narrow gap of constant separation bebween them. The
polarization P ig constant throughout all of the dielectric materizl, aud it makes
the angle ¥ with the normal to the planes bounding the gap. Determine the

efectric field in the gap. )

4- 6. A long cylindrics) conduetor of rading «, bearing the charge A per unit
length, i immersed in o dielectric medium of constant perraittivity e. Find
the cleetric field at distence v > o [rom the axis of the oylinder.

4~7, Two dielectric media with diclectric constants K1 and Ky are separated
by a plane interface. There is no free charge on the interface. Find a relationship
between the angles 61 and 2, where these are the angles which an arbitrary line
of displacemant makes with the mormal to the interface: 8 in medium 1, A
in medium 2.

4-8, A coaxial cakle of circular eross section has a compound dieleciric. The
inner conductor has an oudside radius a; this is surrounded by a dielectric sheath
of dielectric constant K; and of cuter radius 6. Next comes another dielectric
shesth of dielectric constant Xy and outer vadius ¢. ff a potential difference Ug
is imposed between the condustors, caleulate the pelarization ab each point
in the two diclectrie media.

*4-0. Two Jieleciric media with coustant permittivities €1 andd e are separcated
by & plane interface. There 8 no free chargs o the interface. A point charge g
is embedded in the medium characterized by €. at s distance d from the inter-
face. For eonvenmience, we may take the yz-plane through the origin to be the
interface, and we iocate ¢ on the x-exis at z = —d, if
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r=Az+dT+e¥+2°, and ¢ =V(@—d)?+y2 -+ 2%

then it is easily demonstrated that (1/4wer){(g/r) 4+ (¢’/+')] satisfies Laplace’s
equation at all points in medium I except at the position of g. Furthermore,
¢’ /4mear satisfies Laplace’s equation in medium 2. Show that all boundary
conditions can be satisfied by these potentials, and in so doing determine ¢
and ¢, (Refer to Fig. 4-9.)

Fiqure 4-9

4-10. A long diclectric eylinder of radius a and diclectric constant £ e placed
in a uniform electric field Eo. The axis of the cylinder s criented at right angles
to the direction of Eg. The cylinder contains no free charge. Determine the
electric field at points inside and outside the cylinder.

4-11. Two parallel conducting plates are separated by the distance d and
maintained at the potential difference AU. A dielectric slab, of dielectria con-
stant K and of uniformn thickness ¢ < d, is inserted betwzen the plates. De~
termine the field vectors E and D in the dielectric and alsc in the vacuum between
dielectric and one plate. Neglect edge effects due to the finite size of the plates.

4-12, Two parallel conducting plates are separated by the distance d and
maintained at the potentisl difference AU. A dielectric slab, of dielectric con~
stant K and of uniform thickness d, i3 tuserted apugly betwesn the plates;
however, the slab does not completely fill the veinme bebween the plates. Find
the clectric field (a) in the dielectric, and (b} in the vacuum region between
the plates. Find the charge density o on that part of the plate (¢) in contact
with the dielectric, and (d) in contact with vacuum. (e) Find ¢p on the surface
of the dielectrie slab. )

4--13. A conducting sphere of radius R floats half submerged in a liquid dielee-
tric medinm of permittivity ;. The region above the liquid is & gas of permit-
tivity ¢o. The total free charge on the sphere is §. Find o radial inverse-gquare
electrie field satisfying all boundary conditions, and determine the {ree, hound.
and fotal charge densities at all points on the surface of the sphere. Formulate
an argument t0 show that this electric field is the actual one.
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4-14. A uniform electric field Eo is set up in a medium of dielectric constant
K. Prove that the field inside a spherical cavity in the medium is

3KEo

E=skF1

*4-15. A dielectric sphere of radius R has a permanent polarization P which
is uniform in direction and magnitude. The polarized sphere gives rise to an
electric field. Determine this field both inside and outside the sphere. Inside
the sphere the electric field, which is in the opposite direction to the polariza-
tion, is called a depolarizing field. [Hint: Since div P vanishes at all points,
the electrostatic potential satisfies Laplace’s equation both inside and outside
the sphere. Do not assume that the dielectric is characterized by a dielectric
constant.] ‘

4-16. In the text, it was shown that the polarization P = pf( (6% — &7).
Use this relation for the uniformly polarized sphere of Problem 4-15 to de-
termine the external dipole field directly.



CHAPTER 5
MICROSCOPIC THEORY OF DIELECTRICS

In the preceding chapter we were concerned with the macroscopic as-
pects of dielectric polarization, and it was shown how in many cases the
polarization could be taken into account through the introduction of a
dielectric, constant. In this' way the electric field could be computed
directly from a consideration of the free charge distribution. Although
reference was made to the molecules of the dielectric several times in
Chapter 4, a microscopic treatment of the material was not carried through
in detail, and the over-all picture which was presented was certainly from
the macroscopic point of view. We should now like to examine the molecu-
lar nature of the dielectric, and see how the electric field responsible for
polarizing the molecule is related to the macroscopic electric field. Further-
more, on the basis of a simple molecular model it is possible to understand
the linear behavior which is characteristic of a large class of dielectric
materials.

5-1 Molecular field in a dielectric. The electric field which is responsible
for polanzmg a molecule of the dielectric is called the molecular field, E,,.
This is the electric field at a molecular position in the dielectric; it is
produced by all external sources and by all polarized molecules in the
dielectric with the exception of the one molecule at the point under con-
sideration. It is evident that E,, need not be the same as the macroscopic
electric field because, as was discussed in Section 4-3, the latter quantity
is related to the force on a test charge which is large in comparison with
molecular dimensions.

The molecular field may be calculated in the following way. Let us cut
out a small piece of the dielectric, leaving a spherical cavity surrounding
the point atewhich the molecular field is to be computed. The dielectric
which is left will be treated as a continuum, i.e., from the macroscopic
point of view. Now we put the dielectric back into the cavity, molecule
by molecule, except for the molecule at the center of the cavity where
we wish to compute the molecular field. The molecules which have just
been replaced are to be treated, not as a continuum, but as individual
dipoles. The procedure just outlined can be justified only if the result of
the calculation is independent of the size of the cavity; we shall see that
under certain conditions this is indeed the case.

Let us suppose that the thin dielectric sample has been polarized by
placing it in the uniform electric field between two parallel plates which
are oppositely charged, as shown in Fig. 5-1(a). It will be assumed that

93
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Fie. 5-1. Replacement of the diclectric outside the “cavity” by a system
of bound charges.

the polarization is uniform on & macroscopic scale (i.e., div P = 0J, and
that P is parallel to the field producing it. The part of the dielectric
external to the cavity may be replaced by a system of bound charges as
shown in Fig. 5-1(b), whence the electric field at the center of the cavity

b itte
may be Whten a8 - g, = E, + Es + E, + E'. (5-1)

Here, E, is the primary electric field due to the charged parallel plates,
E, is the depolarizing field due to bound charge on the outside surfaces of
the dielectric, E, is due to bound charge on the cavity surface S, and E’
is due to all of the dipoles inside of S. Although we are not concerned with
the explicit form of E,, it is evident that if the dimensions of the plates
are large compared with their separation, I, = (1/¢o)o, where o is the
surface charge density. The depolarizing field is also produced by two
paraliel planes of charge, this time with the density op. Since op =

Pﬂ"—'—ﬂ:P, 1 .
E;,= — —P. (5-2)
€o

Let us write the macroscopic electric field ¢n the dielectric without a
subseript, that is; E. Since the normal component of the electric displace-
ment D is continuous across the vacuum-dielectric interface, and since
D = ¢E; in the vacuum just cutside the dielectric slab,.

6E, = ¢E + P. (5-3)
Combining Egs. (5-1), (5-2), and (5-3) yields
E,=E-+E,+ E, (5-4)
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which is an equation relating the molecular field to the macroscopie eleciric
field in the dielectric material. This resuit is quite general, and not re-
stricted to the geometry of Fig. 5~1; nevertheless, the above derivation is
instructive and will be uselul to the subject discussed in Section 5-4.
The field E, arises from hound charge density, ¢p = P, on the spherical
surface S. Using spherical coordinates, and taking the polar direction
along the direction of P, as in Fig. 5-2, we obtain
2
dE, - ﬁ-—%r—e‘:‘:f'-@ r de, (5-5)
where 1 is the vector from the surface to the eenter of the sphere. From
symametry, it is evident that ouly the component of dE, along the direction
of P will cou‘artbufe to the integral of (5-5) over the complete surface
Since de == 72 sin 0 d4 de, .

r2r 7
5 p—~—ad ---.1;—m ‘ 55‘2 3 Y
By == dre, P«’o de /0 cos” 8 sin 6 do
=L (5~
= Jeo P (5-6)

Fi6. 5-2. Calculation of the “cavity” surface contribution to E,.

Finally, we come to the last termn in (5-4), that due to the electric dipoles
inside 8. There are a number of important cases for which this term
vanishes. If there are a great many dipoles in the cavity, if they are
oriented parallel but randomly distributed in position, and if there are
no correlations between the positions of the dipoles, then E/ == 0. This
is the situation which might prevail in a gas or a liquid. Simdlarly, if the
dipoles in the cavity are located at the regular atemie positions of a
cubic erystal,* then again B == 0. In this connection, the reader is
referred ve Problem 5-2.

* Crystals with the highest symmetry belong to the cubic systern.
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In the general case, E’ is not zero, and if the material contains several
species of molecule, E’ may differ at the various molecular positions. It
is this term which gives rise to the anisotropic electrical behavior of calcite,
for example. It is not our purpose, however, to develop a theory of aniso-
tropic materials; hence we restrict further discussion to the rather large
class of materials in which E’ = 0. Thus, Eq. (5-4) reduces to

E, = E+§1€;P. -7

It is interesting to note that this result would be obtained directly by
the above method if the spherical “cavity” were created by removing just
one molecule. But under these conditions the cavity would be so small
that the replacement of the rest of the dielectric by a system of bound
charges could not be justified.

The dipole moment of a molecule per unit polarizing field is called its
polarizability, «. In other words,

Pm = aE,,. (5-8)

If there are N molecules per unit volume, then the polarization P = Np,,,
and combining this result with (5-7) and (5-8), we obtain

Pr-Na(E+§t—OP>- (5-9)

This equation may be rewritten in terms of the dielectric constant, K,
since P = (K — 1)eE. In this way, Eq. (5-9) becomes’

3¢ (K—1) ., ;
*= N KT’ (5-10)
which is known as the Clausius-Mossotti equation. It is evident that

{510 defines a molecular property, namely, the molecular polarizability,
in terms of quantities which can be determined on a macroscopic basis.

5-2 Induced dipoles. A simple model. The molecules of a dieleetric
may be classified as polar or nonpolar. A polar molecule is one which has
& permanent dipole moment, even in the absence of a polarizing field E,,.
In the nexti section the response of a polar dielectric to an external electric
field will be studied, but here we deal with the scmewhat simpler problem
involving nonpolar molecules, in which the “centers of gravity” of the
positive and negative charge distributions normally coincide. Sym-
metrical molecules such as Hy, Nj, and O;, or monatomic molecules such
a8 He, Ne, and A, fall into this category.

The application of an electric field causes a relative displacement of
the positive and negative charges in nonpolar molecules, and the molecular
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dipoles so created are called induced dipoles. The simplest type of molecule
which can be envisaged is that composed of a single neutral atom. It is
possible to construct a simple classical model for the atom and from this
model derive an expression fof the induced dipole moment, and hence for
its polarizability. Although specifically desi%ned to treat monatomic mole-
cules, the model may be used for symmetrical diatomic molecules by
applying it separately to each of the atoms in the molecule to obtain the
atomic polarizabilities. The molecular polarizability is then the sum of
these, or twice the atomic polarizability.”

An atom consists of an extremely small positively charged nucleus
surrounded by orbital electrons which are in a state of continual motion.
Since the electrons traverse their orbits in an exceedingly short time, of
the order of 107'% second, it is evident that in the equivalent “static”
atom each electronic charge is smeared over its orbit. Quantum mechanics
tells us that although this picture is essentially correct, it is somewhat
naive; the electrons are not really localized on orbits, but have a finite
probability of being situated in any part of the atom. Thus the response
of the atom to an electrostatic field or to slowly varying electric fields
may be treated by considering the electron to be distributed over its
orbit in the atom, and each orbit to be smeared over a substantial part
of the atomic volume. In short, a simple classical model of the atom con-
sistent with this picture is a point positive charge (the nucleus) surrounded
by a spherically symmetric cloud of negative charge in which the density
is essentially uniform out to the atomic radius R, and zero at larger radii.

We are now in a position to compute-the polarizability of this “atom.”
The nucleus will be assigned the charge Ze, where e is the absolute value
of the electronic charge and Z is the atomic number. Since the atom is
electrically neutral, the total charge in the electron cloud is —Ze. If the
atom is placed in a polarizing field E,,, the nucleus will be displaced
relative -to the center of the charge cloud by a distance which we shall
call z. This displacement will be in the direction of E,,. We shall assume
that the charge cloud moves rigidly during this displacement, i.e., there
is no distortion of the cloud by the polarizing field. The displacement
may be determined from the equilibrium of forces on the nucleus; the
force ZeE,, acts in the direction of the field, whereas an electrostatic force
between the nucleus and charge cloud tends to restore the initial configura-
tion. By Gauss’ law, the negative charge attracting the nucleus is that
part of the cloud within the sphere of radius z, and if the electronic density
in the cloud is uniform, then this charge is Zez®/R3. Hence

3 3
(‘Z‘%(‘;Z;Ef;*—ﬁli‘)) = ZeE,n, (5-11)

or
Zexr = 4wegR3E,,. (5-12)
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Since the atomic dipole created in this process is p, == Zex, the last
equation may be compured with (5-8), whence

o = dwey R, (5-13)

The atomic model just deseribed may be tested by comparing resulis
obtained from it with results derived from other sources. For example,
Iq. (5-13) may be combined with the Clausius-Mossotti equation (5-10)
to eliminate «; the resulting equation predicts the atomic radius Ry in
terms of experimentally determined quantities. K, obtained in this way
agrees reasonably well with results from other experiments in those cases
for which the model is particularly suited; & is of the order of magnitude
of 1 angstrom unit, i.e., 107'% m. (Sec Problem 5-1.)

The polarizability derived iy (5-13) is 2 constant, independent of the
polarizing field. Hence (5-13) leads to a constant value of K, and the
dielectric so described is linear.

*$.3 Polar molecules. The Langevin-Debye formula. As mentioved
in the preceding section, a polar molecule has a permanent dipole moment.
A polar molecule consists of at least two different species of atoms; during
molecule formation some of the electrons may be completely oc partislly
transferred from one atomic species to the other, the resulting electronic
arrangement being such that positive and negative charge centers do not
coincide in the molecule. In the absence of an electric field & macroscopic
piece of the polar dielectrie is not polarized, since the individual dipoles.
are randomly oriented, as shown in Iig. 5-3. The polarization has been
defined as

i
o e )
P e E P (5-14)

where the summation extends over all molecules in the volume element
Av. When the p,, are oriented at random, the summation vanishes.

If the polar dielectric is subjected to ar electric field, the individual
dipoles experience torques which tend to align them with the field. If the

Fig. 5-3. A random distribution of permanent dipoles.
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field is strong enough, the dipoles may be completely aligned, and the
polarization achieves the saturation value | ,

P, = Npw, (5-15)

where N is the number of molecules per unit volume. This orientation
effect is in addition to the induced dipole effects which are usually present
also. Tor the moment, we shall ignore the induced dipole contnbutxon
but its effect will be added in later.

At field strengths normally encountered, the polamzatxon of a polar
dielectric is usually far from its saturation value, and if the temperature
of the specimen is raised the polarization becomes even smaller. The lack
of complete dipole alignment is due to the thermal energy of the mole-
cules, which tends to produce random dipole orientations. The average
effective dipole moment per moleculé may be calculated by means of a
principle from statistical mechanics which states that at temperature T
the probability of finding a particular molecular encrgy W is proportional

to e WIKT (5-16)

where k is Boltzmann’s constant and 7’ is the absolute temperature. A
complete discussion of the basis for this principle will not be given here;
the reader familiar with the Maxwell velocity distribution in a perfect
gas has already encountered the prineiple. According to the Maxwell
distribution law, the probability of a molecular velocity v is proportional
to ¢”™*/2kT  But in Maxwell’s perfect gas the molecules have ouly kinetic
energy, 4mv?; in the genersl case W in (5-16) must include both kinetic
energy W and potential energy W,, and the factor becomes

o= WHIKT =W p/kT (5-17)

The potential energy of a permanent dipole po in an electric field E,, is
Wy = —po-En = —polincosf, (5-18)

where 8 is the angle between po and the electric field. Since the molecular
kinetic energies do not depend on the electric field, we can ignore the
velocity distribution completely in the following calculation. The effective
dipole moment of a molecular dipole is its component along the field
direction, i.e., po cos 6. Using the above principle, the average value of

this quantity is found to be

+pgE,, cos 8/ kT
Spocosbe dQ ’ (5-19)

f6+p0E"‘ cos 0/kT dQ

(po cos 8) =

where dQ is an element of solid angle that may be replaced by 27 s 6 d6
where the limits qn # are 0 and 7. Since py, £, and kT are constants in
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(pg cos 8)
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0 ! ! L
0 1 2 3 4 5

y = poEm/kT

F1a. 5-4. Plot of the Langevin function. The asymptotic value asy — o isonc.

the integration, the integrals may be readily performed. It is convenient
to define

. E,.
y =B (5-20)
Equation (5~19) then yields:
(po cos 6) = po [coth y — -11;] , (5-21)

which is known as the Langevin formula. A plot of this function is given
in Fig. 5-4. :

It can be seen from the figure that Eq. (5-21) does indeed give a satura-
tion effect at large field strengths. At small values of y, however, the
curve is linear, and it is this linear region which is important at ordinary
temperatures. The molecular dipole moment py of most polar materials
is such that y << 1 for a full range of field strengths, even for those ap-
proaching the dielectric strength of the material, so long as the tempera-
ture is above about 250°K. Thus a dielectric material containing polar
molecules is, in general, linear.

Since it is the linear region of (5-21) which is important, it is appro-
priate to expand coth y in a power series and keep only leading terms
(see Problem 5-4). The first term cancels the last term in (5-21), with
the result that

1 E,
(Pocos 8) = = poy = p;,di" (5-22a)

The term (pg cos 8) is the average effective dipole moment; therefore the
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polarization P = N (pg cos 6) and has the direction of E,,. Hence (5-22a)
may be written in the form

1 — Po
v P T E,. (5-22b)

From a comparison of this equation with (5-8), it is evident that the
polarizability « (i.e., the molecular dipole moment per unit polarizing
field) is
_

a = gﬁ * (5“23)
This result has been derived by neglecting induced dipole moments, and
represents what we might call an orientational polarizability. Induced
dipoles effects, such as have been considered in the previous section,
give rise to what might be termed a deformation polarizability, ag. In
the general case, then, the total molecular polarizability is

2

@ = oy + 2L 3kT (5-24)

an expression which is known as the Langevin-Debye equation, and which
has been of great importance in interpreting molecular structures.

*5-4 Permanent polarization. Ferroelectricity. It was seen in Section
5-1 that it is the molecular field E,, which is responsible for polarizing
the individual molecules. . The relationship between E,, and the macro-
scopic electric field E was given in Eq. (5-7). In most cases the polariza-
tion is proportional to E, so that E,, vanishes when E goes to zero. But
under certain conditions (5-7) is also compatible with a permanent (or
spontaneous) polarization. When E is set equal to zero,

1 =
Em = 33?0 Po, (5‘20)

or, in words, if a polarization Py exiéts, it will create an electric field at
the molecule which tends to polarize the molecule. To be sure, a polarizing
~ field exists; but if this field gives rise to a polarization different from Py,
then the solution is not self-consistent. Therefore, if N is the number of
molecules per unit volume,

Py = NaE,

which is satisfied when either

__ Na »
360 Py, (5-26)

Py=0

Na
3eq -—- . (5-27)

or
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Thus the condition for a permanent polarization is Eq. (5-27).%

For most materials Na/3sq is less than one, and ordinary dielectric
behavior results. In a few crystalline solids, however, condition (5-27)
is met. Such materials are called ferroelectric beécause their electrical
properties are analogous to the magnetic properties of ferromagnetic
materials. The best known example of a ferroelectric material is barium
titanate, BaTi(3, which exhibits a spontaneous dipole moment at tem-
peratures below 120°C. This temperature is called the Curie point of the
material. ‘

The polarized state of a ferroelectric material is a relatively stable one,
and one which can persist for long periods of time. This statement may
surprise us to some extent because a polarized specimen is subjected to
its own depolarizing field and, depending on the geometry of the specimen,
this depolarizing field may be rather large. The depolarizing field is largest
for a specimen in the shape of a flat slab, polarized in a direction normal
" to its faces. As was seen in Section 5-1, if the dimensions of the slab
face are large compared with the slab thickness, then

Eg = — +p. (5-28)
€ . .

Actually, the high stability of a polarized ferroelectric is due to the fact
that therc is no depolarizing field on the specimen, even for the case of
slab geometry. The specimen is polarized by placing it between parailel
conducting plates which subsequently have s large potential difference
applied to them. In this process the free charge from the plates will, to
a large extent, be neutralized by surface bound charge, as is also the case
during polarization of a conventional dielectric. If the parallel plates are
now brought to the same potential by short-circuiting them, the polarized
state of the ferroeleciric is still energetically favorable, so the free charge
stays tn place, still neutralizing the bound charge. The situation is some-
thing like that shown in Fig. 5-5; the free charge is held in place by the
surface bound charge. The macroscopic field inside the ferroelectric is
zero; furthermore, the external electric field is zero, and it is difficult o
distinguish the polarized specimen from a conventional unpolarized di-
electric material. ,

If a large potential difference of the opposite sign is now applied to the
plates surrouuding the polarized ferroeleciric, the specimen will change

* Jtrictly speaking, Kq. (5-27) has been derived for materinls which are
composed of only one species of molecule, and for which the term E’ of Section
5-1 vanishes. In a quantitative theory applicable to the general case, Eq. (5-27)
is replaced by a set of simultanecus equations. Such complications are not neces-
sary for a fundamental understanding ‘of the origin of ferroelectricity, and’
consequently will not be discussed here.
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Fia. 5-5. A polarized piece of ferroslectric material,
its polarization, and free charge of the oppusite sign will low to the plates
from the external cireuit, sufficient not only to neutralize the free charge
already there, but also to neutralize the new bound charge. Thus a ferro-
electric slab between two parallel plates may serve as the basic element
of a meraory device; it is capable of storing = or 7F, and its polarization
persists in the absence of an external electric field. The number 2 or
may Le read by spplying a potential difference across the specimen. If
the applied field is in the direction of the original polarization, no charge
will pass through the external eircuit; if the potential difference is opposite
to the original volarization, a charge will flow through the external circuit
as the polarization of the ferroelectric changes its direction.

A polarized ferroelectric is stable against a reversed electric field pro-
vided this electric field is not too large. Tiguee 5-6 shows the complete
curve of polarization versus electric field; it is evident that for low fieids
there are two values of P for each value of . A curve'such ss that in
TFig. 56 is called a hysteresis lcop. Hysteresis means “to lag behind,”
and it 1s appacent that the polarization vector lags the electric field vector.
Points & and a are the stable configurations at & == 0; they represent
the polarizations = and °F, respectively. Poiut ¢ s the electric field which
must be exceeded in order to reverse the polarization.

1
y L

Fig. 5-6. Hysteresis curve for a ferroclectric specimen.
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ProBLEMS

5-1. Use the Clausius-Mossotti equation to determine the polarizability of
atoms in the air molecules: Ng, O2. [Note that only the weighted average of the
polarizabilities for nitrogen and oxygen may be obtained from (5-10).] Combine
this resatlt with the theory of Section 5-2 to determine the average radius of the
atom in an air molecule. .

5-2. Figure 5~7 shows s simple cubic lattice of molecules all of which have
the same (in direction and magnitude) dipole moment p... Let us fix our atten-
tion on one particular molecule, call it j. It is evident that j has six nearest
neighbors at distance a, twelve next-nearest neighbors at distance V2 g, ete.
Find the electric field at j due to the six p. on nearest-neighbor molecules for
an arbitrary orientation of p,. (Let the lines joining j to its nearest neighbors
define the z-, y-, and z-axes. For simplicity, take p, in the zz-plane, making an
angle 0 with the z-axis.)

/ L/ Pn
4 : L/
' K Va
J a

Fic. 5-7. Partof a éimple cubic array of molecules, cach with dipole moment p,,.

5-3. Using the result of Problem 5-1 for the atemic polarizability of nitrogen,
compute the relative displacement of the nitrogen nucleus and electron cloud
at a fiell strength E, = 3 X 108 volts/m. Compare this displacement with
the radius of the atom found in Problem 5-1.

5-4. By using the well-known series expansions for e?, expand coth y, and
obtain Eq. (5-22a) from (5-21). Go one step further and obtain another term
in the series (5-22a).

5-5. Water is a polar molecule for which the Clausius-Mossotti equation is,
strictly speaking, not applicable. Assumc its validity, however, and determine
po for the water molecule.



CHAPTER 6
ELECTROSTATIC ENERGY

Many problems in mechanics are greatly simplified by means of energy
considerations. Hence, when the mechanical behavior of an electrical
system is to be studied, it may prove advantageous to use energy methods.
In general, the energy of a system of charges, just like that of any other
mechanical system, may be divided into its potential and kinetic contribu-
tions. Under static conditions, however, the entire erergy of the charge
system exists as potential energy, and we are particularly concerned with
that potential energy which arises from electrical interaction of the
charges, the so-called elecirostatic energy.

In Section 2-4, it was shown that the electrostatic energy of a point
charge is closely related to the electrostatic potential U at the position
of the point charge. Iu fact, if ¢ is the magnitude of a particular point
charge, then the work doue on the charge in moving it from position
A to position B is

B B
7 — r o dl = — .
Work /Al'mdl quEdl
~B
== qu grad U - dl = ¢(Ugz — Uja). (6-1)

Here, the mechanical forece F,, has been chosen so as to balance exactly
the electric force ¢E at each point along the path. Under these conditions
the charged particle does not acceierate, and Eq. {6-1) represents the
change in electrostatic energy of the charge over the path interval 4 — B.

Similar considerations may be applied to more complicated systems of
charges; in fact, the electrostatic energy of an arbitrary charge distribu-
tion may be calculated as the work required to sssemble this distribution
of charge without imparting to it other forms of energy.

6-1 Potential energy of a group of point charges. By the electrostatic
energy of a group of m point charges, we mear the potential energy of
the system relative to the state in which all point charges are infinitely
separated from one another. This energy may be obtained rather easily
by calculating the work to assemble the charges, bringing in one at a
time. The first charge ¢; may be placed in position without the expenditure
of euergy; to place the second, g, requires

= 20 N
AW, = 4megrie (6-2)

where g = jr; — rpl. For the third charge, g3,
105
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; o 91 o ‘!. ~ €
AWs = g3 [47!'6(;7'13 ’ 47reor23] (6-3)

The work required to bring in the fourth charge, fifth charge, etc., may
be written down in a similar fashion. The total electrostatic energy of
the assembled m-charge system is the sum of the AW’s, namely,

qu,
Z Z 47reorLJ (6-4)

J=1 k=1

where the prime on the second summation means that the term k ==
is specifically excluded.

Equation (6-4) may be written in & somewhat different way by noting
that the final value of the potential U at the jth point charge is

m
, v Qi
U = R (6-5)
{ dmregry;

Thus the electrostatic energy of the system is
V=142 Ui (6-6)

If the point charges had been assembled in a linear dielectric medium of
infinite extent, instead of in vacuum, then the permittivity € would replace
& in Egs. (6-2), (6-3), and {6—4), but Eq. {6-6) would remain unchanged.
In the following section it will be shown that this last equation bas rather
general validity. It applies to a group of peint charges which are located
in more than one dielectric medium; it even applies to conductors of
finite size. The only limitation on the validity of Eq. (6:--6) ic that all
dielectrics in the electrical system be linear.

6-2 Electrostatic energy of a charge distribution. In this section we
shall calculate the electrostatic energy of an arbitrary charge distribution
with volume density p and surface density o. Some of the charge may
reside on the surfaces of conductors; in fact, it will be explicitly assumed
that there are conductors in the system. In addition, it will he assumed
that the dielectrics in the system are near; this restriction is necessary
in order that the work expended in bringing the system to its final charged
state shall be independent of the way in which this final state is reached.

Suppose we assemble the charge distributiotu by bringing in charge
increments d¢ from a reference potential U4 == . If the charge distribu-
tion is partly assembled and the potential at a particular point in the
system is U'(x, u, 2), then, from Eq. {(6-1), the work required to place ég
at this point is
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W = U'(z, y, 2) &q. (6-7)

The charge increment 8¢ may be added to a volume element located at
(z, ¥, ), such that 8¢ = 8p Av, or 8¢ may be added to a surface element
at the point in question, whereby 8¢ = 60 Aa. The total electrostatic
energy of the assembled charge distribution is obtained by summing
contributiouns of the form (6-7).

Since the work required to assemble the charges is independent of the
order in which things are done, we may choose a particular assembly
procedure for which the summation of the §W’s is conveniently calculated.
This procedure is one in which all parts of the system are brought to their
final charge values in concert, i.e., at any instant of time during the
charging process all charge den31txes will be at the same fraction of their
final values. Let us call this fraction «. If the final values of the charge
densities are given by the functions, p(z, y,2) and o(z, y, 2), then the
charge densities at an arbitrary time are ap(z, ¥, 2) and a0 (z, y, 2). Further-
more, the increments in these densities are dp = p(z, y, 2) éa and o =
o(z, y, 2) da. The total electrostatic energy, which is obtained by sum-
ming (6-7), is

1
W= [ daf o120z y2d
i
+ fo bor fs o(x, y, 2)U'(e; 2, y, 2) da. (6-8)

But since all charges are at the same fraction, e, of their final values, the
potential U'{e;z, y, 2) = aU(z, y, 2), where U is the final value of the
potential at (z, y,2). Making this substitution, we find that the inte-
gration over « is readily done, and yields

W = %prU dv + 5/3 oU da, (6-9)

the desired result for the energy of a charge distribution.

It was stipulated that conductors are present in the system. Although
(6-9) covers this case very well, it is convenient to separate out the
contribution from the conductors explicitly. The last integral involves,
in part, integrations over the surface of these conductors; since a conductor
is an equipotential region, each of these integrations may be done:

i oU da = 3Q,U;, - (6-10)
conductor j
where Q; is the charge on the jth conductor. Hence Eq. (6-9) becomes

W=4f pUd+4f oUda+t} 2.0U; (6-11)
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where the last suinmation is over all conductors, and the surface integral
is restricted to nonconducting surfaces. As we have seen in Chapter 3,
in many problems of practical interest all of the free charge resides on the
surfaces of conductors. In these circumstaunces Eq. (6-11) reduces to

W= %3 QU, (-12)
j .

We shall have occasion to develop this equation in a later scetion of this
chapter.

TFor the present, we should like to compare (6-12) with Eq. (6-6), which
was derived for an assembly of point charges. [t appears at first sight that
the two equations are identical; however, there is an important difference.
Iquation (6-12) was derived by starting with uncharged conductors which
were gradually charged by bringing in charge increments; thus the energy
depicted by (6-12) includes both interaction cnergy and self-energies.
In deriving (6-6), each point charge was brought in as a unit; hence the
energy to assemble the “point” charge from smaller charge increments,
the so-called self-energy of the charge, is not included. The two methods
really do give the same result for an assembly of “point” charges, however,
as may be seen from a more detailed examination of (6-12). The potential
of the jth conductor may be written as the sum of two terms,

U; = Ujy + Ujs, (6-13)

where U;; is the contribution to the potential due to the chargs on con-
ductor j itself, and Ujp is the contribution from charge on other con-
ducters. Thus Eq. (6-12) becomes

W= %ZQJ'UH + 5ZQ3U,2 {614
Fi ;

The first terro of this equation represents the various self-energies of the
conductors. Each self-energy, 3Q;U;;, depends on the environment of
the conduetor (since the charge distribution on each conductor audjusts
itsell to its environment); furthermore, the only physically meaningful
potential associated with conductor § is the total potential Uj;. Thus the
decomposition, Eq. (6-14), does not make a great deal of sense in general.
However, if the conductors are so small that they may be treated as point
charges from the macroscopic point of view, thea redistribution of charge
on the “point” cannot be important, and each self-energy may be taken
to be independent of its envirenment. In addition, since by potential
at the point charge j we mean Ujs, the energy required to place a group
of previously charged, very small conductors in position is the second surn-
mation in (6-14), and this is equivalent to Fq. (6-6).
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6-3 Energy density of an electrostatic field. In the preceding section
an expression was developed for the electrostatic energy of an arbitrary
distribution of free charge. This expression, Eq. (6-9), involves an explicit
integration over the charge distribution. It is possible, however, to express
the electrostatic energy of the system in a different way, and this alternate
form is frequently rather useful. By means of a mathematical transforma-
tion, therefore, we convert (6-9) to an integral involving the field vectors
E and D of the system.

We again consider an arbitrary distribution of free charge characterized
by the densities p and ¢. For convenience, it will be assumed that the
charge system is bounded, i.e., it is possible to construct a elosed surface
of finite dimensions which encloses all of the free charge. In addition, all
surface densities of free charge, g, will be assumed to reside on conductor
surfaces. The last statement is really no restriction at all, since a surface
charge density on a dielectric-dielectric interface may be spread out
slightly and then treated as a volume density, p. The densities p and o
are related to the electric displacement;

= divD
throughout the dielectric regions, and
og=D:'n
on the conductor surfaces. Hence Eq. (6-9) becomes

W = i f UdivDdo -+ 3 f UD - n da. (6-15)
14 S

The volume integral here refers to the region where div D is different
from zero, and this is the region external to the conductors. The surface
integral is over the conductors.

The integrand in the first integral of (6-15) may be transformed by
means of & vector identity which we have had occasion to use several
times before, Eq. (I-6) of Table 1-1:

UdivD = divUD — D -grad U.

Of the two volume integrals resulting from this transformation, the first
may be converted to a surface integral through the use of the divergence
theorera. Finally, using the fact thut E = — grad U, we may write
(6-15) as ‘

W = o’ da - "Edv -4 UD-nda. oy
V=3f ,UD nda«r%:fy? Edv+4[ UD-nda.  (6-16)

This equation may be simplified substantiallv. The swrface S + S’ over
which the first integral of (6-16) is to be evaluated is the entire surface
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bounding the volume V. It consists, in part, of S (the surfaces of all
conductors in the system), and also of 8’ (a surface which bounds our
system from the outside, and which we may choose to locate at infinity).
In both cases the normal n’ is directed out of the volume V. In the last
integral the normal n is directed out of the corductor, hence info V. Thus
the two surface integrals over S cancel each other. It remains to show
that the integral over 8’ vanishes.

If our charge distribution, which is arbitrary but bounded, boars a
net charge, then at large distances from the charge system the potential
falls off inversely as the distance, i.e., as r~!. D falls off as »~2. The
area of 8 closed surface which passeé through a point at distance r is
proportional to 7%. Hence the value of the integral over 8’ which bounds
our system at distance r is proportional to 77, and when & is moved
out to infinity, its contribution vanishes.

If the charge distribution bears zero net charge, then the potenhal at
large distances acts like some multipole and falls off more rapidly than
#~!. Again the contribution from S’ may be seen to vanish. Thus, for
the electrostatic energy, we have

W= 4% /V D-Edy, (6-17)

where the integration is over the volume of the system exterual to the
conductors, i.e., over the various dielectrics in the system. The integra-
tion may, of course, be extended to include all space, since the electric
field E equals zero inside a conductor.

Where is the electrostatic energy of the electrical ‘:ybtom located? This
is a question which has no precise meaning; nevertheléss, it is couvenient
to imagine the energy to be stored in the electric field. Equation {(6-17)
shows that such a procedure is at least not unreasonable, and i addition
it prescribes that the energy be distributed with 2 deuwsity 4D - E per
unit volume. Hence we are led to the concept of energy devieity in an electro-

fi
static field: = D-E - (6-18a)

Since Eq. (6-17) was derived on the basis of linear dielectrics, each di-
electric is characterized by a constant permittivity e. Furthermore, the
discussion in preceding chapters has been limited to isotropic dielectrics.

Thus (6-18a) is equivalent to ‘
w = }eB% {6-18D)

64 Energy of a system of charged conductors. Coefficients of potential,
In Section 3-12 it was shown that a linear relationship exists between
the potentials and charges on a set of conductors. In fact, in 4 sysiem
composed of N coriductors, the potential of ove of them is given by
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N
= 2 pis (3-51)
j=1
The derivation of (3-51) was carried out for N conductors in vacuum;
however, it is clear that this derivation also holds when dielectrics are
.present in the system, so long as these dielectrics are both linear and
devoid of free charge. The goefficient p;; is the potential of the ith con-
ductor due to a unit charge 6n conductor j. These coefﬁclents are usually
referred to as coefficients of potential.
In Section 6-2 an expression was developed for the electrostatic energy
of a set of N charged conductors, namely, Eq (6-12). Combining this
result with Eq. (.3—51), we obtain

= } Z Z PiiQ:Q;. (6-19)
=l je=j
'Thus the energy is a quadratic function of the charges on the variou;v.

conductors.

A number of general statements can be made about the coefficients p;;,
the most important being that (1) p.; == p;i, (2) all of the p;; are positive,
and (3) piz — pi; > 0 for all j. The first of these statements follows

from Eq. (6-19), which expresses W as W(Q; - - - Qn); thus
W = (a")dczl + ((;’g’)doh.

Q
If dQ, only is changed, then
oW
aw = (aQ )dQl = % Z (Pn + P_,;)Q, dQ;. (6"20)
J==1

This increment in the electrostatic energy may also be calculated directly
from Eq. (6-1). Bringing il d@, from a zero potential reservoir, we obtain

N
AW = U1dQ: = ) p1,Q; dQ1. - (6-21)

=1

Equations (6-20) and (6-21) must be equivalent for all possible values
of the @;, which implies that

(pij + pi1) = P1j
Pi1 = Pij- (6-22)

The second statement above, that the potential produced by a net
positive charge is positive, is almost intuitively obvious but difficult to

or
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prove in a rigorous way. That the third statement is true may be seen
from the following argument: let conductor ¢ bear a positive charge Q;,
all other conductors being uncharged. Since conductor j (5 % 1) is un-
charged, the net number of lines of displacement leaving this conductor
is zero. We distinguish two cases: (a) there are no lines of displacement
leaving or impinging upon conductor 7, whence we infer that the conductor
is in an equipotential region, i.e., it is shielded by another conductor.
For example, it could be located inside conductor ¢, and its potential
might be U;. In this circumstance, p;; = p;. If conductor j is inside
conductor k, then p; = p;;; we immediately transfer our attention to
conductor k. (b) Lines of displacement flux leaving conductor j are
balanced in number by lines impinging on it. The origin of the displace-
ment flux is the charge on 7; hence it must be possible to trace a flux line,
which impinges on j, back (perhaps via other conductors) to ¢. Thus ¢
is at a higher potential than j:

U; > Uy, (Q; is positive)
or
Pii > Pije (6-23)
We must, however, add the equality sign to cover case (a).

The usefulness of the coefficients p;; may be illustrated by means of a
simple example. Problem: to find the potential of an uncharged spherical
conductor in the presence of a point charge ¢ at distance r, where r > R,
and R is the radius of the spherical conductor. The point charge and
sphere are taken to be a system of two conductors, and use is made of the
equality p;» = p21. If the sphere is charged (Q) and the “point” un-
-charged, then the potential of the “point” is Q/4meor; thus

1
Piz = P21 = ;1‘7;‘6‘(;;.'
Evidently, when the “point” has charge ¢ and the sphere is uncharged,
the potential of the latter is ¢/4meqr.

6-5 Coefficients of capacitance and induction. Equation (3—-51), which
was derived in Chapter 3 and discussed again in Section 64, is a set
of N linear equations giving the potentials of the conductors in terms of
their charges. This set of equations may be solved for the Q,’s, yielding

N
Qi = ), ciilj, (6-24)
=1
where ¢;; is called a coefficient of capacitance and ¢;; (2 5 7) is a coefficient
of induction. The actual inversion of Eq. (3-51), expressing each ¢ in
terms of the p;j, is most easily done by using determinants.
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O4\

Fig. 6-1. Conductors 1 and 2 form a capacitor. pg1 = pas since, by Gauss’
law, when 1 and 2 are uncharged they musi be at the same potential, inde-
pendently of the charge on 3. Siwdlariy, pa: = paa.

Preperties of the ¢’z follow from those of the p’s, which we have already
discussed Thus: (1) 25 = ¢js, () ¢z > 0, (3) the coefficients of in-
duction are negative or zero.

Equation (6-24) may be combined with Eq. (6-12) to give an alternative
expression for the electrostatic energy of an N-conductor system:

N,
W= 337 2 cU, (6-25)

vi=] el

6-6 Capacitors. Two conductors which can store equal and opposite
charges (@), independently of whether other conductors in the system
are charged, form what is called a capacitor. This independence of other
charges implies that one of the pair of conductors is shielded by the
other; in other words, the potential contributed to each of the pair by
external charges must be the same. Such a situation is depicted in Fig. 6-1
where conductors 1 and 2 form a device of this type. In general, if two
conductors, 1 and 2, form a capacitor, we may write

Ur = p11Q + p12:0—Q) + Uy,
Uz = p12Q -+ p22(—Q) + Uy,

where 4@ are the charges stored and U, is the common potential con-
tributed by other (external) charges. X
If Egs. (6-26) are subtracted, we find

AU = Uy — Uz = (P11 + P22 — 2p:2)Q. (6-27)

(6-26)

Thus the difference in potential between the conductors of a capacitor
is proportional to the charge stored, Q. (Obviously, the total charge stored
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is zero but; by convention, the absolute value of the charge on one of
the two conductors is called the charge on the capacitor.) Equation (6-27)

v be written
may bewrt Q = CAU; (6-28)

where €= (p11 + P4z — 2p12)”" is called the capacztance of the ca-
pacitor. Evidently C is the charge stored per unit of potential difference;
in the mks system C is méasured in coulombs/volt, or farads (1 farad = 1
coulomb/volt). .

Using the résults of previous sections in this chapter, the energy of a
charged capacitor may be written as

_1 2_loay=19. '
—1C@U)? =;0aU =32 (6-29)

If the two conductors making up the capacitor have simple geometrical
shapes, the capacitance may be obtained analytically. Thus, for example,
it is easy to calculate the capacitance of two parallel plates, two coaxial
cylinders, two concentric spheres, or that of a cylinder and a plane. The
capacitance of a parallel-plate capacitor (Fig. 6-2) will be derived here;
other simple cases are taken up in the exercises at the end of the chapter.

Except for the fringing field at the edge of the parallel plates, the
electric field between them is uniform. An ideal parallel-plate capacitor
is one in which the plate separation d is very small compared with dimen-
sions of the plate; thus the fringing field may be neglected in the ideal
case. If the region between the plates is filled with dielectric of permit-
tivity €, then the electric field between the plates is

'~—€0'-—€A; 4 B (6*29)

where A is the area of one plate. The potential difference AU = Ed.

F1e. 6-2. The electric field between oppositcly charged parallel plates of
finite area.
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¢,

Cl T~ T~ Cz AU

Hi

C, =J

(a) (b)

Fig. 6-3. (a) Parallel and (b) series connection of two capacitors.

Therefore

9 _ 4 (6-30)

is the capacitance of this capacitor.

When a capacitor is depicted as part of an electric circuit, it is usually
indicated by the symbol ~{t—. Two or more capacitors may be joined
together by connecting one of the conductors of the first capacitor to a
conductor of the second, etc. Possible ways of joining two capacitors
are by parallel connection (I'ig. 6-3a), or'by series connection (Fig. 6-3b).
After the capacitors are joined, it is usually desirable to talk about the
equivalent capacitance of the combination. In the parallel case, the same
voltage AU which appears acrbss each capacitor also appears across the
combination; hence the equivalent capacitance is given by

¢=%_ ¢ 10, (6-31a)
If two uncharged capacitors are connected in series and subsequently
charged, conservation of charge requires that each capacitor acquire the
same charge. Thus the equivalent capacitance C' of the combination is
related to Cy and.Cs by the expression

11,1 ,
C‘E‘I*’@" (6-31b)

6-7 Forces and torques. Thus far in this chapter we have developed a
number of alternative procedures for calculating the electrostatic energy
of a charge system. We shall now show how the force on one of the objects
in the charge system may be calculated from a knowledge of this electro-
static energy. Let us suppose we are dealing with an isolated system
composed of a number of parts (conductors, point charges, dielectrics),
and we allow one of these parts to make a small displacement dr under
the influence of the electrical forces acting upon it. The mechanical work
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performed by the system in these circumstances is
dW,, = F .dr
== Fodx + F,dy -}- F. d=. (6-32)

Because the system is isolated, this work is-done at the expense of the
electrostatic energy W in other words,

aw + dW,, = 0. 6-33)
Combining (6-32) and (6-33) yields

~dW = F,dx 4+ F,dy + F,dz
and

Fp= — —> (6-34)

with similar expressions for F, and F,.
If the object under consideration is constrained to move in such a way
that it rotates about an axis, then Eq. (6-32) may be replaced by

AW, = = - d8, (6-35)

where « is the electrical torque and d6 is the angular displacement. Writ-
ing = and d@ in terms of their components (7;, T2, 73), (481, df2, db3),
and combining Kgs. (6-33) and (6-35), we obtain

ow R
= G (©=59)
i, :
Thus our goal has been achieved:
(ow :
Fe= \,"a‘E)Q ! (054
XA
[,
T (7;79;)@ | (6-362)

where the subscript @ has been added to denote that the system is isolated,
and hence its total charge remains eonstart during the displacement
dr or d9. To exploit this method it is necessary to express W in analytic
form, and the specific dependence of W on the coordinate z, or 8, must
be given. An example showing the usefulness of the method will be pre-
sented shortly.

Equations (6-34a) and (6-36a) do not, however, cover all cases of
interest because, as was menfioned in their derivation, they are limited
to wolated systems in which the charge in the system remsains constant.
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In another important class of problems all of the free charge exists on the
surfaces of conductors, and these are maintained at fixed potentials by
means of external sources of energy (e.g., by means of batteries). Here
again we may allow one of the parts of the system to move under the
influence of electrical forces acting upon it, and the mechanical work
performed (this time by the system and the batteries) will still be given
by Eq. (6-32). But the energy conservation equation becomes, in this
instance, ’

AW + dW,, = dWy, (6-37)

where dW5 s the energy supplied by the batteries. Before we can proceed
to an expression linking W and the force on some part of the system for
this case it will be necessary to eliminate dW, from Eq. (6-37).

The electrostatic energy W of a system of charged conductors has been
given earlier, in Eq. (6-12). If, now, some part of the system is displaced
while at the same time the potentials of all conductors remain fixed,

dW = % Z U;dQ;. (6-38)

Furthermore, the energy supplied by the batteries, dW,, is the work
required to move each of the charge increments d@Q,; fromn zero potential
to the potential of the appropriate conductor; by (6-1) this is

AW, = U;dQ;. (6-39)
J
Thus
AWy = 2 dW. (6-40)

Using this.equation to eliminate dW, from (6-37) and combining the
result with (6-32), we obtain

AW == Fpdx + F,dy + F,dz

ow
F, = (3;)(} : (6-41)

Here the subscript U is used to denote the fact that all potentials are
maintained constant during the virtual displacement dr. In a similar
fashion, we may derive

or

W
T = (50—1- v . (6—42)

As an example of the energy method, let us consider the following
problem. A parallel-plate capacitor of plate separation d has the region
between its plates filled by a block of solid dielectric of permittivity e.
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Fie. 6-4. Diclectric slab partially withdrawn {rom between two charged plates.

The dimensions of each plate are length b, width w. The plates are mam-
tained at the constant potential difference AU. If the dielectric block is

. withdrawn along the b dimension until only the length x remains between
the plates (see Fig. 6—4), calculate the force tending to pull the block
back into place.

Solution. The energy of the system may be calculated by any of several
methods. Thus, for example,

= %/V eB? dy

where the region of integration need include only those parts of space
where E # 0. Neglectmg fringing effects at ihe edge of the capacitor,
we find

W=%4%>&m+k&ﬂ9m@~@.

The force may bé calculated from Eq. (6-41):

Fo = 4e — e &0

in the direction of increasing .

6-8 Force on a charge distribution. This chapter would not be com-
plete without a brief discussion of the ealculation of electrical foree from
first principles, i.e., by direct integration, although this procedure has
been discussed at some length in an earlier chapter (see Section 4-10).
The important thing to remember is that when calculating the foree on
a charge element dq, the electric field produced by this element, B, must
be subtracted from the “otal electric field:

dF = (E — E,) dq. (6-43)

Thus, for example, when we calculate the force on a point charge, the
infinite electric field produced by the point charge itself must be excluded
from the effective electric field acting at the point. The effect of the
charge interacting with its own electric field is such as to produce internal:
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stresses in the charge, but these stresses can never combine in such a
way that they would tend to produce a rigid displacement of the charge.

The foree on an object bearing the surface charge o(z, y, 2) is obtained
by combining Eas. (4-57) and (4-58) ::

F = 9& (E — Ey)o da, (6-44)

where the integral is taken over the entire surface of the object. The
field E, is given by Eq. (4-60):
g ~
E, = 5—6- n. (6-45)

If the 6bject is a conductor, there is a simple relationship between the
total electric field at the surface, E, and E,. Thus the force on a conductor,
as we have already found in Section 4-10, is

F = %9{5 oE da, (6-46a)
or
0'2 .
F = 9€S o nda (6-46b)

Finally, let us determine the force on a volume charge distribution. The
force on a charge element p dv is™

dF = (E — E,)pdr. (6-47)
But, the field E, produced by the volume element dv is proportional to
the volume divided by the square of sume relevant dimension of the

element, and this ratio approaches zero in the limit where dv — 0. Thus
E, is o negligible fraction of E, and we may write

F = [ pE dv (6-48)
Vo

for the force on the charge contained in the volume V.

*6-90 Thermodynamic interpretation of electrostatic energy. The elec-
trostatic energy of a system of charged conductors and dielectrics has
been obtained in a variety of forms, in particular we have

W =} /V D-Edv, (6-17)

where the integration extends over all dielectrics (including vaeuum).

* Starred sectionis may be omitted without 16ss of continuity.
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The question naturally arises whether W can be interpreted thermo-
dynamically, i.e., does it form part of the internal energy of the system?
To answer this question we must go back to the derivation of W, where
we showed that W was the work done on the system in bringing it to its
charged condition. Thus W is really a work term, and the problem at
hand js to determine under what conditions a work increment may be
identified with a thermodynamic property of the system.

From the first law of thermodynamics (which expresses conservation
of energy), for a reversible process

dW; = TdS + dW,, (6-49)

where dW, represents the change in internal energy of the system, dS
represents the change in entropy, dW,, is the mechanical work done on
the system, and T is the absolute temperature. The quantity T dS, of
course, is the heat added to the system during the process.

It is evident that the work increment dW, may be identified with the
change in internal energy dW,; only for an adiabatic process, that is, a
process in which dS = 0. But the temperature of the system will change
in general during an adiabatic process, and the dielectric coefficients,
which are functions of the temperature, will change also. Recall that
Eq. (6-17) was derived from Eq. (6-9), and the latter equation was
obtained on the assumption that the various dielectric coefficients re-
mained constant during the charging process. Hence we must restrict
our interest to isothermal pror'ecsse and here it is not possible to identify
AW, with dW ;.

T he thermodynamic quantity called the Helmholtz free energy of the
system is defined by F = W; — TS. Differentiating and combining
the result with (6-49) yields

dF = dW; — T dS — 8dT
= —8dT 4 dW,. . (6-50)

This is just the equation we need. For an isothermal process, dF is equal
to dW,,, and thus we may say that the electrostatic energy forms part of
the free energy of the system. This energy represents the maximum work
which can be extracted at a later time from the electrostatic field.

For a system kept at constant temperature, the free energy plays the
same role as does the potential energy for a mechanical (i.e., a temperature-
independent) system.
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ProBLEMS

6-1. A fast electron (kinetic energy = 3.0 X 1017 joule) enters a region
of space containing a uniform electric field £ = 1000 volts/m. The field is
parallel to the electron’s motion, and in a direction such as to decelerate it. How
far does the eclectron travel before it is brought to rest? (Charge ‘of electron
= 1.60 X 10~19 coulomb.) .

6-2. Given a spherical dielectric shell (inner radius a, outer radius b, dielectric
constant K) and a point charge ¢, infinitely separated. Now let the point charge
be placed at the center of the dielectric shell. Determine the change in energy
of the system.

6-3. Given a spherical charge distribution of radius R, uniform charge density
po. Determine the self-energy of the distribution in two ways: (a) by dircct
integration of Eq. (6-9); (b) by an integration over the field, ¥/E - D dv.

6-4. Let us assume that an electron is a uniformly charged, spherical particle
of radius R. Assume further that the rest energy, mc2? (where m is the mass of
the electron, and c is the velocity of light), is electrostatic in origin and given
by the result of Problem 6-3. By putting in appropriate numerical vahies for
the charge and mass of the electron, determine its “classical radius” R.

6-5. Two spherical conductors are located in vacuum. Conductor 1, of radius
R, is grounded (i.e., at zero potential). Conductor 2 is so small that it may be
treated as a point charge. It bears the charge 9 and is located at distance d
from the grounded sphere. What is the charge induced on the grounded sphere?
(Use the concept of coefficient of potential.)

6-6. Given a system of two conducting objects in a linear dielectric medium.
Conductor 1 is uncharged, and conductor 2 is grounded. Prove that conductor
1 is also at ground potential.

6--7. A parallel-plate capacitor is made with a comaposite dielectric. A sheet
of dielectric of permittivity e;, thickness dy, is placed on top of a second dielectric
sheet (permittivity ez, thickness d2). The combination is placed between parallei
conducting plates which are separated by the distance dy + d2. What is the
capacitance per unit plate area of the capacitor?

6-8. A long, conducting cylinder of radius a is oriented parallel to and at
distance & from an infinite conducting plane. Show that the capacitance of
the system, per unit length of the cylinder, is given by

C = 2meo/cosh™1 (h/a).
(See Section 3-11.) ‘

6-9. Two identical air capacitors are connected in series, and the combination
is maintained at the constant potential difference of 50 volts. If a dielectric
sheet, of dielectric constant 10 and thickness cqual to one-tenth of the air gap,
is inserted into one of the capacitors, caleulate the voltage ncross this capacitor.

6-10. The capacitance of a gold-leaf electroscope is not quite constant because
the leaf moves closer to the case as AU increases. The expected form for the

capacitance is
C=a+t b(AU)2.

How would you determine the constants a and b for a particular instrument?
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What is the energy of the clectroscope when it is charged? Is the energy entirely
clectrical?

6-11. Two coneentric, spherical, conducting shells of radii 73 and r2 are main-
tained at potentials Uy and Uy, respectively. The region between the shells
is filled with a dielectric medium. Show by direct calculation that the energy
stored in the dielectric is equal to (U; — U2)?/2C, where C is the capacitance
of the system.

6-12.. Two coaxial, eylindrical conductors of approximately the same radius
are separated in the radial dimension by the distance d. The cylinders are in-
serted normally into a liquid dielectric of susceptibility X and mass’density .
The cylinders are maintained at the potential difference AU. To what height
h does the dielectric rise between the conductors? (Neglect surface tension.)

6-13. A parallel-plate capacitor has the region between its plates filed with
a dielectric slab of diclectric constant K. The plate dimensions are width w
and length [, and the plate separation is.d. The capacitor is charged: while it is
connected to a potential difference (Al)q, after which it is disconnected. The
dielectric slab is now partially withdrawn in the ! dimension until only the length
z remains between the plates. () What is the potential difference across the
capacitor? (b) What is the force tending to pull the dielectric slab back to its
original position?
 6-14. The capacitance of a variable air capacitor changes linearly from 50
to 364 wuf during a rotation from 0° to 180°. When set at 75° a potential dif-
ference of 400 volts is maintained across the capacitor. What is the direction
and magnitude of eléc‘ti'bstatic torque experienced by the capacitor? .

*6-15. An uncharged, conducting, spherical shell of mass m floats-with one-
fourth of its volume submerged in a liquid dielectric of dielectric constant K.
To what potential must the sphere be charged to float half submerged? [Hint:
Assume the electric field of the half-submerged, charged. shell to be a purely’
radial fieid, and show later that the sum of 0. op_over the spherical surface
is such as to justify this assumption.] .

6-16. A dielectric slab of thickness d and dielectric constant K fills the region
between the plates of a parallel-plate capacitor. The plate area is A. Calculate
the electrostatic force an one of the capacitor plates (a) on the assumption that
the dielectric is in direct contact with the plate, (b) on the assumption that
there is & narrow air space between dielectric and plate. The plates are msain-
tained at the potential difference AU in both cases. '



CHAPFTER 7
ELECTRIC CURRENT

Tp to this point we have been dealing with charges at rest; now we wish
to consider charges in motion. This statement implies that we shall ‘be
dealing with conductors of electricity because, by definition, a conductor
iz material in which the charge carriers are free to move (see Section 2--3).
The preceding definition includes not only the conventional conductors
sush a¢ metals and alloys, but also semiconductors, electrolytes, ionized
gases, imperfect dielectries, and even vacuum in the vicinity of a therm-
ionie emitting cathode. In many conductors the charge carriers are
elestrons; in other cases the charge may be carried by positive or negative
TN

Moving charge constitutes a curreni, and the process whereby charge
is transported is called conduction. To be precise: the current, I, is defined

v the rate al which charge is transported past a given point in a con-
ductmw system. Thus

37

_ 99 .
d (1)

where @ = €(t) is the net charge transported in time {. The unit of current
in the mks system is the ampere, named for the French physicist, André
Marie Sdmpere. Fvidently,

coulomb

1 ampere = 1 ——
L Amp . second

7~1 Nature of the current. In a metal, current is carried entirely by
elecirons, while the heavy positive ions are fixed at regular positions in
the crystal structure (Fig. 7-1). Only the valenee (outermost) atomic
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Fra. 7 1. Sehematic diagram of the motion of conduciion electrons in s metal.
L9



124 ELECTRIC CURRENT {cuar. 7
I —————

1

— 0
@
"

: l .
@-———> 4——:—-———-@
@

Fre. 7-2. Current produced by the motion of hoth positive and negative
charge carriers.

electrons are free to participate in the conduction process; the other

electrons are tightly bound to their ions. Under steady state conditions,

electrons may be fed into the metal at one point and removed at another, .
producing a current, but the metal as a whole is electrostatically neutral.

Strong electrostatic forces keep excess electrons from accumulating at

any ‘point in the metal. Similarly, a deficiency of electrons is remedied by

eiectrostatic forces of the opposite sign. We shall see later that excess

charge is dissipated extremely rapidly in a conductor. Thus we rote that '
it is possible to study the subject of electric current without taking into

account detailed electrostatic etfects associated with the charge carriers.

In an electrolyte, the current is carried by both positive and negative
ions, although, because some ions move faster than others, conduction by
one type of ion usually predominates. 1t is important to note that positive
and negative ions traveling in opposite directions (Fig. 7-2) contribute to
the current in the same direction. The basis for this fact is evident from
Eq. (7-1), since the net charge transported past a given point depends
on both the sign of the charge carrier and the direction in which it is
moving. Thus, in Fig. 7-2, both the positive and negative carrier groups
produce currents to the right; by convention, the direction in which the
positive carrier moves (or, equivalently, the direction opposite to that in
which the negative carrier moves) is taken as the direction, or sense, of
the current. In general, an electric current arises in response to an electric
field. If an electric field is imposed on a conductor, it will cause positive
charge carriers to move in the general direction of the field and negative
carriers in a direction opposite to the field; hence all currents produced in
the process have the same direction as the field.

In a.gas discharge, the current is carried by both electrons and positive
ions, but because the electrons are so much more mobile than the heavy
ions, practically all of the current is carried by eleetrons. Gas conduction
is somewhat complicated, because the electronic and ionic populations
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vary greatly with the experimental conditions (they are determined
primarily by the gas pressure and the potential drop across the gas).
Under certain conditions: cascading occurs,. in which process the few ions
which are initially present accelerate and make inelastic collisions with
neutral atoms, thereby producing additional ions and electrons. The
additional ions can also give rise to ionizing collisiens, with the result that
the carrier density builds up enormously.

In Figs. 7--1 and 7-2 we have pictured the charge carriers as falling into
groups, each of which has a common motion, called the drift motion of
the group. The picture has been greatly oversimplified, however. Each
group of charge carriers actually represents an assembly of particles in
thermal equilibrium with its environment, and so each particle has thermal
motion as well as drift motiou. But the thermal motion, although it may
be large, 18 also random, and hence gives rise to no organized transport
of charge. The drift motion, on the other hand, is not random. In con-
sidering the conduection process, then, it is permissible to forget about the
random motion, which in the end adds up to nothing, and to use the simple
picture presented in Figs. 7-1 and 7-2. For certain other transport proc-
csses, however, such as conduction in a thermal gradient (which gives
rise to the thermoelectric effect), it is necessary to take the thermal motion
into acecunt in a detailed way in order to understand the phencmena fully.

The currents we have described thus far in this section are known as
condustion currents. These currents represent the drift motion of charge
carriers through the medivm; the medium itself may be, and usually is, at
vest. Liquids and gases may also undergo hydrodynamic motion, aud if
the medium has & vharge density, this hydrodynamic motion will produce
currents. Such currents, arising from mass transport, are called convection
currents. Couvection currents are important to the subject of atmospheric
electricity; in fact, the upward convection currents in thunderstorms
are sufficient to maintain the normal poteniial gradient of the atmosphere
above the earth. The motion of charged particles in vacuurn (such as
electrons in a vacuum diode) also constilutes a convection current. An
important featurc of the convection current is that it is not electrostatically
neutral, and its electrostatic charge must usually be taken intotaccount.

In the rest of this chapter we shall deal exclusively with conduction
currents.

7-2 Current density. Equation of continuity. We shall now consider
a condueiing medium which has only one type of charge carrier, of charge
g. The number of these carriers per unit volume will be denoted by N.
In secordance with the preceding section, we ignore their random thermal
motion, and assign the same drift velocity v to each carrier. We are now
in a position to calculate the eurrent through an element of arca da such
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¥1g. 7-3. The drift motion of charge earriers across the plare da in time 8¢

ag is shown in Fig. 7-3. During the time 8 each carrier moves a distance
v 8t {row ibe figure it is evident that the charge 8¢ which crosses do
during time & is ¢ times the sum of all charge carriers in the volume
v - 1 & da, where 1 is 2 unti, veetor normal to the avea de. From Eq. (7-1),
the currvent
8¢ ghv-n dtdae

ar = o

= Nqv  © du. (7-2)

If there is more than one kind of charge carrier present, there will be 2
contribution of the form (7-2) from each type of carrier. ln general,

al = [E N.'q,'vi]- n da (7-3)
& _

is the current through the ares da. The suramation is cver the different
carrier types. The quantity in brackets is a vector which bas dimensions
of current per unit area; this quantity is called the current density, and

is given the symbel J: .
= > N (7-4)

The current density may be defined at each point in a conducting medium
and is, therefore, & vecior paint furction. It is a useful quantity, one
which enters directly into the differentin] eguations of electromagunetic
theory. The mks anit of J is amperes/meter”,

Equation (7-3) may be wiitten as

dl"—-: J 'nda,
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and the current through the surface S, an arbitrarily shaped surface area
of macroscopie size, is given by the integral

I= /s J-nda (7-5)

The current density J and the charge density p are not independent
quantities, but are related at each point through a differential equation,
the so-called equation of continuity. This relationship has its ongm in
the fact that charge can ncither be created nor destroyed; the equation is
most easily derived by applying (7-5) to an arbitrary closed surface S.
The electric current entering V, the volume enclosed by 8, is given by

I= -—56 J-nda = — [V div J dv, (7-6)

the last integral being obtained through the use of the divergence theorem,
The minus sign in (7-6) comes about because n is the outward normal and
we wish to call I positive when the net flow of charge is from the outside
of V to within. But from (7-1), I is equal to the rate at which charge is
transported into Vi

daQ d

9= dt p dv. (7-7a)

I =

Since we are dealing with a fixed volume V, the time derivative operates.
only on the function p. However, p is a function of position as well as of
time, so that the time derivative becomes the partial derivative w1th
respect to time when it is moved inside the integral Hence

. | 9 _
I = 3 dv. (7-7h)

Equations (7-6) and (7-7b) 'may now he-equated:

/ ‘18 -+ div J) dv = 0. (7-8)

But V is completely arbitrary, and the only way that (7-8) can hold for an
arbitrary volume segment of the medium js for the iutegrand to vanish at
each point. Hence, the equation of continuity:

P i T — .
—a—t-I- div] = 0. (7-9)

7-3 Ohm’s law. Conductivity. It is found experimentally that in a
metal at constant temperature the current density J is linearly propor-
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tional to the electric field (Ohm’s law). Thus
J = ¢E. (7-10)

The constant of proportionality g is called the conductivity. Equation (7-10)
has approximate validity for a large number of the common conducting
materials; in the general case, however, Eq. (7-10) must be replaced by

J = 9(B)E,

where g(E) is a function of the electric field. Materials for which Eq. (7-10)
holds are called linear media or ohmic media. Here again, as with dielec-
trics, we shall be most concerned with the linear case.

The reciprocal of the conductivity is calied the resistivity »; thus*

Q|-

7 = (7-11)
The unit of 7 in the mks system is volt-meters/ampere, or simply ohm-me-
ters, where the ohm is defined by

1 volt

1ohm = ——-
1 ampere

The unit of conductivity g is ohm™! m™!, or mho/meter.

Resistivities of a number of common materials are given in Table 7-1.
Only the metals and metal alloys are true ohmic materials. It is apparent
from this table that all materials conduct electricity to some extent, bui
that the materials we have called insulators (dielectrics) are much poorer
conductors than the metals by a tremendous factor (10%¢ to 10%%). The
distinction between a conductor and an insulator will be discussed in a
more quantitative way in Section 7-7. :

Consider a conducting specimen obeying Ohm’s law, in the shape of «
straight wire of uniform ecross section whose ends are maintained at a
constant potential difference AU. The wire is assumed to be homogeneous
and characterized by the constant conductivity g. Under these conditions
an electric field will exist in the wire, the field being related to AU by the
relation .

AU = [E-dl 7-128)

It is evident that there can he no component of electric field at right-
angles to the axis of the wire, since by (7-10) this would produce a charg-
ing of the wire’s surface. As was mentioned earlier, excess charge is dis-

* The common symbols for resistivity and conductivity are p and o, respec-
tively, but to avoid the possibility of confusion with volume charge density p
and surface charge density o, we shall use the symbols 4 and g.
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TasLe 7-1

REsisTiviry 1 AND TEMPERATURE COEFFICIENT OF RESISTANCE a
or Some CommoN MaTeRrIALS AT 20°C.

(Data from the American I'nstitute of Physics Handbook, McGraw-Hill, 1857, and
the Handbook of Chemistry and Phystcs, Chem. Rubber Publishing Co., 1952.)

Material * #, ohm'm o = %g_f'z" (°C)—t
Aluminum 2.83 X 108 0.0039
Copper 1.69 X 10—8 0.00393
Gold 2.44 ¥ 10~8 0.0034
Iron (0°C) 8.85 X 108 0.0050
Nickel 7.24 X 108 0.006
Silver (0°C) 1.47 X 10-8 0.0038
Mercury 958 > 10-8 0.00089
Tungsten 5.51 X 10~% 0.0045
Constantin (Cu 60, Ni 40) 440 X 108 0.0000
Nichrome 100.0 X 10-8 0.0004
Germanium (pure) 0.45 —0.048
Germanium (5 X 10799, As) 0.011
Silicon (pure) 640.0 —0.075
Silicon (10—49 As) 0.003
NaCl Solution (saturated) 0.044 --0.0¢5
Amber 50 X 1014
Glass 1010 - 1014
Hard rubber 1013 — 1016
Mica 1011 — 1015
Quartz (fused) 7.5 X 1017
Sulfur 1015
Wood 108 — 101

* a is not well defined for impurity-doped germanium since the resistivity is
a rather complicated function of the temperature (see C. Kittel, Infroduction
to Solid State Physics, John Wiley and Sons, New York, 1956, p. 364). At higher
temperatures « approaches that ¢f the pure material.

sipated extremely rapidly in a conductor, and because of the low potential
energy sink for charge carriers at oue end of the wire, not even a surface
charge can be tolerated. Thus the clectric field is purely longitudinal.
Furthermore, because of the geometry, the electric ficld must be the same
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at all points along the wire. Therefore 1iq. (7-12a) reduces to

AlT = R, (7-12b)

where ! is the length of the wire. But an clectric ficld inplies a current,
of density J == gE. The current threugh any eross section of the wire is

T o= J[A J - nda = JA, (7-13}

where A is the cross-sectional area of the wire. Combining [ug. {7-18)
with (7-10) aud (7-12b), we obtain

ATl (7-14)

which provides a linear relationship between [ and AT,
The gquantity I/5A is called the resistunce of the wire; 1esistance wili be
denoted by the symbol R. Using K, we may rewrite (7-14):

Al = BRI, (7-15)

which is the familiar form of Ohm’s law (£ is evidentiy measured in units
of ohms). In the next section it wiil be shown that ¥q. (7-10) implics
Bq. (7-185), independeatly of the shape of the conductor.

Equation (7-15) may be considered to be s definition of the resistance
of an nb]ect or device that is passing a coustant current. In the general
case, R will depend upon the value of this current. However, as was men-
tioned earlier, we are primarily interested in Linesr materials, and here &
s indepeadent of the current.

7-4 Resistance networks. The rcesistenne defined in the preceding
section is a property of the material object under considerstion, and it
depends upon both the nature of the material from which the cbicet is
composed and its geomesry. The resistivity, on the other hiand, depends
only upon the natrre of the vonducting material. A conducting object of
convenient shape which is characterized primarily Ly its resistance is
called. a resistor; it s nsually dencted by the symbol -2/~

Resistors may be veunsried to form s resistance netvoork; the ways in
which two resistors way b combined sre ilustrated in Fig. 7-4. Part (a)
shows a series counection; hece the same current [ passes through hoth
vesistors.  Applying Eq. (7-13) to each veutstor, and noting that the
potential difference AU = ALy =- AL'p we find thet

e

AU = Ryled Rol = (g -+ RYL

Thus the equivalent resistance of the combination s
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Fra. 7-4. (a) Series aud (b) parallel connection of two resisters.

B = R+ K, (series connection), {7-16;
In the paraliel connection (Iig. 7-4h) the potential difierence across

each resistor ia the same, and the total current through the combination is
= Iy - I;. Applying ¥iq. (7-15), we find

R T B ]
(\R‘ "Ry AU,

and the equivalent rssistance & of the combimation is obtained {rom

. '

'—;3 == l—j‘-l A —}% {parallel combination). (7-17)
The equivalent resistance of & more complicated setwork, like that in
Fig. 7-5, may be determaived by eombiniag the resistors in pairs aecording
0 B (7-16) or (7-17), and theu repeating the process uniil only cue
equivalent resistance remains.

Let us now consider a conducting object composed of chraie material,
hut, which is notl necessarily homogensous, 5o ibat the covduetivity s
indopendem of the leml elomnc field but mzy vary from point to point in
the. medium; that is, ¢ = gz, ¥y, 2). ‘mpms( that two pointv on the
houndary of the cbjer't are maictained st the potentials Uy aud Usg re-
spectively, ag in Fig 7-6(3). The curreat lives vy the muedianm ave the seame
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P, 70, A resistor network.
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7 -Current line

Eguipotential

(a) QY

Fie. 7-6. (a) A conducting object subjected to the potential difference
Uy — Usz. (b) An equivalent resistor network of wire segments.

as those of the clectric field, since J = gE, and the equipotential surfaces
intersect the current lines at right angles, as shown schemntivally in the
figure. What we are dealing with is actually a large resi:tzince network
(Fig. 7-6b) constructed from many elemental resistors £; in the shape of
short wire segments. According to the preceding section,

R; = —, 7-18
v= (7-18)

where ¢; = g¢(z, 7, 2) is the local conductivity, A; is the cross-sectional
area of the segment, and l; is the distance between equipotential surfaces.
In the limit where the number of equipotential surfaces between U, and .
U, becomes very large and the number of elemental resistors becomes
correspondingly large, the resistors R; fill the entire space occupied by
the conducting object. From the discussion of the preceding paragraph,
this network has an equivalent resistance R, and the current through the
object is evidently given by
Uy, — U,
I = ——*—-*R—‘—"* (7"19)
Since Ohm’s law, Eq. (7-10), was assumed to hold for the medium,
each of the elemental resistors R; is ohmniie, and the equivalent resistance
of the network must therefore be ohmic. In other words,

is independent of the potential difference, 7y -- Uy, Thus we have
shown that q. (7-10) implies Eq. (7--15), independently of the shape of
the conductor, and the two equations are equivalent expressions of Ohm’s
law.
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7-5 Electromotive force. In Chapter 2 it was shown that the integral
of the tangential component of an electrostatic field around any closed
path vanishes; i.e.,

fmdl:@

for an elecirostatic field. I'or an ohmic material, J = gE. In the general
case this is modified to J = g{E) E, but ¢(E) is always a positive quantity.
Thus it follows that a purely electrostatic force cannot cause a current to
circulate in the same sense around an entire circuit. Or, in other words,
a steady current cannot be maintained by ineans of purely electrostatic
forces.

A charged particle ¢ may experience other ferces (inechanical, “chemi-
cal,” ete.) in addition to the electrostatic force. If the total force per unit
charge on a charged particle is called the effective electric field Euy, then
the above line integral will not necessarily vanish:

fEeff .dl = & (7-20)

The quantity &, the electromotive force or simply the emf, represents the
“driving force” for the current in a closed circuit. The unit of emf in the
mks system is joules/coulomb, or volt (the same as the unit for potential).
In the previous sections we sidestepped the question concerning the cause
of electric current by assuming that two poiuts on a conducting cbject
were maintained at the constant potential difference Uy — Ug by means
of exfernal energy sources; now we must cousider these energy sources in
sorue detail. ‘

Let us examine all the forces which might act on a charge carrier ¢.
First there is the electrostatic foree ¢E,. where E; denotes the electrostatic
field:

_ L [ lpton -1,
E,(r) = 41meq /;, ir — r/|3 dv

-+ corresponding surface integral. (7-21)

If p or pp is a function of the time, it ic «till possible to define 5 quasi-
electrostatic field E; by means of Eq. (7-21). Thus, E,(r, £}, which is defined
in terms of the instantaneous charge densities, has all the basic properties
of the electrostatic field. In addition to ¢E,, we may hsve forces produced
by a changing magnetic field (Faraday’s law, Chapter 9} or forces
arising from a concentration gradient of the charge carriers (“chemical”
or “diffusion” forces). A magnetic force may be present, buf this acts at
right angles to the motion of ¢ (Chapter 8), and hence performs no work
on the particle. For this reason we specifically exclude magnetic forces
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unless they act in conjunction with some other forece (see motional emf,
Chapter 9). Finally, there may be mechanical forces whieh arise from
the gross mechanical force exerted on the conductor containing our charged
particle.* These forces are all basically electromagnetic in character; even
the mechanical and so-called “chemical” forees are, in general, transmitted
via interaction with stoms or other molecular p.,a,rtycle the fundamental
interaction being electric or magnetic in origin.

If all the forces with the exception of ¢E, are lumped together in the
symbol F,, then by Newton’s second law of motion

quefi = an -+ Fw = "nf, (7—22)

where f is the acceleration of the sharged particle and m is its mass.

If the charged particle g is in vacuum, it will continue to accelerate.
This is not, however, the case of inmediate interest. When the particle is
inside 2 matenal conductor, it will accelerate for a short period, after which
it makes a collision with one of the atoms of the material. As a result of
this collision the charged particle g is thrown off in a random direction, so
that the average effect of a collision is to reduce the velocity of the particle
to zero. The particle will again accelerate until it makes a second collision,
and so on. Taking the mean collision time to be 7, we find the average
velocity, or drift velocity, of the particle in the direction of acceleration
to be

= 3 = qE A+ F )7
Supposn that we now introduce the effective field, Eer = By + (1/0)F o,

and note that the drift velocxty v is reiated to the current density J by
Eq. (7-4):

N
J = [Z 2'9 : ] Eett (7-23)
T
which is Ohm’s law. Evidently the conductivity ¢ is given by the expression
_ s Nagirs oA

¥or our purposes, it is convenient to write Eq. (7-23) in the form

E, -+ -;-Fw . (7-238)

* Gravitational forces need not be considered, since these are conservative
forces which obviously contribute nothing to the line integral of Eq. (7-20).
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I the scatar product of this expression with the line element dl is found,
and the resuit is integrated fram position @ to position b, then

rb , ~b
J Bt q,l Fy-dl= | 2)d.

The fist integeal is the potendinl difference U, -~ Up. The second will be

called the eraf of the segment gb: it is given the symbol &g. As was shown
a

in Section 7-4, the last integial may be written IR, where [ is the total

current froin a to P, and K is the equivalent resistance between ¢ and b.

Thus , » : .
‘;/Th - !‘7(» = & — 1 Raé- (7“25}

Whet &4 is zetn the segment ab is called a passive circuit element: when
£q 18 DOt zero, the element is calied an acitve one or a seat of emf. Equa-
tion (7-25) 15 the fundamental equation of electris cireuit analysis.

A steady current in the seginent, ab eorresponds to the continuous trans-
port of charge between points ¢ and b. If in Uirae dt the charge d@ = I d!
is transferred from @ to &, the gain in clectrical energy is

dQ (U — U, == (8] — I°R) di.. (7-28)

The terin I°Rg dt rvepresents an irreversible conversion of electrieal
energy into heat. The charge carriers are continnally making eollisions,
snd it is this proress which converts part of the organized drift motion of
ihe carriers into rendom thermal moticn. In an ideal seat of emf the term
au 1 dt represents a thermodynamically teversible conversion of some other
form of energy into electrical energy &, is pusitive if it has the same sense
as the current; in this case the seat of emf supplies electrical energy to the
cirouit at the expense of some other form of energy. If &, is negative the
seat absorbs electrical energy from the circuit and converts it tc some other
form. 'The chemical cell is a0 exampie of chemical-electrical conversion,
she thermocouple of therraal-electrical conversicn, and a dynamo (motor-
generator) of mechanical-electrical conversion. (When & dynamo absorbs
energy from the electric circuit it operates as a motor, when it supplies
siectrical energy it operates as a generator.)

Lot the points a and b be joined so as to make a complete cirenit from
vhe segment ab; then U, == {/;, and

&= IR, (7-252)
furtherncte,
6l == I*R (7-26a)

In this case & represents the entive emf in the circuit sand B is the total
resistance of the circuit.
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7-6 Steady currents in media without sources of emf. There is a very
close analogy between an electrostatic system of conductors and dielectries,
on the one hand, and a system that conducts a steady current, on the other.
This analogy is the subject of the present section.

Let us consider a homogencous, chmie, conducting medium without
internal sources of emf, unaer conditions of steadv-state conduction.
Since we are dealing specifically with the steady state, the local charge
density p(x, y, 2) 18 ot 1is equilibrium vaiue, and dp/di = 0 for each point
in the medium. Hence, the equation of continuity (E¢q. 7-9) reduces to

div J == 0, (steady currents). {7-27)

Using Ohm’s law in combination with (7-27), we obtain

div gE = 0,
which for a homogeneous medium reduces to

divE = 0.
But with no sources of emf, E = E, is derivable from a scalar potential:

E = —grad U.

Comhination of the last two equations yields

VU = 0, (7-28)
which 1s Laplacc’s equation.

We see, thercfore, rhat a steady-state conduction problem may be
sclved in the samne way as slectrostatic problems. Laplace’s equation is
solved Ly one of the technigues discussed in Chapter 3, the anpropriate
solution being determined, as always, by the boundary conditions. Bound-
ary conditions which are sufficient to soive the problem are those which
specify either U or J at each point on the surface of the conducting medium.
Specifying J at the surface is equivaleut tp specifying E, since the two
vectors are connected by Chm'’s law. Once the appropriate solution te
Laplace’s equation has been fouand, E (and hence J) may be dctermined
at each point inside the medium from the gradient operation.

Under steady-state conduction the ctirrent which crosses an interfacial
area between two conducting media may be computed in two ways: in
terms of the current density in medium 1, or in terms of the current
density in medium 2. Since the two procedures must yield the same
resutt, the normal component of J must be continuous across the interface:

Jin = S gn, (7—29&)

o 01l 1n == g2E5,. (7-29b)
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This equation replaces the analogous equation for the continuity of D,
across dielectric interfaces in electrostatic problems.
8o long as there are no sources of emf in either medium,

7§E-d1:o

for o closed path which links both media, and
E’” = .Ezt (7—30)

by the derivation of Section 4-7. This equation is evidently the same for
both types of problems (electrostatic and steady conduction).

An example of the ideas presented above is found in the “electrolytic
tank” shown in Fig. 7-7. Here a number of metallic conductors which
are connected to external sources of potential are placed in a liquid con-
ducting medium of moderate conductivity (such as a salt solution). Since
the conductivity of the salt solution is mwuch smaller than that of a metal
(see Table 7-1), the electric field in the metal (for the same current density)
is much smaller than that in the solution. The ratio of fielcs is so small

Fia. 7-7. Two-dimensional clectrolytic tank. The three metallic conductors
are maintained at potentials Uy, Ug, and U3, where for convenience it is assumed
that Uy > Uz > Usz. The symbol gtands for a resistor whose resistance
may be varied, and G is a galvanometer. The wires are taken to be of negligible
resistance. If the resistors Rj and Rg are adjusted se that there is no current
through G, then Upwons = U, and the same current I ' passes through both
R1 and Ro. In these circumstances Uprobe = Uy — 'Ry = Ug -+ I’Ra, or
(]pmbo = [Ty - (Ul - (/,3}R1/(R1 + R2)
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that B in the metal may be neglectol, and esch metallic conductor may be
sesumed to be ao equipatential volame. A small, conducting prebe may
be wsad, as shown in the dgure, tn explorve ihn potectial in the solution,
and mu this wey 8 plot of the equipotential surfaces can Le made. The
advantage to this experimental appruach ig nm 4 provides o solation to
Laplace’s egustior. which, in the sase of complicated geometry, might be
difficult or impossible o daterruine snatvtieally. The solution found is
not lirnited to the conductivn problemn butl applies squally well to the
equivalent elecirostatic problem in which the same metallic conduciors
are surrcanded by a dieiectric mediure (B 7-8).

Asg & second example of the sinulsrity between conduction and elec-
trostatics, we consider two wetallis sonduetors In o homogeneous, shmic
medium of wwoderate copductivity g I the metallic condonctors are
maintsined a6 the poteptials U5 and 17, the current [ between them i

where B iz the resistance of the medium. This current may be written in
terms of the current density § in the medium:

:“15 J'!ldé‘é,
4 8

where § is any closed E:U"f.dd. whiel: completely survounds oue of the

conductors. But

I == gE.

Fia. 7-8. The squivalent alectrastatic preblem to {he mmdac ion preblem
of the preceding figure. Since Fig. 7-7 depicied twe-dimensional conduction,
the electrosiatic problem is also two-dimensionsl, and esch conductor is an
infinitely long cylinder.
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Combining the last three equations, we obtain

Uy — U, .
et N 7 E n da. {7-31)
If the identical electric field were produced by electrosiatic charges on the
two metadlic conductors, then by Gauss’ law

?év ‘nda = = Q, (7-32)
where @18 the charge on the reetallie conductor surrounded by the surface
8 and ¢ is the permittivity of the medinm. In these circumstances, the two
conductors would form a capacitor:

Q = C(U; — Uy, (7--33)
Tonsertion of (7-32) and (7-33) mto (7-31) yields

EC = &, (7-34)

which is a relation between the resistance of the medium and the capaci-
tance of the equivalent electrostatic problem.

77 Approach to electrostatic equilibrvium. In Chapter 2 it was shows
that the excess charge on a conductor resides on s surface. This, of course,
is the equilibriun situation. The approach to equilibriura wag not studied,
put it was stated that for goed (metallic) condustors the atiainment of
equilibrium Is extremeiy rapid. The poorer the conductor, the slower is
the approach to electrostatic equilibviiuma: in fact, if the conductivity of
the material is extremely low, it may takc years or even longer for elec-
trostatic equilibrium to cbtain.

Covsider a homogeneous, isotropic medium characterized by conduc-
tivity g and permittivity e, which has a volume density of free charge
po(x, u, z). If this conducting system is suddenly isolated from sources of
emf aad time-dependent electric fields, it will tend toward the equilibritun
situation where there is no excess charge in the interior of the system.
According to the equatior of enntinuity,

% L Givy =0 (7-9)
8¢
whick, with the aid of Ohm’s law, becomes

“Ff + gdivE = 0. (7-35)
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But div E is related to the sources of the field; in fact, div E = p/e, so that

Ptlp=o. (7-36)
The solution to this partial diﬁerentigl equstion is

p(x, Y, 2, 1) = polx, y, 2)eIs, (7-37)
and it is seen that the equilibrium state is approached exponentially.

From Eq. (7-37) it is evident that the quantity €/¢ has the dimensions
of time; it is called the time constant or relaxation time 7, of the medium:

te P €. | (7-38)
The time constant is a measure of how fast the conducting medium ap-
proaches electrostatic equilibrium ; precisely, it is the time required for the
charge in a specified region to degrease to 1/¢ of its original value.

A material will reach its equilibrium charge distribution in a specific
application when its time constant is much shorter than the characteristic
time required to make the pertinent measurement. For some applications
a time constant of less than 0.1 second is sufficient to ensure conductor-
like behavior; since most permittivities fall into the range €, to 10¢,
this requires a material with resistivity less than 10° or 10!° ohm-m. For
high-frequency applications a shorter time constant, and a correspond-
ingly smaller resistivity, is required for true conductorlike behavior; in
fact,

i, <<.-;.;r

where f is the highest frequency involved in the experiment.

7-8 Kirchhoff’s laws. Thus far we have discussed conduction primarily
from the point of view of charge transport in a conducting medium, and
have approached the problern in terms of the differential equations which
must apply at each point. In these cases the important quantity to be:
determined is the current density, J. But in many problems of practical
interest the electric charge carriers are constrained to follow u high con-
duction path called a circudt, and then the quantities of iuterest are the
currents in each part of the circuit. In this section we shall limit the discus-
sion to circuits carrying steady currents, i.e., to direct current circuits.

A circuit may consist of several different branches, in fact, as a possible
definition, a ecircuit is a network of conducting paths, each of which may
contain seats of emf. The central problem of circuit analysis is: given
the resistance and emf of each circuit element, find the current in each of these
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Fie. 7-9. A typical circuit requiring the application of Kirchhoff’s laws.
The symbol —=4|*— is used to designate a scat of emf. In a typical circuit
pxob]em, the &'s and R’s arc Qpect.md the currents are to be found. Two of
the six equations for the currents in the above circuit are —Iy + I3+ I5 = 0
and & = IgRe¢ + IsRs+ I1R;.

elements. This problem can be solved in a systematic way by means of
two rules known as Kirchhoff’s laws. *

Before stating these laws, we define two terms. A branch poirt is a point
of the circuit where three or more conductors are joined together, such as
point a, b, ¢, or d in Fig. 7-9. A leop is any closed conducting path in the
network. Kirchhoff’s laws may now be stated:

I. The algebraic sum of the currents flowing toward a bronch point s
zero; 1.e.
’ Z I;=0. (I)

Il. The algebraic sum of the emf’s in any loop of the nctwork is equal to
the algebraic sum of the 1R products in the same loop, i.e.,

> &= LR, (1)

The first law is just a formal statement of the fact that charge does not
accurnulate at a branch point in the circuit as o result of the steady current.
The second law f{oilows directly from Bq. (7 -25), as may readily be seew.
If (7-25) is applied to each segment of the loop and the result summed,
then the left side of the equation sums to zero and the vight side to

2.8 — > IR

* Named for Gustav Robert Kirchhoff (1824-1887).
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Before applying Kirchibofi's laws to a speeific problem, it is necessary
to assume directions for the currents in each of the branches. These direv-
tions should be indicated in the circuit diagrame. 7The fonnulation of
Tgs. (1) and (IT) is then carried cut on the besis of the assnmed directions.
If the numerical solutioa of these equations yields o negative value for a
particular current, the correct direction of this curreut is opporite to that
assamed. 1n the problem illustrated in Fig. 7-9, there are six unknown
currfmm' these are designated by the symbols Iy, 1., Is, f4, 15, and Ig,
cach haviog beea given an assued direction.

Kirchhoff's Lew 1 may be applied at each branch point of the circuit,
but the equations so obtained are rot all independent. The general rule
is that if there sre n branpch poinis, only n — 1 of these will produce
indepeudent equativns. In the problem shown jn Fig. 7-9, there are six
unknown carrents; the solution 1equires three branch-point equations and
thres loop equations.

The summations in (1) and (IT} are algebraic sums. In {I) the cusreut
is ennsidered positive if its assumed direction points toward the braneh
point in question, or is taken with the negative sign if its assumed direction
points awayfrom the juneiien. Ta applying the loop equations, rome direc-
tion {either clockwise or n,num,err'lOf'kwwe; must be taken as the traversal
direction. An emf is taken with the positive sign if the emf (hy iuseif;
would produge a positive current in the traversal dicection; an JB tetra s
taken with the positive sign if the current throngh the resiztor W question
15 in the direction of traversal of the loop.

v

7.9 Metallic gonduction. It i evideut from Tabie V=1 that the group
of materials with the highsst electiricsl conduetivivy is vaat of the metals.
These matevials have kigh conductivity bobh becanse they contain a targe
densiiy of charge carriers, of the order of one for each alom of the meta)],
and beoause the drift velocity per unit electric feid 13 high.

Tn metals we deal with only ene type of charge carver, fhp electron,
Hence the conduetion syuations are somewhat siropler in vbis

¥ o= = Nuw, {7-49)
= Ne(w/&) = Ne r/tm, (7405

whers « is the ahsolute vaiue of the clecuronic charge. "The drift velocivy
of the slestron per unit electrie Teld w,/ B is called the mobilily of the elﬂc-
tron. A lovge mohifity bmplies s long eollision time 7 or, epivadently,

Jong waean tree path. Tn order t0 get some feeling for the mean free gd\l.l. of
elockrons in a melal, wo bave to appesi Lo thie dyuamics of electron cotli-
sions. We know that the conductor i» eloctrostatically neatral unly on the
pverage, that there ape large vaciations in potential over distances of the
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srder of one angstrom unit, and that & c‘iarged paiticle, such as an elec-
tron, ought to collide or be scattered by variations in potential. But we
know also that the wave nature of the tlectron plays sn important role in
e motion on au atomic scale. .

A complete soluticu to the electron collision problem wsing wave-
mechanical concepta js beyond the seupe of this book; we rerely state
the result. In a perfect crystal avith a threedimensional periodic potential,
ar. electron wave makes ne collizion; iis collision tWme 1 €3 infindts. Thus the
finite conductivity of metals arises frorn imperfections in the perfectly
periodic structure. These iwperfections are of two types: (1) imipurities
and geometric imperfections (suek as grain boundaries in polyerystaltine
raslerinl), and (2) thermally-indured imperfecticas arising frow Uhe
thermal motion of the stoms i the siructure. Roth types coninbute
inderendently {o the resistivivy, so that

7=y - 22T, {(7-41)

where 7' 18 the absolute temperature.

In very pure metals the dominant coutribution to the resistivily at
ordinary temperatures is the scattcrivg of elesiron waves by thermally
displaced atoms. Thus 4 = 1,(7). The scattering cross section of a dis~-
placed niom is proportional to the square of its vibration amplitude ‘x
in other words, to its maximum polential energy. Aawmmg elastic k'v
sturing forces operating on the displaced atoas,

(Potential energy)mex == (Kinetic enetgyimax * &7,
so that .
7 g x (r3)7t = 2? « T, (7-42)

or, in worde, the resistivity of a pure raetal i peoporticnal to the absolute
temperature. The tempersture coeflicient of resistance, (1%} dn/d7T. for
a very pure metal is, theretore,

d

Pk

g~'$
e g

g (V-43)

i

Y

3 [ res
e H

in approximate agreement with tbe metal entries of Table 7-1. Sivictly
speaking, the preceding argument 33 valid only for temperatures above
the Debye temperature of the metel {the temporatucs above which all
the atomic vibration modes ave exsited). Ac eu‘m-rw‘uvw sctmewhat
helow the Debye tempe\'abum* 3 drops below the Huear rejationship pre-
dicted by (7-42). At very jow temperstures the soutnibation from n,
cannot be neglected.

fhe addition of smail amounts of a sotuble impurity slways increases
resisitvity. An alloy, which may e regarded as an impure reetal, alwayvs
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Fic. 7-10. Resistivity of copper-nickel alloys as a function of composition
at 20°C.

Las a higher resistivity than that of the lower resistivity parent metal
(Fig. 7-10). The temperature coefficient « of an alloy is obviously lower
than that of a pure metal just because its resistivity is higher, but certain
alloys which have extremely small temperature coefficients have been
developed.
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ProsLEMS

7-1. (a) A copper specimen carries a current density of 1000 amp/m?.  On
the assumption that each copper atom contributes one conduction electron,
calculate the electronic drift vejocity corresponding to this current density.
(Avogadro’s number: No = 6.02 X 1023 atoms/mole; atomic weight of copper:
63.5; density of copper: 8.92 gm/cm3.) (b) Use the observed conductivity to
calculate the average collision time for an clectron in copper.

7-2. A system of charges and currents is completely contained <nside the
fixed volume V. The dipole moment of the charge-current distribution (sce
Scetion 2-9) is defined by

p = /,, rp dv,

where r is the position vector from a fixed origin. Prove that

/;'Jdv = (%p.

[Hint: First prove the identity

/V.Tdv = fsry nda — /Vrd}.vjdv,

and note that J vanishes on the surface S.]

7-3. Two infinite, plane, parallel plates of metal are separated by the dis-
tance d. The space between the plates is filled with two conducting media, the
interface between the media being a plane which is parallel to the metal plates.
The first medium (conductivity g;, permittivity ¢;) is of thickness a, and the
second (conductivity g2, permittivity es) is of thickness d — a. 'The metal
plates are maintained at potentials Uy and Up, respectively. In the steady
state, what is the potential of the interface separating the two media, and
what is the surface density of free charge on this interface?

7-4. Given three resistors of 1 ohm, 2 ohms, and 3 ohms. Find cight different
resistance combinations which can be made with these resistors.

7-5. A 0.4-watt lamp bulk is designed for cperation with 2 volts across its
terminals. A resistance B is placed in parallel with the bulb, and the combing-
tion is put in scrics with a 3-ohm resistor and a 3-volt batlery (intsrnal re-
sistance, 4 chm). What should the valuc of R he if the lamp is to operate at
design voltage?

*7-6. A resistance line, total resistance nR, is connected between the po-
tential Up and ground (ground is reference potential). The line is supported
by n — 1 poles at equal resistance intervals such that the line resistance be-
tween poles is E. The leakage resistance to ground at cach pole is 8R. If U,
is the linc peotential at the mth pole, show that

Unit — (2 B Up + Uny = 0.

7-7. Two long cylindrical shells of metal (radii #; and ra, with ro > ry)
arc arranged coaxially. The plates are maintained at the potentis] difference
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AU. (a) The region between the shells is filled with a medium of conductivity g.
Use Ohm’s law, J = gE, to calculate the electric current between unit lengths
of the shells. (b) If the region between the shells is filled with a nonconducting
medium of permittivity ¢, the capacitance of the system may be computed
from the definition C = Q/AU. Show expligitly for this.geometry that the
product of resistance per unit length and capacitance per unit length = €/g.

7-8. The leakage resistance of a rubber cable insulation is measured in the
following way: a length I of the insulated cable is immersed in a salt-water
solution, a potential difference is applied between the cable conductor and
the solution, and the resulting cable current is measured. In a particular case 3 m
of cable is immersed in the solution; with 200 volts between cable conductor and

-solution the current measured is 2 X 10~9 amp. The insulation thickness is
equal to the radius of the central conductor. What is the electrical resistivity
of the insulation?

7-9. A long copper wire of radius @ is stretched parallel to and at distance &
from an infinite copper plate. The region above the plate and surrounding the
wire is filled with a medium of conductivity g. Show that the electrical resist-
ance between the two copper electrodes, per unit length of the wire, is given by

R = —2-*% cosh™ k.

7-10. A homogeneous, isotropic sphere of conductivity g is subjected to a
potential Up cos 6 at all points on its surface. Here 6 is the usual polar angle
measured with respect to an axis through the center of the sphere. Determine
the current density J at all points inside the sphere.

7-11. Two cylindrical copper electrodes of radius a are oriented normal to
a silicon disk of thickness s, and are separated axially by the distance . The
electrodes are embedded in the disk to the depth s; in other words, they go
completely through the disk. The lateral dimensions of the disk are large com-
pared with b, and may be considered infinite. Taking the conductivity of silicon
to be g, find the current between the electrodes when their potential difference
is AU.

*7-12. A square copper plate of length 200, thickness s, and conducthty g
is subjected to a potential difference: two opposite edges of the plate are main-
tained at the potentials Ug and — U, respectively. (a) What is the electrical
resistance of the plate? (b) A small hole of radius @ is drilled through the
"plate at its center. Determine the approrimate fractional change in resistance.
[Hint: Find the potential distribution in the plate with the aid of the cosine 8
cylindrical harmonics. Unfortunately, this distribution is not quite correct,
because the two opposite edges of the square are not exact equipotentials. An
approximate solution is obtained by taking the sverage potential of the two
edges equal to £Uo.]

7-13. Two seats of emf &; and 82, with internal resistances R; and Rg re-
spectively, are connected in parallel with each other and with the load resistance
R. (a) Find the current through the load. (b) If the load resistance is varied
and other quantities kept fixed, what should R be in order that it dissipate
maximum power?



ry

PROBLEMS 147

7-14. A group of n identical cells of emf & and internal resistance R are used
to surply current to a load resistor B. Show that if the n cells are connccted
n series with each other and with R, then I = n&/(R -+ nR;), whereas if the
cells are connected in parallel and the combination put iu series with R, then
I = &/(R-+ Rin).

7-16. Six identical resistors (&) are joined to form a hexagon. Six more re-
sistors (all again of the same resistance R) are connected between the six ver-
tices and the cenfer of the hexagon. (a) What i3 the equivalent resistance
hetween cpposite vertices? (b) between adjacent vertices?

7-16. Six resisturs form the sides of a tetrahedron. Five of the resistors are
iderdical (R), the sixvh is B;. A potential difference is applied across oune of the
resistors adjoining Ry, Show that the Joule heat production in Ry is maximum
when Ry == (3/BR.

7-17. A Wheatstone-bridge circuit is cbtaiced from the vircuit of Fig. 7-9
by making &2 = 0, and substituting a galvancmeter B, for 2. We shall also
take Rj = 0. The balance condition of the bridge (no current through the
galvanometer) is obtuined whon R3Re = E4Rs. Thus an unknown resistance,
for example Rg, may be determined in termus of known rvesistances: Rg =
R4Bs5/ Rz at balance. {a) Find the current through the galvanometer when the
bridge-is off balance. (b) Assume that the bridge is to be balanced by varying
R4, The sensitivity of the bridge is defined by S = CR4(8I2/8R4)o, where C
i the galvancmeter deflection per unit current, and the subscript zero means
that the derivative is to be evaluated at balance. Show that

C&;
S =
R3 + R4+ Rs-+ Re - RBy(1 4 Rs/Rs)(1+ Rs/R3)

*7-18. The Wheatstone bridge of the preceding problem is nearly balanced.
Let Bs/Rs = «, and Rs/Rs = a(l — €), where ¢ << 1. If the resistance R,
is negligible, show that Ie/I1 = ae/{a + 1)2,

*7-18. A resistance of approximately 10 ohms is to be measured in the Wheat-
stone-bridge circuit of Problem 7-17. A large selection of standard resistances
arc avatlable. The maximum power allowed in the bridge is 5 watts. If B, =
100 ohras, and the galvanometer will just detect a signal of 4 X 10~% amp,
what is the highest precision one can obtain in measuring the unknown resistor?
Assume that the standard resistors are exact, and do not limit the accursecy.

*7-20. A linear, conducling medium is connected at » points to electrodes
with the fixed potentials: Ui, Usg, ..., U.. Show that the Joule heat produc-
tion in the medium is given by 3_%.1 U;/;. where I; is the current enlering the
mediam through electrode 7.



CHAPTER 8
THE MAGNETIC FIELD OF STEADY CURRENTS

The second kind ol field which enters into the study of electricity and
magnetisin is, of course, the magnetic field. Such fields or, wore properly,
the effects of such fields have been known since ancient times, when the
effects of the naturally occurring permanent magnet magnetite (FezQO;)
were first observed. The discovery of the north- and south-seeking prop-
erties of this material had a profound influence on early navigation and
exploration. Except for this application, however, magnetisma was a little
used and still less understood phenomenon until the early nineteenth
century, when Oersted discovered that an electric current produced a
magnetic field. This work, together with the later work of Gauss, Henry,
Faraday and others, has brought the magnetic field into prominence
as a partner to the electric field. The theoretical work of Maxwell and
others (sec Chapters 15, 16, and 17) bas shown that this partnership is
real, and that the electric and magnetic fields are inextricably inter-
twined. The efforts of practical men have resulted in the development
of the motors, transformers, ete., which involve magnetic phenomena
and play such an important role in our everyday life. In this chapter the
basic definitions of magnetism will be given, the production of magnetic
fields by steady currents will be studied, and some important groundwork
for future work will be laid.

8~1 The definition of magnetic induction. In Chapter 2 an clectric
field was defined as the ratio of the force on a test cbarge to the valie of

the test charge, ie.,
F = lim (1;} (2-5)

-G g

Implicit in this definition is the shrence of any nonelectrical force and
the assumption that the charge i al rest. For the purpose of defining
the magnetic mduction it is convenient to define F,,, the magnetic force
(frequently called the Lorentz force), as that part of the foree exerted on
a moving charge which is neither electrostatic nor mechanical. The mag-
netic induection, B, is then defined as the vector which satisfies

F..=qvXB (8-1)

for all velocities. It must be noted that some sort of limiting process

should be included in-Eq. (8-1) tu ensure that the test charge does not

affect the sources of B. Alsc important is the fact that a single measure-
148
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ment is not sufficient to determine B. Equation (i-13) provides the basis
for properly inverting Eq. (8-1). If two measurements of F,, are made
for two mutually perpendicular velocities v; and v,, then Eq. (1-13) yields

1F, Xwv

B = P _—;?.— + ks, (8-2)
1 Fy X vy
B = '&' “T + k2V2. (8—3)

Taking the scalar product of each of these with v; and remembering that
v, and v, are perpendicular, we obtain

2__1F2X72‘V1_ '
bof = ¢ SR (8-4)
Using this in Eq. (8-2) results in
1 F x \4 Fa X v =
B=--12"14-= ( 2 Mﬁ ) Vi, (8-5)

which explicitly demonstrates that two dlstmct measurements are suf-
ficient.

Perfectly good definitions of the magnetic induction can be constructed
by using the force on a current element or the torque on a current-carrying
loop; however, Eq. (8-1) seems preferable, since it is so closely parallel
to Eq. (2-6), which defines the electric field. The unit for magnetic in-
duction in the mks system,.according to Eq. (8-1), is the newton-second/
coulomb-meter or mewton/ampere-meter. It is customary to express this,
unit as the weber/meter?; the weber is the mks unit of magnetic flux
which will be defined in Section 8-9.

8-2 Forces on current-carrying conductors. From the definition of B,
an expression for the force on an element dl of a current-carrying con-
ductor can be found. If dl is an element of conductor with its sense taken
in the direction of the current I which it carries, then dl is parallel to the
velocity v of the charge carriers in the conductor. If there are N charge
carriers per unit volume in the conductor, the force on the element dl is

dF = NA|dljgv X B, (8-6)

where A is the cross-sectional area of the conductor and ¢ is the charge
per charge carrier. If several kinds of charge carriers are involved, then a
summation must be included in Eq. (8-6); however, the final result,
Eq. (8-8), is unchanged. Since v and dl are parallel, an alternative form

of Eq. (8-6) i
9. (8-6) is dF = Nglv|A dl X B; 8-7)
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however, Ng|v|A is just the current for a single species of carrier. There-
fore the expression
dF = Idl % B (8-8)

is written for the force on an infinitesimal element of a charge-carrying
conductor.

Equation (8-8) can be mtegrated to give the force on a complete (or
closed) circuit. If the circuit in question is represented by the contour

C, th 4
en F = 9§ I1dX B. (8-9)
c

So long as B depends on position, the only simplification that can be made
in Eq. (8-9) is to factor I from under the integral sign. If, however, B
is uniform, i.e., independent of position, then it too can be removed
from under the integral, to give

F = 1{5£C dl} X B.

The remaining integral is easy to evaluate. Since it is the sum of in-
finitesimal vectors forming a complete circuit, it must be zero. Thus

F = ?GC IdXB=0 (B uniform). (8-10)
Another interesting quantity is the torq\ie on a complete circuit. Since
torque is moment of force, the infinitesimal torque dr is given by
de =1 X dF = Ir X (dl X B). (8-11)
The torque on a complete circuit is

.= I'f r X (dl X B). (8-12)

Once again, unless B is uniform no further blmphﬁca.tmn can be made;
however, if it-is uniform a straightforward expansion is accomplished
“by writing

,dlf”x B = i(dyB, — dzB,) + j(dzB, — dzB;) + k(dzBy — dyB.). (8-13)

From these components the components of r X (d1 X B) are readily found
to be
[r X (dl X B)]; = ydaBy — ydyB: — zdeB; + 2dzB,,

[t X (&l X B)l, = 2dyB, — zdeB, — zdeB, + zdyB;, (8-14)
.[x X (dl X B), = zdeB, — xdeB, — ydyB, +y dzB,).

Since B is assumed to be independent of r (uniform field) the components'
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of B may be factored out of the integrals appearing in the expansion of
Eq. (8-12). The spatial integrations which must be performed are of

two general forms:
e ' (8-15a)

and

$edn, (8-15h)

where ¢ represents any coordinate and % represents any coordinate dif-
ferent from £. The first of these is trivial because it represents the integral
from some lower limit £, to some upper limit &, of £d¢, plus the integral
from &g to & of £d¢. Sinece interchanging the limits introduces a minus
sign, the result is zero, which eliminates six terms from Fq. (8-14). Inte-
grals of the form (8-15b) involve only two variables, £, #; hence it makes
no difference whether the integral is taken around the actual curve C or
around its projection on the & 7-plane, as shown in Fig. 8-1. By using
the projection on the £ 5-plane it is easy to see what Eq. (8-15b) repre-
sents. In Fig. 82 the £, n-plane is shown along with the infinitesimal
area £dn. The integral can be written

edn = [: amdr+ [ &l dn (8-16)

This, of course, gives just the area enclosed by the projected curve, and
in the figure is positive. If £ and % appear in cychic order for a right-
hand coordinate system, then the direction in which the contour is eircled
would give a normal in the positive ¢-direction. Thus we may write

(8-17;

g
Fe

Fic. 8-1. Projection of the curve ¢ Fis. 8-2. Evaluation of the inte-
on the £, n-plane. gral £ dy.
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with £, 9, { o cyclic permutation of z, y, 2. Usmg this remlt to evaluate
the integrals gives

Ty == Ifc fr X (dl X B)l, = I(4,B. — A.By), (8-18)

with similar expressious for the y and z components. The three expres-
sions are neatly summarized in the expression

== [A XB, (8-19)

where A is the vector whose components are the areas enclosed by pro-
jections of the curve C on the yz-, z2-, and zy-planes.* The quantity JA
appears very frequently in magnetic theory, and is referred to as the
magnetic moment of the circuit. The symbol m will be used for magnetic

moment:
m = IA, (8-20)

with A defined as above.
It is easy to show, by the technique used above, that the integral of
r X dl around a closed path gives twice the area enclosed by the curve.
Thus
r X dl = A. 8-21
b (8-21)

This can be used to obtain
m=4/¢ rXxdl 8-22
255 (8-22)
as an alternative expression for the magnetic moment. If, instead of

being confined Lo wires, the current exists in a medium, then the identi-

fication
Idl— Jdv (8-23)

ié appropriate, as has been shown earlier. We then write
dm = 4r X Jdv, (8-24)

which is useful in discussing the magnetic properties of matter.

8-3 The law of Biot and Savart. In 1820, just a few weeks after Oersted
announced his discovery that currents produce magnetic effects, Ampere
presented the results of a series of experiments which may be generalized
and expressed in modern mathematical language as

- _}“"_0_ ' dlg >< dli X (1'2 - 1'1)] __Ox
F, = e 1112;‘; 2 iry — )8 (8-25)

* Note that no restriction to plane curves has been impesed on C' and that
this definition of A makes any such restriction unnecessary.
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1’> @) aly X (rg — ry)
4

( k4
S A
Ty — 1
— I

Fic. 8-3. Mlagnetie interaction of two eurrent circuits.

‘This rather formidable expression e¢an be understood with reference to
Fig. 8-3. The force Fs is the force exerted on circuit 2 due to the in-
fluence of circuit 1, the dl's and r’s are explained by the tigure. The
number uq/4w which appears in Eq. (8-25) plays the same role here us
1/4mey played in electrostatics, i.e., it is the constant which is required
to make an experimmental law compatiblc with a set of unts. By
detinition, Ho

—= 10~ n/amp?
yryod 107" n/amp

exactly, and Eq. (8~25) serves as the primary.definition of the ampere.
Equation (8-25) appears, superficially, to violute Newton’s third law
because of the lack of symmetry; however, by using some of the theorems
of vector analysis it can be shown that it is actually syrumetric, that is,
F2 = ""Fl.

From Eq. (8-9) it is apparent that Eq. (8-25) implies

Ho dl; X (rg — 1) ‘o on
B(r2) = 4:,‘;‘_ I'[ f; - "i—r;"::v;—;gé—"”' M ) (b’z())

This equation is a generalization of the Biot and Savart law, which name
will be used both for Eq. (8-26) and the differential form
_ Mo Indly X (rg —ry)

4 [ro — 13

dB(rs) (8-27)
(In passing, we mention that there has been some countroversy over the
naming of various laws. We do not wish to enter into this controversy,
but refer the interested reader to Whittaker's execelleni history.™) As

* . T. Whittaker, History of the Theories of Aether and Bleciricity, Vol. 1,
Philosophical Library, New York, 1951.
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a lasi point, Egs. (‘5 } and (8-27) take the forms

B() = 2 [ L0t T, (8-28)
and
JB(rs) == - b I (r‘;)rff_‘“’; = 0 gy, (8-29)

for a continuous distribution of current described by the current den-
sity J{(r).

Tt is an experimental observation that all magnetic induction fields
can be described in terms of a current distribution. That is, B always
has the form of Eq. (8-28), with some ;it;). This implies that there
are no isolated magnetic poles and that

divB = 0. (8-30)

Equation (8-30) is true for any B of the form (8-28) or (8-26), as can
be veriied mathematically; however, for the purpose of this text it is
just as satisfactory to think of Eq. (8-30) as an experimental law. The
mathematical derivation is given in Appendix III.

8-4 FElementary applications of the Biot and Savart law. The range of
problems to which Eq. (8-28) (or Eq. 8-26) can be applied is limited
primarily by the difficulty experienced in performing the integrations.
Some of the tractable situations are considered in this section; in later
sections other techniques for obtaining B will be considered.

As a first example, the magnetic field due to a long straight wire will
be considered. The wire is imagined to lie along the z-axis from minus
infinity to plus infinity and to carry a current 7. The field will be com-
puted st a typical point ry on the y-axis. The geometry is best explained
by Fig. 8-4. The magnetic induction is just

Y

X
i ;;;
; i
i o
Q”“*‘N
i
I 4~

e e et emene e [} o e e .,n_>’

¥ig. &-4. Magnetic field at point P due to a long straight swire.
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w0
driX (rz.——-rl)h

B(r) = 421 | r— (8-31)
Since rg — r; lies in the xy-plane,
iX (rg — ry) = |[rg — 1y sin 6 k. (8-32)
Furthermore, .
g = tan (w — §) = —tan § (8-33)
and '
rg — 13| = aese (wr — 6) = acscé. (8-34)

Using these relationships to convert Eq. (8-31) to an integral on 0 from
0 to m gives

1
B(r;) = %?_Ikaﬁ

k3 w

sin 8 dé = g%ﬁk(——cos ) .= —2%%5 k. (8-35)
To use this result more generally, it is only necessary to note that the
problem exhibits an obvious symmetry about the z-axis. Thus we con-
cludé that the lines of B are everywhere circles, with the conductor as
center. This is in complete agreement with the elementary result which
gives the direction of B by a right-hand rule.

As a second simple circuit, a circular turn will be considered. The
magnetic field produced by such a circuit at an arbitrary point i3 very
difficult to compute; however, if only points on the axis of symmetry
are considered, the expressign for B is relatively simple. In this example
a complete veetor treatment will be used to demonstrate the technique,
Figure 8-5 illustrates the geometry and the coordinates to be used. The

Fic. ‘8—‘5. Axial field of a circular turn of wire.
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field is to be calculated at point ry on the z-axis; the circular turn lies in
the ay-plane. The maguetic induction is given by Eq. (8-26) in which,
from Fig. 8-5, the following expressions are to be used:

dl = adf(--isin ¢ 4 j cos 0),
Ty, — 1y = —ia cos § — jasin ¢ + ke, (8-36)
Ity — 1] = (@ + 292,

Substituting these into Eq. (8-26) yields

__mod = (iza cos 8 + jza sin § + ka?)
B(z) = -‘Er—-/; EEYDRE de. (8-37)

The first two terms integrate to zero, leaving

kol a?

B(2) = 27 (22 4 a?)3/2

k, (8-38)
which is, of course, entirely along the z-axis.

A frequently used current configuration is the Helmholtz coil, which
consists of two circular coils of the same radius, with a common axis,
separated by a distance chosen to make the second derivative of B vanish
at a point on the axis halfway between the coils. Figure 8-6 shows such
a configuration. The magnetic induction at poirit P is

Bu(s) = Yeole 1 ¥ /2}, (8-39)

Y
1
2 {(22 T i @b o+ at

which ig obtained by applying Eq. (8-38) (o each of the two coils. The
factor N is included to handle the situation where each coil contaius
N turis. The first derivative of B, with respect to z is

Tig. 8-6. Axial field of a Helmholbz coil.
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dB, _ poNIa® ' 3 2z

3
dz 2 2 (22 + a2)5/2 -9

2(z — 2b)
] 640

At z = b this derivative vanishes. The second derivative with respect
to z is

d’B, _ __ 3uN Iag{ L5 2
dz® 2 (z2 & a2)5/2 2 (22 + a2)7i2
-+ 1 9 2(z — 2b)* .
(b =22 T afPpZ 2 (@ — 2)2 & a2]72

At 2z = b this reduces to

d*B,| _  3poNId® {62 +a® — 5b% + b® + a® — 5b2} (841
&2 = T 2 2 F a2z " )
which vanishes if a2 — 4b% = 0. Thus the appropriate choice for b is

2b = aq, (8-42)

that is, the coil separation should equal the radius. With this separation,
the magnetic induction at the midpoint is

MoNI 8
B.= =0 mn

(8-13)

Helmholtz coils play an important role in scientific research, wherc they
are frequently used to produce a relatively uniform magnetic field over
a small region of space. Let us consider the magnetic field at a point
on the axis near the midpoint between the coils. The field B,(z) can be
developed in a Taylor’s series about the point z = %a:

;\2) == B (%a) ‘l" (Z - %‘a,\ -—a-;—- ,%a + “ee
Since the first three derivatives vanish
. g 0 B,
B.(z; = B.(}0) + - 4tz LNl o
If the fourth derivative is evaluated explicitly, B.(z) can be written as
_ ERCY RN /.?_)}
B.(2) = B.(a/2) {1 125( p. (8—44)

Thus for the region where |z — a/2] is less than a/10, B,(2) deviates
fromm B,(a/2) by less than one and a half parts in ten thousand.
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Fie. 8-7. Axinl magnetic field of a solenoid.

The weber per square meter is a rather large unit for measuring labora-
tory fields; consequently the unit gauss for B has survived from an older
system* of units: one gauss equals 10~* weber/m®.  For reference pur-
poses we give

_.32rN I

B. = 53/2¢ 10’

I in amp, a in cm, B in gauss, (8-43a)
for the induction at the midpoint of the Helmholtz coil. Of course N is
still the number of turns in each of the two coils.

Another device to which Eq. (8-38) can be applied is the solenoid.
A solenoid may be described as N turns uniformly wound on a cylindrical
form of radius e and length L. Such a configuration is shown in Fig. 8-7.
The magnetic induction at point z¢ is found by dividing the length L
into elements dz, such as the one shown, and applying Eq. (8-38) to each
element and.summing the results. Noting that the element dz contains
Ndz/L turns, we find that

L
_ MoNI @ f dz
Beleo) = TL7 5 [y [0 =92 F o #49

The change of variable, z — zo = a tan 6, leads to

92
, _ poNI ] . _ koI [sin 6>, — sin 0_1] 5
B,(zo) = o ), cos 6 dé =7 5 »  (8-46)

where 8; = —tan™! (z0/a) and 6; = tan™' (L — 2z0)/a. The fact that
sines appear rather than just ones, 4s in the elementary formula, repre-
sents end corrections. To help understand the approximation which is
usually made, namely, B, = poNI/L, it is convenient to introduce the
angles a; and ay (both positive) shown in Fig. 8-7. In terms of these
angles, Eq. (8-46) becomes

* Other systems of units are discussed in Appendix I1.
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polNI [cos ay + cos ag]_

BZ(ZO) == I )

(8-47)
If the solenoid is long compa.red with its radius and 2o is not too close
to either zero or L, then a; and es are both small angles and may be
approximated by

a

o] = — ;- ap == . 8-48)

1 ~; S A ( )

Maintaining quadratic terms in the expansions of cosa; and cos as,
we obtain

B.(z0) = 1 — Z;g - m . (8—49)

ON I a® a? }

From this, we conclude that if 2o = L/2 and L/a = 10, a 29, error re-
sults from neglecting the quadratic. terms.

8~5 Ampere’s circuital law. For magnetic induction fields given .by
Bq. (8-26)-or (8-28) which are due to steady currents, i.e., to currents

which satisfy
div] = 0, (8-50)

a very important equation for the curl of B can be derived. This is done*
by simply caleulating the curl of Eq. (8-28). The curl involves differenti-
ation with respect to r,, and hence operates only on thefactor (rs — r;)/
[ty — r;|%; however, once the derivative has been displayed so that it
operates only on this factor it may be changed to differentiation with
respect to ry (with a minus sign) because of the symmetry between r;
and ry.. Having changed the derivative in this way, an integration by
parts can be used to move the derivative to the J(ry) factor in one term
where it appears as div J(r;), which vanishes. The integral of the second
term can be evaluated to give

curl B(ry) = m}(r;), (8-51)

which will be called the differential form of Ampere’s law. In Chap-
ter 10 this will be modified somewhat; however, Eq. (8-51) is still valid
s6 long as there are no magnetie materials present and div J = 0
Stokes’ theorem can be used to transform Eq. (8-51) into an integral
form which is sometimes very useful. This application of Stokes’ theorem
is written
/curl&nda:f B-dl (1-45)
s c

* The details of this calculation are rather involved; however, they are given
explicitly in Appendix I11.
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Tig. 8-8. Verification of Ampere’s circuital law for long, straight-wire gcometry.

Using Eq. (8-51) for curl B gives
?C B-dl = m/ J - nda, (8-52)
c s

which simply says that the line integral of B around a closed path is
equal to po timés the total current through the closed path.

It is instructive to verify Eq. (8-52) for a simple case. The long
straight wire provides a particularly good example. In this case B at
a distance r from the conductor is given by B(r) = uol/2mr, and it is
tangential to a circle of radius » with center at the conductor. Figure 8-8
illustrates the geometry. The current is directed upward, and C is de-
scribed in the counterclockwise direction. From the figure,

B -dl = |B||dl] cosx = |Bjrdé. (8-53)

With |B] as given above,

i 2x
fCB-dI-—-—./O %rdo_—_ wol, (8-54)

which represents a special case of Eq. (8-52).

Ampere’s circuital law, as Eq. (8-52) is called, is in many ways parallel
to Gauss's law in electrostatics. By this is meant that it can be used
to obtain the magnetic field due to a certain current distribution of high
symmetry without having to evaluate the complicated integrals that
appear in the Biot law. As an example, consider a coaxial cable con-
sisting of a small center conductor of radius r; and a coaxial cylindrical
outer cable conductor of radius ry, as shown in Fig. 8-9. Assume that
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(&

Fia. 8-9. Cross scction through a coaxial cable.

the two conductors carry equal total currents of magnitude I in opposite
directions, the center being directed out of the paper. From the symmetry
of the problem it is clear that B must be everywhere tangent to a circle
centered on the center conductor and drawn through the point at which B
is being considered. Furthermore, B cannot depend on the azimuthal
angle. The appropriate curves to use in the application of Eq. (8-52)
are circles centered on the center conductor. For such a circle of radius r

9{3 .dl = 2mrB, (8-55)

which must equal uo times the total current through the loop. Thus
2nrB = uol, ry <1 <71y
2wrB = 0, rog < 7T (8-56)

This apparently trivial result can be obtained by integration of the Biot
law only with considerable difficulty.

8-6 The magnetic vector potential. The calculation of electric fields
was much simplified by the introduction of the electrostatic potential.
The possibility of making this simplification resulted from the vanishing
of the curl of the electric field. The curl of the magnetic induction does
not vanish; however, its divergence does. Since the divergence of any
curl is zero, it is reasonable to assume that the magnetic induction may
be written

B = curl A, {8-57)
The only other requirement placed on A is that

curl B = curlcurl A = p,J. (8-58)
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Using the identity
curicurl A = grad divA — V2A (8-59)

and specifying that div A = 0, yields
VA = —uoJ. (8-60)

Integrating each rectangular component and using the solution for
Poisson’s equation as a guide leads to

Ko J(r1) N

A(l'z, a; v m dv;. (8"61)

The integrals involved in this expression are much easier to evaluate

than those involved in the Biot law; however, they are also more com-
plicated than those used to obtain the electrostatic potential.

An alternative way of obtaining Eq. (8-61) is by the direct transforma-

tion of Eq. (8-28) to the form of Eq. (8-57). This is done by noting

that
Iy — 1y

1
=2l — — grady 8-62
ll‘z - 1‘1' - grad, ;1'2 — rl( ( )

where grad, indicates that the differentiation is with respect to ro. The
vector identity

curl (¢A) = pcurl A — A X grad o, (8-63)
which is valid for any vector A and any scalar ¢, gives -
1 1
curl, l-l;;.:'_;l_; J(I‘l)} = — J(ry) X grad, '[-Ij;-:_—;;-l- » (8-64)

since J(r;) does not depend on r,. Combining these results in Eq. (8428)
leads to

B(ry) = & wax"z_ )d,

= . Ko [ ( . S
- 47rJVJ\t1)Xgra-d2 [r2 __rlldul

- %‘;[chﬂ 'rJ( ry) - don (8-65)

The curl can be taken outside the integral, which puts Eq. (8-65) into
exactly the form of Eq. (8-57). Thus

. MO J(fﬂ
A(rZ) 47,‘_ vy ir2 - X’ﬂ d A1 (8"’61)

results also from this approach. -
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To avoid leaving a false impression, namely, that the vector potential
is as useful as the electrostatic potential in computing simple fields, it
must be noted that there are essentially no cases where A can be com-
puted in simple closed form. The long straight wire gives an infinite
result for A when Eq. (8-61) is used. The circular turn involves elliptic
integrals, and so on. It should also be noted that evaluating the vector
potential at a single point is not useful, because the magnetic induction
is obtained by differentiation. The principal use of the vector potential
is in approximations such as that discussed in the next section, and in prob-
lems involving electromagnetic radiation (see Chapters 15, 16, and 17).

8~7 The magnetic field of a distant circuit. The magnetic vector po-
tential due to a small circuit at large distances can be evaluated relatively
easily. The expression fqr the vector potential (8-61) may be applied.
to current circuits by making the substitution: J dv — I dr. Thus

E.QI c{ ar,
A(ry) = Tty = 1] (8-66)

For circuits whose dimensions are small compared with ry the denominator
can be approximated. To do this, we write

[ty — 13|t = (13 + r] — 21 ry) 12 (8-67)
and expand in powers of ry/ry to get
R ._}_[ r o1 ]
|r2 fli = T 1 + 7'% + (8‘68)

to first order in r,/ro. Using this in Eq. (8-66) gives

A(rs) = }t{f{ jgdrl +;1§ fdr}(r, 1) 4 - } (8-69)
2 3.

The first integral vanishes; the second integrand is one term in the
expansion
(ry X dry) X rg = —ry(xg - dr;) + dry(r; - 12). (8-70)

" To eliminate the first term on the right in Eg. (8-70), the differential
of ry(ry - ry) for a small change in 1, is written as

dlsy(ry - 1)} = ry(rp - dryy + dri{ry 1), (8-71)

Which is of course exact. Adding Egs. (8-70) and (8-71) and dividing
by two yields
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dri(ry - r2) = ¥(r, X dry) X rg + 3 d[ri(rz - 1)) (8-72)

Since the last term is an exact differential, it contributes nothing to the
second integral in Eq. (8-69). Thus it follows that

A(rz) = ~—-|t:l): f r; X drl] X % . (8—73)

Equation (8-22) defines the quantity -in brackets as the magnetic
moment, m, of the circuit. Hence

m X r
A(rg) ”0 2,

T3
ir r3

(8-74)

In this derivation it has been assumed that all r, < r5; hence Eq. (8-74)
is not valid for an arbitrary origin, but only for an origin close to the
circuit.

The maguetic induction can be determined by taking the curl of
LEq. (8-74). This is readily accomplished by using vector identities.
Iirst,

B(ry) = curl A(rp) = :-%curl (m X ;—;)
2

-11-[ (m - grad) 3 + m div -—J- (8-75)

The first term in the brackets can be transformed by noting that

—_ ﬂz}. — Iz, _76)
My E (1“’> 3maxe rg 3 (8 76)
hence
: I m_ 3(m-ryry i
(m - grad) s = = (8-77)
The second term involves only the calculation of
S R: .+ B N
dxv =il T 3 = 0. (8-78)
Finally,
3(m 1'2;1'2] . . o
B(ry) = 41r[ r3 -+ 5 (magnetic dipole). (8-79)

2

Equation (8-79) shows that the magnetic field of a distant circuit does
not depend on its detailed geometry, but only on its magnetic moment
m. Comparison with Eq. (2-36) shows that (8-79) is of the same form
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as the electric field due to an electric dipole, which explains the name
magnetic dipole field. m is usually called the magnetic dipole moment of
the circuit.

8-8 The magnetic scalar potential. Equation (8-51) indicates that the
curl of the magnetic induction is zero wherever the current density is
zero. When this is the case, the magnetic induction in such regions can
be written as the gradient of a scalar potential:

B = —pggrad U* (8-80)
However, the divergence of B is also zero, which means that
divB = —uoV2U* = 0. (8-81)

Thus U*, which is called the magnetic scalar polential, satisfies Laplace’s
equation. Much of the work of electrostatics can be taken over directly
and used to evaluate U* for various situations; however, care must be
taken in applying the boundary conditions.

The expression for the scalar potential of a magnetic dipole is partic-
ularly useful. If it is noted that Eq. (8-79) can be written

. m:- Yy »
B(ry) = —upograd ( 41"2) ) (8-82)
then it is clear that
. T
U*(r) = G (8-83)

for a magnpetic dipole m.

A large circuit C can be divided
into many small circuits by' means
of a mesh, as shown in Fig. 8-10. If
each small loop formed by the mesh
carries the same current as originally
was carried by the circuit C, then,
because of the cancellation of currents
in the common branch of adjacent
loops, the net effect is the same as if
the charge flowed only in the circuit C.
For any one of the small loops, the
magnetic moment may be written a8 Frg, 8-10. A macroscopic current

circuit eonstructed from elemental
dm = Inda, (8-84) magnetic dipoles.
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since each of the loops is sufficiently small to be regarded as planar.
Using this expression in Eq. (8-83) and integrating over the surface
bounded by C gives

I -nd
me=EL2%£- (8-85)

In this equation 12 must be interpreted as the vector from da to the

point P, that is, —r, as shown in Fig. 8-10. Making the change ry' = —r -
results in
I r-nda
T% - L . -
Us(p) 41:'/,;; r3 (8-86)

The quantity r-nda is just r times the projection of da on a plane per-
pendicular to r. Thus r - n da/r® is the solid angle subtended by da at P.
Equation (8-86) may then be written as

sy 19
U*P) = — it (8-87)
where Q is the solid angle subtended by the curve C' at- the point P.
The magnetic scalar potential can be used for the calculation of the
magnetic field due either to current-carrying circuits or to magnetic
double layers (layers of dipoles). This procedure is occasionally useful
in dealing with circuit problems; however, its principal use is in dealing
with magnetic materials.

8-9 Magnetic flux. The quantity
$= [ B-nd -88
/s a (8-88)

is known as the magnetic flux and is measured in webers. It is analogous
to the electric flux discussed earlier, but it is of much greater importance.
The flux through a closed surface is zero, as can be seen by computing

"ﬁBmM=A@B@=, (8-89)

From this it follows also that the flux through a circuit is independent
of the particular surface used to compute the flux. Use will be made of
these results in the next chapter, when electromagnetie induction is
discussed.
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ProsrEMS

8-1. A charged particle of mass m and charge ¢ moves in a uniform mag-
netic induction field Bo. Show that the most general motion of the particle
traces out a helix, the cross scction of which is a cirele of radius R = mv, /¢B.
(Here v, is the component of velocity ‘of the particle which is perpendicular
to Bop.)

8-2. The Hamiltonian for a charged particle movmg in a uniform magnetic
induction field, Bo, which is parallel to the z-axis, is glven by

1 o
X =5m

2 + o).

- %—;‘: (@py — ypo) + 'qsff
Show that the equations of motion which may be derived from 3¢ are consistent
with the results of Problem 8-1.

8-3. A proton of velocity 107 m/sec is projected at right angles to a uniform
magnetic induction field of 0.1 w/m?. (a) How much is the particle path de-
flected from a straight line after it has traversed a distance of 1 em? (b) How
long does it take the proton to traverse a 90° arc?

8-4. Show that the force between parallel wires carrying currents I and I3,
both in the same direction, is one of attraction. If the two parallcl wires are
very long and separated by distance a, find the magnetic force on segment di
of wire 2. B

8-5. Given & current circuit in the shape of a regular hexagon of side a. If
the circuit carries the eurrent 7, find the magnetic induction at the center of
the hexagon. ‘

8-6. Given a thin s’mp of metal of width w and very long. The current in
the strip is along its length; the total current is I. Find the magnetic induction
in the plane of the strip at distance b from the nearer edge.

8-7. A large number N of closely spaced turns of fine wire arc wound in a
single layer upon the surface of a wooden sphere of radius a, with the planes of

. the turns perpendicular to the axis of the sphere and completely covering its
surface. If the current in the winding is I, determine the magnetic field at the
center of the sphere.

8-8. A solenoid 15 ¢m long is wound in two layers. Each layer contains 100
turns; the first layer is 2 ¢m in radius, the second 2.05 cm. If the winding carries
a current of 3 amp, find the magnetic induction at various peints along the
axis of the solenoid. Make a plot of the axial magnetic induction as a function
of distance, from the center to one end of the solenoid.

8-9. A solenoid of square cross section (i.e., a solenoid in which the individual
turns are in the shape of a square) has N turns per unit length and carries
current 1. The cross-sectional dimension is a. If the solenoid is very long,
find the axial magnetic induction at its center.

8-10. The magnetic induction at a point on the axis (z-axis) of a circular
turn of wire carrying current [ is given in Eq. (8-38). Use the fact that
divB = 0 to get an approximate expression for B, (the radial component of the
magnetic field) which is valid for points very near the axis.
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8-11. The vertical component of the magnetic induction between the pole
faces of a particle accelerator is given by B, = B,(r, z), where r = (22 + y?)1/2
is the distance from the -axis of the pole faces. (a) If {B,| is s decreasing fune-
tion of r, show that the lines of magnetic intensity bow outward, as shown in
Fig. 8-11, regardless of whether the upper pole is a north or south pele. [Hint:
Use the fact that curt B = 0, and that B, = 0 on the median plane.j (b) ¥f
the lines of B bow as shown in the figure, show that accelerated particles which
drift away from the median plane experience a force tending to restore them
to the median plane, regardless of whether they are positively or negatively
charged.

Figure 8-11

8-12. Given that along a particular straight line, the magnetic induction is
constant and has no component at right angles to this line. There are no local
currents. Use the fact that div B = 0 and curl B = 0 to show that the induc-
tion field is uniform out to the point where currents exist. Does this result
have any qualitative application to the magnetic field structure inside a
solenoid? Explain. ’

8-13. For a homogeneous, isotropic, nonmagnetic medium of conductivity
¢, in which there are steady currents, show that B-satisfies the vector Laplace
equation: VZB = (.

8-14. By using Ampere’s circuital law, find the magnetic induction at dis-
tance r from the center of a long wire carrying current /. Do this for both
r > Reand r < R, where R is the radivus of the wire. Show explicitly that the
magnetic induction vanishes on the axis of the wire,

8-15. A toroid is wound uniformly, as shown in Fig. 9-2. It has N turns of
wire which carry current I. The inner radius of the toroid is a, the outer %
Find the magnetic induction at various points inside the toroidal winding.
Find the ratio b/a that will permit B in the ring to vary by no more than 259%.

8-16. Show that the magnetic vector potential for two long, straight, paraliel
wires carrying the same current, I, in opposite directions is given by

A= --‘ﬂ)—{ n (Q) n,
2 1

where 72 and 71 are the distances from the' field point to the wires, and n is
unit vector parallel to the wires.
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8-17. Given the following set of conductors: an infinitely long straight wirc
surrounded by a thin cylindrical shell of metal (at radius b) arranged coaxially
with the wire. The two conductors carry equal but opposlbe currents, I. Find
the magnetic vector potential for the system.

8-18. The magnetic dip angle is defined as the angle between the duectmn
of the magnetic ihduction and the tangent plane at the earth’s surface. Derive
an expression for the dip angle as a function of geomagnetic latitude, on the
assumption that the induction is a dipole field.

*8-19. (a) Show that the magnetic scalar potential for a point on the axis
(z-axis) of a circular loop, of radius a, is given by

SN __.___.}
2 VaZ F 22

(b) Expand this formula according to the binomial theorem to obtain a
series expression valid for z X aq.

(c) The magnetic, scalar potential U* should satisfy Laplace’s equation;
furthermore, by symmetry, U* = U¥*(r, §), where r is the distance from the
center of the loop to the field point and @ is the angle between r and the z-axis.
Show that by using the zonal harmonics, Eq. (3-18), a solution for U* can be
constructed which reduces to the potentml obtained in (b) on the symmetry
axis.

(d) Use the U* obtained in (c) to find B, and By at points off the symmetry
axis of the loop.

*8-20. A sphere of radius a carrying surface charge density o (rigidly attached)
is rotated about an axis through its center with constant angular velocity w
Show that the magnetic field at an external point is a dipole field and find the
equivalent dipole moment.

8-21. Two dipoles m; and mz are in the same plane; m; is.fixed but ms is
free to rotate about its center. Show that, for equilibrium, tan 8; = —2 tan 63,
where 8, 82 are the angles between r and m;, mg respectively (r is the vector
displacement between m2 and m;).



CHAPTER 9
ELECTROMAGNETIC INDUCTION

The induction of electromotive force by changing magnetic flux was
first observed by Faraday and by Henry in the early nineteenth century.
From their pioneering experiments have developed modern generators,
transformers, etc. This chapter is primarily concerned with the mathé-
matical formulation of the law of electromagnetic induction and its
exploitation in simpie cases.

0-1 Electromagnetic induction. The results of a large number of
experiments can be summarized by associating an emf

1P

8= ——

(9-1)
with a change in magnetic flux through a circuit. This result, which is
known as Faraday’s law of electromagnetic induction, is found to be
independent of the way in which the flux is changed—the circuit may be ’
distorted or moved, or the value of B at various points inside the circuit
may be changed. It is extremely important to realize that Eq. (9-1)
represents an independent experimental law—it cannot be derived from
other experimental laws and it certainly is not, as is sometimes stated,
a consequence of conservation of energy applied to the energy balance
of currents in magnetic fields.
Since by definition

g = fE -dl (9-2)
and
& = [ B - nda, (9-3)
S
Eq. (9-1) can be written
}{E-dlz-—% Boade (9-4)

If the circuit is a rigid stationary circuit, the time derivative can be
taken inside the integral, where it becomes a partial time derivative.
Turthermore, Stokes’ theorem can be used to transform the line integral
of E into the surface integral of curl E. The result of these transforma-
tions is

/curlE-nda=— 91—3~nda. (9-5)

S s Ot
170
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Since this must be true for all surfaces S, it follows that

curlE = — %]% ) (9-6) .
which is the differential form of Faraday’s law. Moving media and
other subtleties require a more careful treatment, beyond the scope of
this text. (

The negative sign in Faraday’s law indicates, as can be easily demon-
strated, that the direction of the induced emf is such as to tend to oppose
the change that produces it. Thus if we attempt to increase the flux
through a eircuit, the induced emf tends tc eause currents in such a
direction as to decrease the flux. If we attempt to thrust one pole of a
magnet into a coil, the currents caused by the induced emf set up a mag-
netic field which tends to repel the pole. All these phenomena are covered
by Lenz’s law, which may be stated as:

In case of a change in a magnetic system, that thing happens which tends
to oppose the change.

It is clear that this accounts for the direction of the current and the
direction of the force in the examples given above. The utility of Lenz's
law should not be underestimated. In many cases it represents the
quickest if not the only way of obtaining information about electro-
magnetic reactions. Eveu if other methods are available, it affords a
valuable check.

There is a special case of Faraday’s ld«“ in which the emf ean be derived
from the Larentz force and conscrvation of energy. Suppose a straight
conducter slides on a pair of horizontal rails separated by a distance [
Let there be a magnetic field B perpendicular to the plane of the rails
and let a source of emf & be connected betweéen the rails, as shown in
Fig. 9-1. Because of the current I, the conductor experiences a force of
magnitude F = BIl to the right. Because of this force it accelerates
to the right and is moving at a particular time with a velocity v; thus
work is being done at the rate Fv. Power is being supplied by the emf &,
at the rate §,/. Thus » :
&l = [?R - Fu. (9-7)

Fre. 9-1. Motional emf produced by a sliding wire in a magnetic field
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As a result, I is less than the original value §;/R, and hence the mag-
netic force is different. To avoid this difficulty, an additional variable
emf & is added in series with 8y, of such magnitude (variable) as to
keep I constant. Then, instead of (9-7), we have

(80 + &)1 = I’R + Fu. (9-8)
Because of the choice of &, 8 = I’R, leaving
&1 = BIl. : (9-9)
Cancelling the I's gives
‘ de
L — .
§ = Bl = 3 (9-10)

however, &' is not the induced emf; it is the negative of it, i.e., the emf
which must be added to §¢ to maintain the current constant. Therefore

d®
& = — Tk (9-11)
in agreement with Eq. (9-1). The equation
&§ = —Bl (9-12)

can be generalized by writing it in vector notation. If v is arbitrarily
oriented with respect to I, then only the component of v which is per-
pendicular to I contributes to 8. Thus & is proportional to I X v. For arbi-
trary B, only the component perpendicular to the plane of { and v
contributes to §. Since I X v is perpendicular to the l,v-plane, & may be
written as . .
E§=B-IXv (9-13)

except possibly for a minus sign. Comparison of Eq. (9-13) with Fig. 9-1
quickly shows that the correct sign already appears. Once again it must
be noted that Eq. (9-13) is only a special case of Eq. (9<1). Deriving
Eq. (9-13) does not prove Eq. (9-1), since the only kind of change which
has been considered is a change in the area of the circuit. The emf in
(9-13) is called a motional emf.

9-2 Self-inductance. In this section, the relationship between the flux
and current associated with an isolated circuit will be considered and
exploited for the purpose of introducing the practical circuit parameter:
self-inductance. The magnetic flux linking an isolated circuit depends on
the geometry of the circuit and, according to Eq. (8-26), is linearly
dependent on the current in the circuit. Thus for a rigid stationary cir-
cuit the only changes in flux result from changes in the current. That is,
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Fia. 9-2. A toroidal winding.

d® _d® dI :
E = Ej Il—t-) (9-14)

which is valid even when Eq. (8-26) is not; the only requirement is that
& depend only on the current. If, however, Eq. (8-26) is valid or, more
generally, if & is directly proportional to the current, then d®/dI is &
constant, equal to ®/I. In any case, the inductance, L, is defined as

ds.
al
When it is essential to distinguish between this and ®/I, d®/dI is called
the incremental inductance; unless otherwise specified it is safest to
associate the word inductance with Eq. (9-15). From Egs. (9-14),
(9-15), and (9-1) it follows that the expression for the induced emf,

g=— 12, (9-16)
is an equation of considerable practical importance. .

As an illustration of the use of Eq. (8-15) for the calculation of in-
ductance, the self-inductance of a toroidal coil will be calculated. Such
a coil is shown in Fig. 9-2. Equation (9-15) applies to an entire circuit,
that is, not only to the toroidal coil of Fig. 9-2, but also to the external
circuit connected to terminals 1 and 2. By using twisted leads or a coaxial
cable, which produce essentially no external magnetic field, the field-
producing portion of the external circuit can be removed to a sufficiently
great distance that it does not contribute to the flux in the toroid. If
this is done and if by emf we understand the emf between terminals 1
and 2, then Eq. (9-15) can be used to obtain the inductance of the
toroidal coil. From Ampere’s circuital law, the magnetic induction inside
the toroidal coil is

poNT

l

L = (9-15)

B = (9-17)
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where N is the number.of turns, ! the mean length, and I the current
in the winding. [Equations (9-17) and (9-18) involve the approximation
of neglecting the variation of the magnetic induction over the cross-
sectional area. In Problem 9-8 the details of this approximation are
considered.] The flux linking each turn is then

. MoNIA

@ 7 (9-18)
and the total flux linking the N turns is
® = @Nf_fi I (9-19)
The inductance is then simply
L _—-:. % = 29‘7;72‘4. (9-20)

The practical unit of inductance is the henry which, from Eq. (9-15),
is equal to one volt second/ampere. Equation (9-20) indicates that the
dimensions of uo, which have been previously given as webers/ampere:
meter, can alternatively be given as henries/meter.

9-3 Mutual inductance. In the preceding section only isolated circuits
were considered, so that all of the flux linking the circuit was due to
the current in the circuit itself. This restriction can be lifted by assum-
ing that there are n circuits, labeled 1, 2,... The flux linking one of these
circuits, say the one labeled 7, can be written as

B = By + Bipt o it B = Y By (0-21)

=1

That is, it may be written as a sum of fluxes due to each of the n cireuits,
®;; being the flux through the 7th circuit due to circuit 1, etc. The emf
induced in the sth circuit, &;, can'then be written as

R PR [ MU TR
gi=—""g ~ {dt+ at ! Ta ) = ~ dt
(9-22)

If each of the circuits is a rigid stationary circuit, the only changes in

the &;;’s are those which result from changes in the currents. Thus
%y _ d%i; dI; |

& I, d (9-23)

The coefficients d®;;/dI; are constants, independent of the current, if
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Eq. (8-26) is appropriate. If they are not constants, they may depend
on the current because of the nonlinearity of magnetic media associated
with the cireuit configuration. In any case,

ad;;

My = dl; )

T (9--24)
is defined as the mutual inductance between circuit 7 and circuit j. It
will be seen later that M;; = Mj; and hence there is no possibility of
ambiguity in the subscripts. Of course d®;;/dF; is just the self-inductance
of the ith circuit, for which L; or M; is written. The units of mutual
inductance are the same as those of self-inductance, namely, henries.

As an example of the calculation of mutual inductance, consider the
configuration of Fig. 9-2 with a second toroidal winding of No turns
added. For this situation, a current I, in the first winding produces a
magnetic induction

PR
and consequently fluxes
&, = wolN %;AI 1
and
@y = #oNi’fzszll‘.

TFrom these fluxes it follows that

2
L, =t (9-25)
as before, and
Moy = #ONllN2A (9-26)
Reversing the procedure and considering a current I, gives
2
L2 = &Niz— H (9-'27)
and
Moy = &fﬂlzl‘fﬁ, (9-28)

thus demonstrating that for this case Mz = Myi. Furthermore,
Egs. (9-25), (9-26), and (9-27) may be combined to yield

M12 = vV Llng‘ ) (9"29)
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Equation (9-29) represents a limit that is imposed on the mutual in-
ductance between two circuits, namely, it is always less than or equal
to the square root, of the product of the self-inductances of the two cir-
cuits. In view of this limit, a coupling coefficient k is often introduced
and defined by

= ®Iils W <L (9-30)

9-4 The Neumann formula. For two rigid stationary circuits in a linear
medium (vacuum for the present) the mutual inductance is just

Pa1,
T, (9-31)

Mz =
This is valid simply because &5, is proportional to Iy, making $3;/7;
and d®s;/dI, equal. In this case, Eq. (8-26) can be used to calculate
Ms,. The flux is given by

_ ko dly X (r3 — 1]
¥ =g [s,{ o Tm—np | nde ©-82)
However, -
dl; X (rz — 1) j( dl,
== 1 ————e * 9_,
¢ g —mn)? U2 Jo s — 1] (8-33)
hence
—fu_m {}( .__ﬂ___} y
My = T, & curlz e TFr — 1] - n dag. (9-34)

Using Stokes’ theorem to transform the surface integral gives

dll dls
Mo = 47!'%0, f' Itz — 1]’ (9-38)

which is known as Neumann's formula for the mutual inductdance. The
symroetry alluded to earlier is apparent in Eq. (9-35).
Neumann’s formula is equally appheable to self-inductance, in which

case it is written as
dly - dl}
9-36
il fcl == (9-36)

Some care must be used in the application of Eq. (9-36) because of the
singularity at r; = r{; however, if care is taken, Eq. (9-36) is sometimes
useful.

Equations (9-35) and (9-36) are usually difficult to apply to the calcu-
lation of inductance except for circuits in which the geometry is simple.
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But Eq. (9-35) in particular is very important in the study of forces
and torques exerted by one circuit on another This application will be
exploited in Chapter 12.

9-5 Inductances in series and in parallel. Inductances are often con-
nected in series and in parallel, and, as with resistors and capacitors, it
is important to know the result of such connections. We could proceed
with a derivation based simply on § = —L(dI/df) and obtain formulas
for the effective inductance of two inductances in series or in parallel;
however, to do so would be to ignore the practical fact that an inductor
always has a certain internal resistance. A perfect inductance is much
more difficult to realize than a perfect capacitance or a perfect resistance.
For this reason, the series and parallel combinations of this section will
always involve resistances as well as inductances.

For two inductors in séries, the circuit of Fig. 9-3 is appropriate. In
adding the voltage drops along the circuit it is important to note that M
can be either positive or negative [changing the direction in which either
C; or Cj is described reverses the sign of M in Eq. (9-35)]. Bearing this
in mind, the sum of the voltage drops for the circuit of Fig. 9-3 is found
to be

AU+ 81 + 82 = R1[+ Rz[,
or

AU = Rl + L8 w8y mor 0, a4 )

This is equivalent to
AU = (Bx + R + (Ly+ Lo + 200 & (9-38)

The circuit thus resembles a resistor -of resistance R; + R in series
with an induectance L; + L, -+ 2M. The magnitude of the inductance
is Ly + Ly + 2|M| for positive coupling (i.e., for fluxes due to I; and
I3 in the same direction in each coil), and is L; + Ly — 2|M| for nega-
tive coupling. An alternative description of the mutual inductance is

M = kvV'IiL,, —1<kKk<1. (9-39)
dI '
I, — 7 ‘ M
: — —
o AN Tt T AAAA Ao
| Ry L Lg R, !
i

F1g. 9-3. Serics conneetion of two inductors.
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The effective inductance of the series circuit is then
Loff = L1 '%‘ 2kv LILz + L2. (9"40)

If k& can be varied, then. a variable inductance can be constructed. (In
the early days of radio this was. a popular way of tuning resonant cir-
cuits; see Chapter 13.)

The parallel connection shown in Fig, 94 is not as simple as the series
circuit. In fact, the circuit shown does not behave like a simple series
L-R circuit. Thus it is not possible to say that the effective inductance
and effective resistance are certain functions of L,, Ly, By, and R,. If,
however, R; and R, are negligible, then

AU = I, dt‘ + M‘”z

dls | gpdls
di - dt

If first dI/dt and then dI,/dt are eliminated from between Eqs. (9+41),
there results

(9-41)
AU = Ly 5~

AU(Ly — M) = (LyLy — Mz) ar, ‘
(942)
, 2 dIz ‘
Adding these gives
LiLy — M® dI
W=y T~ (9-43)
Thus the effective inductance of two inductors in parallel is
L)Ly — M? g
Leff - Ll "i_ L2 — 2M’ (9 44)
WAAAN /T
R M ot
Ry !
AAAAY% LTI
— Ly
Iy
AU

Fia. 9;-4. Parallel connection of two inductors,
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where again the sign of M depends on the way in which the inductors
are connected. .

The most important use of inductances is in alternating current ecir-
cuits. For a circuit operating at a single frequency, an equivalent series
circuit for Fig. 9-4 can be obtained; however, both the equivalent re-
sistance and equivalent inductance are frequency dependent. This fre-
quency dependency is the root of the difficulty encountered above.

ProBLEMS

9-1. A metallic conductor in the shape of a wire segment of length I is moved
in a magnetic field B with velocity v. From a dctailed consideration of the
Lorentz force on the electrons in the wire, show that the ends of the wire are at
the potential difference: B-1X v.

9-2. A metal rod one meter long rotates about-an axis through one end and
perpendicular to the rod, with an angular velocity of 12 rad/sec. The plane of
rotation of the rod is perpendicular to a uniform magnetic field of 0.3 w/m?2.
What is the emf induced between the ends of the rod?

9-3. Given a magnetic field of cylindrical symametry, i.e., one with a z-com-
ponent B, = B(r), where r is the distance from the symmetry axis. An ion
of charge ¢ and mass m revolves in a circular orbit at distance R from the sym-
metry axis' with angular velocity w = qB(R) /m. If the magnetic field is slowly
increased in magnitude, show that the emf induced around the ien’s orbit is
such as to accelerate the ion. Show that in order for the ion to stay in its same
orbit, the average increase ih B(r) over the surface enclosed by the orbit must
be twice as large as the increase in B(R). .

9-4. A dielectric eylinder of permittivity e rotates about its axis with angular
velocity w. If a uniform magnetic field B existy parallel to the cylinder axis,
find the induced polarization charge in the dielectric.

9-5. Two coupled circuits, 4 and B: are situated as shown in Flg 9-5. Use
Lenz’s law to determine the direction of the induced current in resistor ab
when (a) coil B is brought closer to coil 4, {b) the resistance of R is decreased,
(c) switch S is opened.

Figure 3-5
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9-6. A 100-turn coil of circular cross section is wound compactly so that all
loops lie in approximately the same plane. The average radius of the coil is 3 cm.
The coil rotates about one of its diameters at 900 rev/min. When the rotation
axis is vertical, the average induced emf in the coil is found to be 0.50 mv,
What can be concluded about the earth’s magnetic field at the location of the
coil?

9-7. A circular disk rotates about its axis with angular velocity w. The disk
is made of metal with conductivity g, and its thickness is ¢&. The rotating disk
is placed between the pole faces of a magnet which produces a uniform mag-
netic field B over a small square area of size a? at the average distance r from the
axis; B is perpendicular to the disk. Calculate the approximate torque on the
disk. (Mske a reasonable assumption about the resistance of the “eddy current
circuit.”)

9-8. A toroidal coil of N turns, such as is shown in Fig. 9-2, is wound on &
nonmagnetic form. If the mean radius of the coil is b and the cross-sectional
radius of the form is @, show that the self-mductance of the coil is given by
L = poN2(d — v — a?).

9-0. A circuit consists of two coaxial cylindrical shells of radii By and R
(R2 > R;) and common length L, connected by fiat end plates. The charge
flows down one shell and back up the other. What is the self-inductance of this
circuit?

9-10. The toroidal coil of Problem 9-8 has 150 turns, b = 4 cm, and
a = 1.5 em. What is the self-inductance of the coil, in henries?

9-11. Two small circular loops of wire (of radii 2 and b) lie in the same plane
at distance r apart. What is the mutual inductance between the loops if the dis-
tance r is sufficiently large that the dipole approximation may be used?

9-12. Two circular current loops with parallel axes are located at a distance
r from each other that is sufficiently large so that the dipole approximation may
be used. Show how ore of the loops should be placed relative to the other so
that their mutual inductance is zero.

9-13. Given two circuits: a very long straight wire, and a rectangle of di-
mensions k and d. The rectangle lies in a plane through the wire, the sides of
length h being parallel to the wire and at distances r and r 4 d from it. Cal-
culate the mutual inductance between the two circuits.

9-14. Given two coaxial, circular loops of wire of radii @ and b, separated by
the axial distance z. Through the use of Neumann’s formula, show that the
mutual inductance of the loops is

M= po(ab)”z[(i k) (k) — % E(k)],

4ab
@+ B)2+22’
and K(k) and E{k) are complete elliptic integrals defined by

/2
- dé
K@) = /o (I — k2sinZ ¢)1/2’

where
k=




PROBLEMS 181

and

1/2'1 .
E(k) = fo (1 — ¥° sin® ¢)Y'2 dg.

9-15. Consider again the preceding problem. By expanding 1/|r2 — ri| in
Neumann’s formula according to the binomial theorem, integrate term by
term to obtain

2,2

. kowa 75 a’b’ )
M 243 (1+3h2+8 T ’

where h2 = 22 4 (a + b)2.

9-16. Two circuits with inductances L) and Lz and resistances R; and Rq
are located near each other. If the mutual inductance between the circuits is
M, show that a quantity of charge @ = M /R1R2 will circulate through one
of them if & seat of emf &o is suddenly connected in series with the other.

9-17. Given a nonmagnetic conducting medium of conductivity g which is
subjected to a time-dependent magnetic field B(r, t). Starting with the differ-
ential form of Faraday’s law, Eq. (9-6), show that on the assumption of no
accumulation of charge (i.e., div J = 0) the induced eddy-current density in
the medium satisfies the differential equation V2J- = guo(8J/9¢).

9-18. Show that the emf in a fixed ecircuit C is given by

d-

79 faali

where A is the vector potential.



CHAPTER 10
MAGNETIC PROPERTIES OF MATTER

In Chapter 8 we discussed techniques for finding the magnetic induc-
tion field due to a specified distribution of currents. Thus, for example,
if we are dealing with a current—carrying circuit consisting of a closed
loop of wire, the magnetic field in the vacuum region surrounding the
wire may be calculated with the aid of Biot’s Law. Now let the region
surrounding the wire be filled with a material medium; will the magnetic
induction be altered by the presence of the matter? The answer is “yes.”

All matter congists ultimately of atoms, and each atom consists of
electrons in motion. These electron eircuits, each of which is confined
to a single atom, are what we shall call atomic currents. It thus appears
that we have two kinds of current: (1) & true eurrent which consists of
charge transport, i.e., the motion of free electrons or charged ions, and
(2) atomic currents, which are pure circulatory currents and give rise to
no charge transport. Howevpr both kinds of current may produce mag-
netic fields.

10-1 Magnetization. Each atomic current is a tiny closed ecircuit of
atomic dimensions, and it may therefore be appropriately described as
a magnetic dipole. In fact, the dipole moment is the quantity of interest
here, since the distant magnetic induction field due to a single atom is
completely determined by specifying its magnetic dipole moment, m.

Let the magnetic moment of the sth atom be m;. We now define a
macroscopic vector quantity, the magnetization M, by the same method
used to define polarization in Chapter 4. We sum up vectorially all of
the -dipole moments in a small volume element Av, and then divide the
result by Av; the resulting quantity,

Ao—-»o AU

is called the magnetic dipole moment per unit volume, or simply the
magnetization. The limit process in Eq. (10-1) is our usual macroscopic
limit process; Av is made very small from the macroscopic point of view,
but not so small that it does not contain a statistically large number of
atoms. The quantity M then becomes a vector point function. In the
unmagnetized state, the summation 3 m; will sum to zero as a result of
random orientation of the m;, but in the presence of an external exciting
field M usually depends ou this field. The specific dependence of M on B
will be taken up in Section 10-6.
182
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For the moment, we shall assume that M(z, ¥, 2) is a known function,
and shall compute the magnetized material’s contribution to the mag-
netic field from the equations developed in Section 8-7.

The vector function M provides us with a macroscopic description of
the atomic currenis inside matter. Specifically, M measures the number
of atomic current circuits per unit volume times the average or effective
magnetic moment of each circuit. From the purely macroscopic point
of view all magnetic effects due to matier can be described adequately
in terms of M, or by its derivatives. Ong of these derivatives, curl M,
turns out to be the equivalent transport current deusity which would
produce the same magnetic field as M itself; it is called the magnetization
current density Y3, Before we derive this important relationship linking
Ju and M, let us look at a simplified model of magnetized matter as
though it consisted of atomic loop currents circulating in the same direc-
tion, side by side (Fig. 10-1). If the magnetization is uniform, the cur-
rents in the various loops tend to cancel each other out, and there is no
net effective current in the interior of the material. If the magnetization
is nonuniform, the cancellation will not be complete. As an example of
nonuniform magnetization, consider the abrupt change in magnetization
shown in Fig. 10-2; if we focus our attention on the region between the
dotted lines, it is evident that there is more charge moving down than
there is moving up. This we call the magnetization current. Thus, even
though there is no charge transport, there is an effective motion of charge
downward, and this “current” can produce a magnetic field.

It remains for us to derive the relationship between Jpr and M. Let-
us consider two small volume elements in & piece of magnetic material,
each element of volume Az Ay Az, and located next to each other in the
direction of the y-axis (Fig. 10-3). If the magnetization in the first volume
element is M(z, 3, 2), then the magnetization in the second element is

M, y, 2) + % Ay + higher-order terms.

Q0000
O

OG0
SO

Fia. 10-1. Simplified picture of magnetic material consisting of atomic loop
currents circulating in the same direction.
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Fia. 10-2. Example of abrupt change in magnetization.
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Fic. 10-3. Replacement of volume elements of magnetized material by
circulating currents I; and I,

The z-component of magnetic moment of the first element, M. Ax Ay Az,
may be written in terms of a circulating current, I¢: .

M, Az Ay Az = I’ Ay Az. (10-2)

Similarly, the z-component of magnétic moment of the second element,
neglecting higher-order terms which vanish in the limit where each vol-
ume element becomes very small, is

(M,-, + ag:” Ay) Ax Ay Az = I% Ay Az. (10-3)
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The net upward current in the middle region of the two volume elements is

oM,
— %5
We next consider two adjacent volume elemnents along the z-axis and
focus our attention on the y-component of the magnetization in each cell.
In the middle region of the two cells the net upward current due to the
circulating currents which define the magnetic moments is

I, — It = Ax Ay. (10-4)

oM,

(Ic>up == 7z

Ar Ay. (10-5)

These are the only circulating currents of a particular cell which give rise
to a net current in the z-direction. This net current, which comes about
from nonuniformm magnetization, is called the magnetization current.
This current is not a transport current but derives, as we have seen, from
circulatory currents, i.e., from atomic currents in the material. The ef-
fective area for each of the currents in (10-4) and (10-5) is Az Ay. Thus

_ oMy _ M,
Va)e = - 3 (10-6a)
o Jar = curl M. (10-6b)

The magnetization current density is the curl of the magnetization.

10-2 The magnetic field produced by magnetized material. According
to Eq. (108-1), each volume element Av’ of magnetized matter is charac-
terized by a magnetic moment

Am = M(z’, ¢/, 2") Av'. (10-7)

Using the results of Section 8-7, we may write the contribution to the
magnetic field at point (z, ¥, 2) from each Am {or, equivalently, from each
Av’). The magnetic field is then obtained as an integral over the entire
volume of material, Vo. This procedure is indicated schematically in
Fig. 10-4.

Instead of calculating B dirvectly, we find it expedient to work with
the vector potential A, and to obtain B subsequently by raeans of the
curl operation. According to Section 8-7, the vector potential at (x, y, 2)
is given by
Mo M(.’b', v, z’) X (.r - T’) do'

47 [y, e — 1'[3

Az, y,2) =

— !‘_";Q s 4 YA v 757 _____j'____’___ ’ i
= I VoM(:c, y', 2') X grad =l av'. (10-8)
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Fig. 10-4. Contribution to the magnetlc induction from a distribution of
magnetized material.

By means of the vector identities (I-9) and (I-17) in Table 1-1, this
integral may be transformed to :

_ Ho [ culM M X n
A(x) y’ z) I d + 47‘, So 'r I!

, )
ar )y, T = —=—da’, (10-9)
where S is the surface of V. Using Eq. (10-6b) and defining a surface
magnetization current density ja (i.e., 2 magnetization current per unit
length flowing in the surface layer) by the relation

j¥ = M X n, ' (10-10)

we may write Eq. (10-9) as
I (@) dv im do’ 4
Al) = 47r/0 [r — r/] + o 47r S lf — 1] (10-11)

We might have ventured to predict the final expression, Eq. (10-11).
Nevertheless, it is gratifying to see that it has come out of the mathe-
matics in a natural way. Thus the vector potential produced by a dis-
tribution of atomic currents inside matter has the same form as that
produced by a distribution of true transport currents. We should point
out that Eq. (10-10) is the proper expression for the surface current
density which is consistent with Ja = curl’ M. The jy must be intro-
duced whenever M changes abryuptly, as it might at the interface between
two media, but if the region of discontinuity in M is imagined to be
spread out over the distance A%, then it can be shown that ja is contained
in the term Jur Af.
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Although Eq. (10-11) is both correct and of such form that it inte-
grates nicely with the results of Chapter 8, it presents some practical
difficulties when it comes to the task of computing B {rom a specified
distribution of magnetization. First, there is the curl M operation to
perform, and second, another curl operation is involved in obtaining B
from the A field. It certainly is preferable to work with scalar quantities
if possible, and the gradient of a scalar field (such as we- encountered
in electrostatics) is easier to compute than the curl of a vector field. For
this reason we go back to Eq. (10-8) and try another approach. We are
interested, after all, in B, not A, so let us formally take the curl:

B(r) = curlA
o &0_ (l’ - I') ’
= /Vo curl [M X —-————-——I ,,3] av’, (10-12)

where the differential operators in the curl act on the unprimed
coordinates.

As the reader may have anticipated, our next job is to transform the
integrand of Eq. (10-12). To do so, we appeal to the vector identities
of Table 1-1.

According to (I-10),

curl (@ X b) = adivb — bdiva -+ (b-V)a — (a: V)b.

Letting a = M and b = (r — r')/|r — ¢’|3 and noting that the dif-
ferentiations are with respect to the unprimed coordinates, we find that
the identity reduces to '

curl [M X L————,%] M dlv[(r :Tr%]

Ir Ir
~ M) I(’ ’l)3 (10-13)
since div M(z', y’,2’) = 0, ete. Thus
B(r) = Bi(r) + Bri(r), (10-14)
where }
Bi(r) = ggr Mdiv [!—g—}—fl—)g] &, (10-14a)
Bu(r) = — £2 / M- V) l(‘ :I)ad’ (10-14b)

We consider the By integral first. It is convenient Ito divide the volume
-of the magnet, Vy, into two regions: (1) a small spherical region V; sur-
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rounding the point (x, y, 2) [Fig. 10-5], and (2) the remaining volume,
Vo — V1. Then By is written as the sum of two integrals, one over V
and another over Vo — V4. Since the divergence term in the integrand
vanishes everywhere except at the point r’ = r, the integral over Vo — ¥V
is zero. Hence

. \ P
' r — 1/ SV
By(r) = %:; M di V[|(r 'I)?']dv i \4%" r
Av’
(= 1) "
_ ko r—r — A A
T 4w M div [l - |3] dv’ " Partof Vy
0
Ko i 3 Fia. 10-5. Contribution
== M div’ '
Ly f vy ' (s/s7) dv, from the vicinity of the field
point.

where s = ' — r. The size of V; has not been specified, the only re-
quirement is that it contain the point s = 0. If V; is chosen small
enough, M is essentially constant over the region V; and is equal to
M(zx, v, 2). Therefore

Bi(r) = {4—‘1"; M(1) [ div’ (s/s%) dv’
= M [ S5
= uoM(r). (10-15)

We next consider the By integral. The integrand may be transfornied
by means of a second identity {I-5) which becomes

{M o r'r] = MV =

Ir
"
M X cud H—-{-H (10-16)
The last term in (10-16) containg
/
curl!_(r AL l;) = —curl grad ———;
) = Tewdered gy

which vanishes identically. Hence

Br(r) = MoV [ M(r') (r :,!)3'1 &
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which may be written as
Bii(r) = —poVU(@). (10-17)

The quantity U*(r) is a scalar field. We shall call it the magnetic scalar
potential due to magnetic material:

UrE) = 4 / M) - !r :l)sdv (10-18)

Adding the two contributions, (10-15) and (10-17), we find for the
magnetic induction field:

B(r) = —poVU*(x) + noM(r). (10-19)

Thus the magnetic induction due to a magnetized distribution of matter
may be expressed as the sum of two terms: the gradient of a scalar field
plus a term proportional to the local magnetization. At an external
point, i.e., in vacuum, M is zero, and the magnetic induction is then
just the gradlent of a scalar field.

10-3 Magnetic scalar potential and magnetic pole density. The expres-
sion for the magnetic scalar potential, Eq. (10-18), is similar in form to
that for the electrostatic potential arising from polarized dielectric ma-
terial. Here again mathematical transformation is suggested:

M-or—1) _ . _
r =13 M - grad’ i r|
— div' fr,l - n Sdiv' M, (10-20

so that Eq. (10-18) becomes

U*(x) ==

. ’
1 M - nda 1 [V Idlv M v, (10-21)

s, Tt =1 dmlv,r—71]

where Sy is the surface of the regiou V.
By analogy with Section 4-2, it is expedient to define two scalar
quantities:
: pu (1) = div M1, {10-22)

called the magnetic pole density, and
o) = M(') - n, (10-23)

the surface density of magnetic pole strength. These quantities are quite
useful; they play the same role in the theory of magnetism that pp and
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op play in dielectric theory. The units of pyr and oa are amp/m? and
amp/m, respectively. .

Consider, for essrcpie, a wniformiy maguefized har magnet,  Fiuce
the magnetization is uuiform, py == 0. The ouly surface densities which
do not vaaish are on these sucfaces which have a norraal component of

- the raaguetiestion; these ase called the peolce of the magnet, This is a
somewhat ideslized exareple, veb not too ditferent from the commnier lab-
oratory ber magnet {wrulisr to the reader  {In practice, the poies of
a raagnet exert o demagnetizing influence which destroye the unifornuty
of M und thus spreads each pnle over a somewhat larger region than
just the surface.

The total pole sirength of every magnei is zero. This statement follows
direclly from the divergence theorem:

[ (—divMidv + | M nde-=0..
‘;"J'

Ne

We now complete the derivation which was started eotlier.  Tgua-
tien {10-18) becomes

[ omds o g8a)
Sg ¥ — I

and Bz, v, 2} is obtained as -—p, times the gradient with respect to the
unprivied coordinates, pius the term poM:

s .
Jaas) / L
r) o UY 2T IRt
B( i % £t i

This ecuation répreseuis the contribution from the magnelized material
A A &)
in Vy to the magretic induction at {x, 3, &).

i0-4 Sources of the magonetic field. Magnetic wmiensity. In the pre-
ceding sections we buve seer how roagnetized material produces a mag-
netie field. Furthermore, Chapter 8 dealt with the magoetic effects of
conventional currents. In ibe general ense, both types of magnetic sources
are present. conventionw) or irur ewrrents which can be reeasured in
the labhoratory, ardd the atomic currents iuside reatter. Tt d

s noportant
to reglize that under ceriain condilions the same pisee of matier imay
prosuee a magnetic field both because it is magretlzed and because it
it carrying & true current of charge carcieis, Thua, Yor example, one of
our hest insgnetic materials, ieou, muy earry 2 lrue sucrent vie 1 free
eleeirons, but the fixed ivon ions in the crysinl coniato abomie currents
whick can be oriented %o t:)‘(ﬂ.iuce a strong mognetizaticn.
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‘In general, the expression for the magnetic field may bhe written as

‘ R
B(r) = ¢ 3-3?3;‘;»-54 A — paVU*(r) b uoM(r), (10-24)

4 i — 1|3
where
P _; puwdy 1 / opda 1025
U*(r) = )Ir =7 + - ar )i — v (10-25)

The volume V extends over all current-carrying regions and over all
matéer; the surface S includes all surfaces and interfaces between dif-
ferent media. The current density J includes all true currents of the
charge transport variety, whereas the etfect of atomic currents is found
in the magnetizaticn vector M.

Equation (10-24) may he solved for B if M and J are ‘epuciﬁed at all
pointg. In most problems, however, J is specified but M(2', ¢/, 2’} depends
on B(z', y’, '), so that even if the functioral form of M{B) is known,
(10-24) provides at best au integral equation for B. To help get around
this difficulty we introduce an auxiliary maguetic vector, the magnefic
tnlensity H, defined by

H = ﬁ—B — M. (10-26)
0
By combining (10-24) and (10-20) we obtain
e )
H(I) = 17'1: T !)*;"‘('x";";il;;"l dy - ‘VU*(Y) (]0‘27)

It appears that we have gained nothing by this maueuver, because H
still depends on M through gy and o, bub in the next section we shall
show how H is related to the true current deosity | through a differential
equation. The situstiov is sinliar to the slectrostauc ecase, where the
auxiliary vector 3 is related tn ithe free charge density mri)ugh 1ts
divergence. '

The field vector H plays an unporisnt role in maguetie theory, par-
tieularty in problems iuvoiving permanent smagnets. These will be dis-
cussed in later sections of the shapter. The unive of ¥ arve the same as
those of M, namely, amp/m.

10-8 The field egquutions. In Chupter 8, the basic equations descoibing
the magnetic effecis of couventional currents were expressed in differ-
ential form: .

diVB I Q, Cufﬂ. = i&:‘}

We should new Dike to see how chese eguationy ave madified when the
magpelic feld B includes a sontribution frow magnefized soaterial.
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The reader will recall that the divergence equation (div B = 0) came
about because B could be written as the curl of a vector function A.
But this result is not limited to magnetic fields, produced by conven-
tional currents. The field produced by magnetized matter is also derivable
from a vector potential; in fact, this approach was used in Section 10-2.
Thus B.may always be written as curl A, and the divergence equation
follows of necessity:

divB = 0. (10-28)

The “curl equation” is the differential form of Ampere’s circuital law.
Here we must be careful to include all types of currents which can pro-
duce a magnetic field. Hence, in the general case, this equation is
properly written as

: curl B = po(J + Ju), (10-29)

where J is the true current density, and Jar is the wagnatization current
density. Equation (10-6b) may be combined with (10-29) to yield

curl(—l—B ~ M) =7,
Ko
which, according to (10-26), is equivalent to
curlH = J. ' (10-30)

Hence, the auxiliary magnetic vector H is related to the true current
density through its curl.

Equations (10-28) and (10-30) are the fundamental magnetic field
equations. These equations, together with appropriate boundary condi-
tions and an experimental relationship between B and H, are sufficient
to solve magnetic problems. In some instances it is-preferable to use an
integral formulation of the theory. With the aid of Stokes’ theorem,
(10-30) may be converted to

/Scuﬂn-ndq.—_-fcn-dl

=/J-nda,
or ¢
H-dl = 1. (10-31)
fma-.

In other words, the line integral of the tangential component ’Qf the
magnetic intensity around a closed path C is equal to the entire trans-
port current through the area bounded by the curve C.

Because of the divergence theorem, Eq. (10-28) is equivalent to



10-6] MAGNETIC SUSCEPTIBILITY AND PERMEABILITY. HYSTERESIS 193
}(S B-nda = 0. (10-32)
The magnetic flux through any closed surface is zero.

10~6 Magnetic susceptibility and permeability. Hysteresis. In order
to solve problems in magnetic theory, it is essential to have a relationship
between B and H or, equivalently, a relationship between M and one of
the magnetic field vectors. These relationships depend on the nature
of the magnetic material and are usually obtained from experiment.

In a large class of materials there exists an approximately linear rela-
tionship between M and H. If the material is isotropic as well as linear,*

M = x,,H, (10-33)

where the dimensionless scalar quantity x, is called the magnetic sus-
ceptibility. If X, is positive, the material is called paramagnetic, and
the magnetic induction is strengthened by the presence of the material.
If x,, is negative, the material is diamagnetic, and the magnetic induction
is weakened by the presence of the material. Although X,, is a function
of the temperature, and sometimes varies quite drastically with temper-
ature, it is generally sdfe to say that X,, for paramagnetic and diamagnetic
materials is quite small; i.e.,

[Xm] < 1 (for paramagnetic, diamagnetic materials). (10-34)

The susceptibilities of some common materials are given in Table 10-1.

In most handbooks and tabulations of physical data X, is not listed
directly, but instead is given as the mass susceptibility, X mass, OF the
molar susceptibility, Xm.molar- These are defined by

Xm = Xm,mass 4, (10-35)
Xm = Xm,molar % ’ (10—36)

where d is the mass density of the material and 4 is the molecular weight.
Since M and H both have the dimensions of magnetic moment per unit
volume, it is evident that X, mess H and X, moiar H give magnetic mo-
ment per unit mass and magnetic moment per mole, respectively. For
convenience, the mass susceptibility is also listed in Table 10-1.

* If the material is anisotropic but linear, Eq. (10-33) is replaced by the
tensor relationships

M, = Xpm11Hy + X 12H; + X 13H,,

etc. In these circumstances M does not necessarily have the same direction
as H. We shall restrict ourselves in this book to isotropic media.
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TasLy 10-1

MAGNETIC SUSCEPTIBILITY OF SOME PARAMAGNETIC AND
DiaMAGNETIC MATERIALS AT ROOM TEMPERATURE.

. . X )
Material { X o m’g"/'/’;;;’n
i
Aluminam f 2.3 X 105 0.82 X 108
Rismuth —1.66 X 107 —1.70 X 108
Copper ~0.98 X 105 —0.11 X 108
Diamond —2.2 108 —0.62 X 108
Gadolirdum chloride (GdClg) <7 2760 X 103 114.0 X 108
Gold —3.6 > 108 --0.19 X 108
Magnesium” 1.2 X 1073 0.69 X 108
Mercury 3.2 X 10°% —0.24 X 10~8
Silver —2.6 X 107% ]  —0.25 K 108
Bodivm —0.24 X 105 ~0.25 K 108
Titanium , 7.06 X 10-3 1.57 X 108
Tngsten 6.8 > 1075 0.35 % 108
Carbon dioxide (1 atm) —(.89 X 108 —0.53 X 168 ‘
Hydrogen (1 atin) --0.21 X 108 --2.47 X 108
Nitrogen {1 atm) —0.50 ¥ 16-8 —0.43 X 10~%
Oxygen (1 atm) 209.0 X 108 155.0 X 10-8% |
— |

* Data obtained from the Handbook of Chemistry and Physics, 33rd edition,
Chemical Rubler Publishing Co., Cleveland, Ohio. Practically all sources of
data list magnetic susceptibilities in gaussian {cgs) units; if the superseript (1)
is used to indicate the constant in the gaussian system, then X, = 4#X‘Y) and
Xpn,mass = 47 X 10~3x(1}m).maus~

A linear retationship between M and H implies also a linkar relationship

between B and H:
B = uH, {10-37)

where the permeability p 18 obtaived from the combination of Egs. (10-26)

and (10-33); .
o= po(l -+ Xp). (10-38)

The dimensionless quantity
Km = —I;{ = 1 -+ X (10—39).
o

is sometimes tabulated instead of x,,. 'This quantity, K, is called the
relative permcability. For the paramagnetic and diamagnetic materials
of Table 10-1, it is evident that K, is very close to unity.

The ferromagnetics form another class of magnetic material. Such a
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Towry (O-2

PropEriieg 07 FERROMAGRNEYIO Mu"umm AT ooy
TymprraToRE™

&, = satnravion wagnetization, M. = magnctic intensity
reguired for saturation, H, = coercivity, B. = remaneneco

. e s e e e ey

} Material Comp(osition. f uoM,, iy o,

f O Iow/m# amp,/ meXuniam

1 1

Jen s ) ol -

{ .

| Tron (annealed) | 2.16 1.6 X 168 3,500

i Cobals {139 7.6 % 165

| Nickel P01 5.5 % 108

CALLovs : &

i ! &mp/m

| Tron-silicon ! 96 Fe, 4 Si boios | 2a 7,000

i Permalloy [ 55 We, 45 Ni ;160 24 25,000

v Mumetal 50w 2 Cr, ©085 4 oo,000
; 77 Ni, 18 Fe b ; g

i Permendur 30 Co, 50 te Coz4d 16 ' 5,000

I Mn-Zn ferrite M,Z00 - Po034 | 16 2,500
! FegQy { !
i Ni-Zn ferritc WizZnsg .z i 0.37 30 ! 2,600

| B | ;
; | w,/m* !
. Cobalt steel 52 Fe, 36 Co, 7W, | 095 | 18 X 0% | |
| 35Cr 07C é ! i
' Alnico V 51 Fe, § AL 14 Ni 126 | 44 X 107 |
| 2% Co, 3 Cu ; | !
b e e e ! e = e+ i i et e ot e e e e o

¥ Data from American Institute of Physies Hondbook, MeGraw-ill, New
York, 1957,

material is characterized by a possible permwapent magretization and by
the fact that its presence usually bas a profound effect on the magnetic
induction. Ferromagnetic materials are no! linear, so that Egs. (10-32)
and (10-37) with coustant X and & do not apply. {t has been expedient,
hovwaver, to use kg, (10-37) as the defining equation for u, Lo, with
po= u(¥), but the reader should be cauuioned that this practice can
fead o difficulty in cevtain mua.aons I the p of a ferroragnetic material
18 defined by Yq. (10-37), then, depending on the value of ¥, u goes
through an entire range of values from infinity 1o zero aod may be either
positive or negative. The best advice which can be given is to consider
each problem involving fercomagnetism separately, irv to determine
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Fie. 10-6. Magnetization curve and relative permeability of commercial
iron (annealed).

which region of the B-H diagram is important for the particular prob-
lem, and make approximations appropriate to this region.

First, let us consider an unmagnetized sample of ferromagnetic ma-
terial. If the magnetic intensity, initially zero, is increased monotonically,
then the B-H relationship will trace out a curve something like that
shown in Fig. 10-6. This is cailed the magnelization curve of the material.
It is evident that p’s taker from the magnetization curve, using the
expression p == B/H, are always of the swume sign (positive), but they
show a rather large spectrum of values. The maximum permeability
occurs at the “kunee” of the curve; in some materials this maximum
permeability is as large as 10%u;; in others it is much lower. The reason
for the knee in the curve is that the magnetization M reaches a maxi-
mum value in the material, and

B = uo(H + M)

continues to increase at large ¥ only because of she po¥ term. The
maximum valae of M is called the saluration magnetization of the material.

Next consider a ferromagnetic specimen magnetized by the above
procedure. If the magnetic intensity H is decreased, the B-H relation-
ship does not follow back down the curve of I'ig. 10-6, but instead moves
along the new curve of Fig. 10-7 to point r. The maguetization, once
established, does not disappear with the removal of H; in fact, it takes
a reversed magnetic intensity to reduce the magnetization to zero. If H
continues to build up in the reversed direction, then M (and hence B)
will establish itself in the reversed direction, and Fig. 10-7 begins to
show a certain symmetry. Finally, when H once again increases, the
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B

Fia. 10-7. Typical hysteresis loop of a ferromagnetic material.

operating point follows the lower curve of Fig. 10~7. Thus the B-H curve
for increasing H is entirely different from that for decreasing H. This
phenomenon is called hysteresis, from the Greek word meaning “to lag”;
the magnetization literally lags the exciting field.

The curve of Fig. 10-7 is called the hysteresis loop of the material.
The value of B at point r is known as the retentivity or remanence; the
magnitude of H at puint ¢ is called the coercive force or coercivity of the
material. From Fig. 10-7 it is evident that the value of u, defined by
Eq. (10-37), is négative in the second and fourth guadrants of the dia-
gram. The shape of the hysteresis loop depends not only upon the nature
of the ferromagnetic material (Iig. 10-8) but also on the maximum
value of H to which the material is subjected (Fig. 10-9). However,
once Hax is sufficient to produce saturation in the .material, the hys-
teresis loop does not change shape with increasing Hijax.

For certain applications it is desirable to know the effective permea-
bility of a material to a small alternating H-field superposed on a large
constant, field. Thus if AB is the change in magnetic field produced by
a change AH in the magnetic intensity, the incremental permeability pin
ig defined by

Ko = 50 (10-40)
and is approximately equal to the slope of the hysteresis curve which
goes through the point in question.

Ferromagnetic materials are used either (1) to increase the magnetic
flux of a current cireuit, or {2) as sources of the magnetic field (perma-
nent magnets). For use as a permanent magnet, the material is first
magnetized to saturation by placing it in a strong magnetic field (i.e., by
placing it between the poles of an electromagnet or by placing it in a
solenoid subjected to a momentary large current). However, when the
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permanent magnet is removed fromn the exiemal field, it will in general
be subject to a demagnetizing field; this wili be dismussed in detail in
Sections 10--10 and 10-11. Thus the second quadrant of the hysteresis
loop diagram is the important pari of the B-Ji relatiouship for a perma-
nent magnet material (Fig. 10-10).

107 Boundary conditions on the fieid vectors. DBefore we cap solve
magnetic problems, cven simple onues, we must kiew how the field vee-
tors B and H change in passing an interface between two media. The
interface to be copsideved may be hetween twa media with differcnt
magnetic properties, or between a material medium and vacuum.

Consider two media, 1 and 2, ie contact,;as shown in Fig. 10-11. Let
us construct the small pillbox-shaped surface S which intersects the inber-
face, the height of the pillbox being negligibly small in comparison with
the diumeter of the bases. Applying the flux integral, Eq. (10-32), to
the surface S, we find

B2 M n2 AS ‘{" Bl . 111 AE; i Y

where n, and n; are the outward-directed normals to the upper and
lower surfaces of the pillbox. Sinee ny == --n;, and since either of these
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Fic. 10~11.. Boundary conditions on the field vectors at the interface be-
tween two media may be obtained by applying Gauss’ law to S, and integrat-
ing H - dl around the path ABCDA.

normals may serve as the normal to the interface,

(B2 — B)_) *Np = 0, (10’413)
or
By, — By, = 0. (10-41b)

Thus, the normal component of B is continuous across an interface.
A boundary condition on the H-field may be obtained by applying
Ampere’s circuital law, Eq. (10-31), to the rectangular path 4BCD in
Fig. 10~11. On this path the lengths AB and CD will be taken equal
to Al and the segments AD and BC will be assumed negligibly small.
The current through the rectangle is negligihle unless there is a true
surface current. Therefore
H, Al 4 H, - (- Al = [j, x Al (10-42a)
or
Hy — Hy, = ljs X Lo, (10-42b)

where j, is the surface current density (transport current per unit length
in the surface layer) and 1y is a unit vector in the direction of Al. Thus
the tangential cormponent of the magnetic intensity is continuous across
an interface unless there is a true surface current, Finally, since
Eq. (10-42) holds for any segment Al which is parallel to the interface,
the equation may be written as

np X (H2 _ Hl) = js. (10'420)

Before completing this section, we shall prove one other important
property of the magnetic induction B, namely, that its flux is every-
where continuous. Let us focus our attention on a region of space, and
construct magnetic field lines, which are imaginary lines drawn in such
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B,

Fig. 10-12. A tube of magnetic induction.

a way that the direction of a line at any point is the direction of B at
that point. Next we imagine a tube of flux, a volume bounded on the
sides by lines of B but not cut by them (Fig. 10-12). The tube is termi-
nated on the ends by the surfaces S; and S;. Applying the divergence
theorem, we obtain

fV divBdr = 0
= [ B-nda / B-n'da
S Sy
= ®(8y) — (). (10-43)

Thus the same magnetic flux enters the tube through S, as leaves through
Se. The flux lines can never terminate, but must eventually join back
onto themselves, forming closed loops.

The previous statements apply, of course, to the B-field; it is perhaps
worth while noting that they do not apply to the H-field, since divH =
—div M, which is not everywhere zero. Thus, from the divergente theo-
rem applied to a tube of magnetic intensity, we find

H-nda——/s H-n'da
2

31
= [ o dv. (10-44)
1 4

The diséontinuity in the magnetic intensity flux is determined by the
total magnetie pole strength intercepted by the flux tube.

10-8 Current circuits containing magnetic media. In Chapter 8 we
dealt with magnetic fields produced by current circuits in vacuum. One
of the examples taken up in the problems (Problem 8-15) was that of a
uniformly wound toroid of N turns carrying current I (Fig. 10-13).
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Fig, 10-13%. A toroidal winding,

Let us solve the torsid problem agein, but this time with the region in-
side the windings filled with a ferromagnetic material which we shall
agsume to be homogencous, isotrople, and ori;rn'aliy unmagnetized. The
field veeror obtained most easily is the maguetic iutensity, since this ig
related to the currenc iu the windings by means of Ampere’s circuital
faw, Eq. {10-31). T{ we apply (10-31) to « eircular path whieh is coaxial
with the leite in $he toveid, such as the dotted path shown in the figure,
symmetry argonents tell us that H s the same at all points on ihe path:

HJl = NI
or
7, - @71 : (10-45)

Here the subscript stands tor the component tangeant to the path, and
[ == 2mr is the total wath length. From Eg.o (10-26),

. N T ;
B,o= "E L po (10-46)
l
Thus the wagnetic field differs {rom thal in the vacuwum ecase by the

additive torin ol .

Only tne tangential component of B (and of H) s obtained by the
above grocedure; nevertheless, this is the only componens we expect
to be present  According to e (10-27) there are two kindf' of sources
for the.magnetic intensity: true currents and rgagnetized roaterial. It
1% easy to show that the curtent in the toroidsl winding picduces only
a tangential field. The winding is equivalest to & circular loops of cur-
rent; if we combine the loops in pairs (Fig. 10-14}, it iz evidens that cach
pair of loops produces a tangential Haid at the point in question.

The second scurce of M, the magnetized material itself, teay possibly
provide w contiibution through the pole densities: pgzr == —div M and
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Fro. (0-14. Axial pature of the fcid in s toroidal winding is shewn by come-
bining the maguetic field of the curreny loops in pairs.

&
49

o = M -n. Since the ferrorragnovic matetialdn the toroid « isciropic,
# will hove the same directinn as X Bud M arcse in response to eacients
in the toroidal windings, and vhis field is a tangeutizl cne. Thus we ex-
pect an M, only. Ou this basis, there are ne sorfaces in the toroidal
soecimen which sre iioval to M, and heree no oy, Finally, py wust

wal zero; although 37, mav be a function of r (the disvancee {rom the
axis of the toroid), the teruw AM /9 does nob contiivute to div M, The
interesting result is thoet the magnetized caterial provides no contribu-
tion to H i this case, and Fg. {10-46) gives the entire magnetic field.

fwnother problem, somewhai more comulicated than the preceding ene,
i5 that of a toroidal winding of N turns surcounding a ferronmagnetic
specimen in whick g narrow ab gap of width  has veen cui (Vg 10--13)
We shall not distinguish between an alr gap and a vacuwn gap, siaee i
iz evident from Table 10-1 thay the permeability of air difers cady
Jightly from py. In this problem Anmpere’s cireuital taw does not sutfice
io determine H, beeause syuunetsy arguments cannot be invoked to state
that B 15 the sae at oll points on a circwlar path. Thus we firsl go to
the source suuation, (10-27).

Again we note that there are two contributons to the magnetic in-
tensity, one from: teue currents and one from the magnetization. Sinee

2

oy
24

g, 10-78. A toroidad wituling sarrounding a ring of magnetic matenal vwith
B0 8L gag.
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the toroidal winding is identical to that of the preceding problem, the
contribution to H from the true currents must be the same as before.
Denoting this contribution by the subscript 1, we may write

Hy, = Nll : (10-47)

Qur problem then, is to evaluate Hj, or the VU* term. To keep the
problem simple, we make the plausible assumption of uniform tangential
magnetization M, throughout the ferromagnetic material; this will pro-
vide us with all the essential physics without complicating the algebra.
Then pjr equals zero, but opr = =M, on the pole faces bordering the
air gap. The situation here is strongly reminiscent of the electrostatic prob-
lem involving a charged parallel-plate capacitor. In fact, the mathe-
matical formulation of the potential is identical in the two cases. If the
air gap is exceedingly narrow, then, approximately,

Hy, = M, (in the gap),

(10-48)
Hy, = 0 (elsewhere).

However, this result is not consistent with Ampere’s circuital law, since

56}1, dl == ?ﬁ(H” + Hy)dl = NI+ Md # NI

unless d is negligibly small. For a narrow, but not negligibly small,
air gap, a better approximation is

Hy, = M, (1 — ?) (in the gap),
(10-49)
Hyy = —M t% (in the material),

which not only satisfies Ampere’s circuital Jaw, but also provides for the
continuity of the normal component of B across the pole faces.
Combining Egs. (1047) and (10-49), and substituting the result in
Nq. (10-26):
= uo(H + M),
we find

B, — ”0?’ Ly oM, (1 _ %) (10-50)

both in the gap and in the magnetic material.
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10-8 Magnetic circuits. The magnetic flux lines, as we have seen, form
closed loops. If ali the magnetic flux (or substantially.all of it) associated
with a particular distribution uf currents is confined to a rather well-
defined path, then we may speak of a magnetic circuit. Thus the examples
discussed in Section 10-8 are magnetic circuits, since the magnetic flux
is confined to the region inside the toroidal winding. In the first example,
the circuit consisted of just one material, a ferromagnetic ring; in the
second case, however, we encountered a series circuit of two materials:
a ferromagnetic material and an air gap.

- — N turns

—-Puth

Fre. 10-16. .\ magnetic circait.

Let us consider a more general series circuit of several matetials sur-
rounded by a torcidal winding of N turns carrying current /, such as
that shown in Fig. 10-16. From the application of Ampere’s circuital
law to & path following the circuit (the dotted path in the figure),

f}{ dl = NI.

It is convenient to express H at each point, along the path in terms of
the magnétic flux &; using B = plf and ¢ = BA, where A4 is the erose-
sectional area of the circuit at the point under consideration, we find

Since we are dealing with a magneric circuit, we expent & to be essentially
constant at all points iu. the ecircuit; hence we may take @ outside the
integral: i

dl oy

@f - == NI. (10--51)

HA
This is the basic magnetic circuit equation which enables us to solve
for the flux © i lLerme of the cirenit parameters.
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Equation {10-51) reminds us of the similar equation for a series cur-
reni circuit: IR = &. By analogy, we define the magnetomotive force
(mmf):

mmf = NI, (10-52)
and the reluctance ®,
dl
®R = f A (10-53)
Using these definitions, we may rewrite (10-51), as
— Tomf 5
b = & (10-51a)

If the cireuit is made from several homogeneous pieces, each of uni-
form cross section, the reluctance may be approximated:

® ==

=D ®; (10-53a)
7

Hence the total reluctance of the series circuit is just the-sum of the
reluctances of the individual elements. The analogy between magnetic
and current circuits is even closer than has been indicated, since the
resistance of a current circuit is given by

dl
R = ;A‘

which differs from (10-53) only through the substitution of ¢ for u.
Because of this analogy, it is apparent that series and parallel reluctance
combinations may be combined in the same manner as series and parallel
resistance combinations.

The magnetic circuit concept is of most use when apphed to circuits
containing ferromagnetic materials, but it is for just these materials
that we experience a certain amount of difficulty. For a-ferromagnetic
material, u = u(H), and we do not know H in the material until the cir-
cuit problem i3 completely solved and @ determined. The situation is
not hopeless, however; in fact, the problem can be solved rather easily
by an iterative procedure: (1) As a first guess, we might take H =
NI/liotar, where lioiny 18 the total length of the circuit. (2) The perme-
ability of each materigl in the circuit is obtained for this value of H from
the appropriate magnetization curve. (3) The total reluctance of the
circuit is computed, and (4) the flux & is calculated from Eq. (10-51a).
(5) From &, the magnetic intensities in the various eleraents may be
found and the permeabilities redetermined. (6) The procedure is repeated,
starting again with item.(8). One or twd iterations are usually sufficient
to determine & to within a few percent.
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The reluctance &; is inversely proportional o the permeability u;.
Since the permeability of ferromagnetic material may be 100 times uo.
10%ug, o eveu 10%;; in certain circumstances, it is apparent that ferro-
piagnetic material l(orms a low-reluetance path for the maguetic flux
If the magnetie fiux encounters two parallel paths, one high reluctance ®),
wnd the other low reluciance ®;, then most of the flux will pass through
the jow reluetance path, and the equivalent reluctance of the combina-
yon is given by & = Gu®R,/ (R, + ®y). Looking now at Fig. 10-17, we
note that if materisls .{, B, and € are ferromagnetic, most of the flux
will follow the ferromsgnetie ring, because the air path between the
ends of the solenoid is of relatively high reluctance. Thus the magnetic
civeuits of Figs. 10-16 and 10 17 are essentially cquivalent.

Fig. 10-17. This magnetic circutt is Lquiva‘(nt to the magnetic circuit of
Tig. 10-16ii the permeabiiities of A4, B, and ' ave Jarge.

I{ matrerials B and C are {ferrommagnetic, but A represents an air gap,
the two eireuits are no louger equivalent because there is some leakage
of flux from the ends of the solenoid in Fig. 10-17. How much flux leaks
out of the eireuit depeuds on the reluetance ratio of magnetic eircuit to
leakage path. When the air gap A is small compared with the length of
the solenoid, the leakage flux is small and in approximate calculations
may be neglected. Rehictance of the leokage path has been worked out
toc many common geometries, and is given in a number of standard
reference books.* The circuit concept is certainly a eruder approximation
in the magnetic ease than in the electrical one because (1) the ratio of
eircuit reluctance to leakage reluctance is not as small as the correspond-
ing resistavce ratio of the electrical case, and (2) the Jateral dimensions
of uhe magnetic cireuit are usually not negligible in comparison with
its length; nevertheless, the magnetic circuit concept has proved to be
extremely useful.

* See, c.g., Flectromognetic Devices by Herbert C. Roters (John Wiley and
Sons, Inc, New York, 1941) Chapters [V and V, and Magnelic Circuits and
Transformers, by the M.L.T. Staff (John Wiley and Sons, Inc., New York, 1943).
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10-10 Magnetic circuits containing permanent magnets. The magnetic
cireuit concept is useful also when applied to permanent-magnet circuits,
i.e., to flux circuits in which ® has its origin in permanently magnetized
waterial.  We shall find it convenient to use the abbreviation P-M for
permanent 'nagnet.  Because of the complicated B-H relationship in
P-M material, the procedure outlined in the preceding section is not
well suited to‘the problem at hand. Instead, we start again with Ampere’s
circuital law, applied now to the flux path of the P-M circuit:

9{11 dl == 0,
or

/abHdl — —L H dl. (10-54)

(P-M)

In writing Eq. (10-54) we assume explicitly that the P-M material lies
between the points b and a of the flux path, whereas from a to b the flux
path encounters no P-M material. The use of B = uf and & = BA in
the left side of Eq. (10-54) yields

a

‘~b
di 17 dl. (10-554)

& = =
a MA b(P‘M)

The magnetic flux @ is continuous throughout the entire ecircuit, so
¢ = B, 4,, where B, is the magnetic field in the permaneut magnet
and A,, is its cross-sectipnal area. The right side of Eq. (10-55) may be
written —H,,l,,, where H,, is the average magnetic intensity in the
raagnet and [, is the length of the magnet. Thus

Bpdn®ap = —Huly (10-55b}

i3 the equation that links the unknown quantities #,, and H,,. This
equation can be solved simultanconsly with the hysteresis curve of the
magnet Lo yield both 8,, and H,,.

As an example of & P-M eireuit, consider the circuit composed of a
magnet, an air gap, and soft iron (Fig. 10-18). It is important to realize
that soft iron is not a P’-M material; its hysteresis is actually negligible

Fig. 10-1&. A permanent-inagnet eircuit.
For the circuit shown, the magnet has a
ratler large demagnetizing field acting upon
it; the demagnetizing ficld can be reduced
by inecreasing the length of P-M material,
e.g. by placing additional magnets in the
side arms of the circuit.

Soft iron
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- . lmdg
Bn = = g, vellm

B-H relationship
for P-M

- poHm O poHm

Fig. 10-19. Demagnetizing line for. 2 magnetic circuit. (The subscript m
stands for magnet.) Since uoH,. is plotted instead of H,, the slope of the de-
magnetizing line is just — (I, 4,/l;A»), in other words, a pure number.

compared with that of the magnet, and u; = B;/H; is a positive quantity.
The reluctance g is given by

l; lg .

®Rap = —5— + — 10-56)

P wed T pod, ( !

where the subseripts 7 and g refer to the soft iron and air gap, respec-

tively. If the air gap is not too narrow, Eq. (10-56) may usually be

approximated by I
Rap =~ —%—
I"JAg
which, when combined with {10-55b), yields
— {mAG T
B, = l—”———gAm uoH ,, (10-57)

a linear relationship between B, and H,,. This equation is plotted along
with-the hysteresis curve of the magnet in Fig. 10-19. The intersection
of the two curves gives the operating point of the magnet. The problem
is now essentially solved: from a knowledge of B,,, the flux & and the
flux density B, are easily determined.

There are, however, two points which deserve to be weniioned. The
first is: What does one use for the effective area A, of the gap? As a
first approximation, we might take A, equal to the pole-face area of the
soft iron, and if the air gap is not too large, this approximation is ade-
quate. We shall not enter into a detailed discussion cf this point, but
instead refer the interested reader to the references cited in the previous
section. Secondly, the problem of leakage flux is just as important in
P-M cirguits 2s it is in other types of magnetic circuits. For the prob-
lems presented in this book, however, we shall usually make the assump-
tion that leakage flux may be neglected.
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Finally, we note that H,, as determived from Fig. 106-19 is negative,
i.e., the magnetic intensity in the magnet is a demagnetizing effect. This
is a general result; when the magnetic flux has its origin 1y a permanent
magnet, then the magnet itself is subjected to a demagnstizing field.

10-13 Boundary-value problems involving magnetic materials. In the
preceding sections we saw how the magnetic circuit concept snabled us
to obtain approximate solutions to certain types of magnetic problems.
However, when the magnetic flux does not follow a well-defined path,
then more powerful mathematical technigques must be brought to bear.
In this section we shall be concerned with a particular class of problems,
namely, caleulation of magnetic fields inside magnetic material in which
no transport current exists.

When J = 0, the fundamental magnetic squations (10-28) and (10--30}
reduce to

divB = 0, (10--28)
curl H == 0. (10-58)

Equation (10-58) implies that H can be derived as the gradient of a
scalar field. This should not surprise us, because accordiag to the source
equation, (10-27), the contribution to H {from magnetic material is already
expressed in this form, and in Section 8-8 we showed that the field
(actually the proof presented there must be generahized to the H-field)
produced by transport currents can be so derived whexn the local current
density is zero. In accordance with Eg. (10--58), we write

H = —%UF (10-59)

where U* is now the magnetic scalar potential due to all sources.

There are two types of magnetic waterial for which the magnetic
field calculation reduces to a simple boundary-value problem: (i) linear
or “approximately linear” magnetiv material for which B == %, and
(2) a uniformly magnetized piece of material for which div M = 0. In
both cases Eq. (10-28) reduces o

divi == 0. (10-66)
Combining this result with (10-59), we obiaii
ARI AR {(10-61)

which 1 Laplace’s equation. Thius the mwagneiie groblem vedunss to
finding a solution to Iaplace’s ogusiion which satiafies the boundary
conditions. ¥ may then be enlentated as minns fhe gradient of the mag-
netic potential, and B obtained from
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B = H

B = po(B + M),

or

whichever is more appropriate.

Twu magnetic problems serve ta lustrate the usetfulness of the method
just desrribed; additional exercises of this type will be found in the prob-
lems at the end of the chonter, OQur ficsl exarspie deals with a sphere of
UInear magnetic material of radius ¢ and permeability u pizeed in a region
of space coataining an indiuily uniform magnetic field. By, We should
like to determine how the maguetic {ield is modified by the presence of
the sphere and, in particular, ic desermine the magnetie field in the
sphere itself. The preblem is closely analogous vo the case of a diefectric
sphere in a uniform electric field, which was solved in Seetion 4-9. Thus,
choosing the origin of our coordinate system at the center of the sphere
and the direction of By as the polar direclion {s-dwrection), we may ex-
press the potential as a sum of zonal harmonies.  Again, all boundary
conditions can be satlsfied by means of the cos & harmonies:

Ui(r, &) = Ayrcosd 4+ Cyr 2 oo 8 {10-62)
for the vacuum region (1) outside the sphere, and
. \
US(r, 8) = Agyrceos 8§ -+ Cor™ " con @ (10-63)

for the maguetic material region (2}, Tue constanis 4, A, €, and
(s must be determined feam the boundary cond

At distances far away from the sphere, the magnetic field retains its
uniform character: B == Bok, and /T —» —(Bo/ue)r cos 9. Hence 4, =
—(Bg/izs). Sinee UF and its assoviated magnetic field csbnot become
infirite at any point, the coeflicient Cy must be set eunl 1o zero. Having
cooand at oo 0, we next turn

or
B\ . L ) :
(»Q sin § W E = g sin B, (10-54;
N M/
‘41
} 3 { o A by e
Byoon € + dug P —pd {14-85}

Solving these two sqoations simuitaneously vields
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4, == — ,__'3.1}.2__“
o2 (1 -+ 210)
and

B 3
C1 = [(u/ue) — 1] (‘ﬁ“;‘—_(%;;)"

whence the magnetic fields inside and outside the sphere are given by

3Bk
By o= — ook 10-66
27 T 2o/ 1) (10-66)

and
o) — 1] fa\? .
B; = Bgk -+ [(—&/-@2—“——] <~> By(2a,cos 8 -+ agsin ). (1067
1 o AEPIAG o(2a, 1 g ). )
The second problem we wish to solve deals with a permanent magnet.
We should like to determine the magnetic field produced by a uniformly
magnetized sphere of magnetization M and radius @ when .0 other mag-
netic fields are present. Taking the magnetization along ihe z-axis and
the origin of our coordinate system at the center of the sphere, we may
expand the potential in zonal harmonics:

i, 8) = Y, Crar~"*t0P, (9) (10-68)

n=0

for the vacuum region (1) outside the sphere, and

Us(r, 0) = D Apnr"Pr (6) (10-69)

n==0

for the permanent magnet region (2). Here we have purposely left out
the harmonics with positive powers of r from expansion (10-68) since
these would become Jarge at large distances, and we have left out the
negative powers of r in (10-69) since these would become infinite at
the origin. From the boundary conditions at r = a:

Hyy = Hy,,
Blr - B2r;
we obtain
= it ] d
—~(n+1 ny,—1 -
;)(Cl,na @D — AgnaMaTl S Pa (6) = 0 (10-70)
and

I“OCI.O(JI—-2 -+ Mo Z Pn(0)[C1n (n + l)d—(n+2) -t AZ.nnan—I]
n==1
—upM cos § = 0. (10-71)
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Since each P, (6) is a distinct function of 6, none of them can be
copstructed from s linear combination of other P,’s. Hence, in order
for Egs. (10-70) and (10-71) to hold, each of the terms involving a P,
or a dP,/d6 must vanish individually. From the n = 0 terms,

and

Therefore C;,p = 0, and 4, is undetermined. But As g is just the
constant term in the potentiai; this may be set equal to zero without
affecting H or B.

From the n = -1 teruns,

Ci07% — Ay =0
and
2(’1_](1_‘3 -+ Ag'l — M = 0,

which may be solved simultaneously to yield

01,1 = %M(la
and
-AZ,I = %Z‘[.

For all n > 2, the only €’y , and A, , compatibie with the two equations
arc Cl,n = 0 and Ag'n = 0.
Putting these results back into Egs. (10-68) and (10-69), we obtain

Ui, 0) = M (a®/r®) cos 8 (10-72)
and
Ul(r, 6) = §Mr cos 6. (10-73)

The magnetic intensity H may be calculated from the gradient operation,
with the result:
H; = tM(a®/r®)[2a, cos 6 - a, sin 6], (10-74)

H, = —iMk. (10-75)

Thus the external field of the uniformly magnetized sphere is just a
dipole field, arising from the dipole moment $ma®M. The magnetic in-
tensity inside the sphere is a demagnetizing field, a result which is in
accord with remarks made earlier. We see, therefore, that the magnetized
sphere is subjected to its own demagneiizing field. The factor 4 =:
(1/4m) (4 /3) in Eq. (10-75) depends explicilly on the spherical geometry;
the quantity 47/3 is known as the demagnetization factor of a sphere.
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The demagnetization {actors for other geometrical shapes have been cal-
culated and are tabulated in many publications.

The external magnetic field B, is just wy times Eq. (10-74). The
magnetic induction in the sphere is

B, = 2uoMk = %u M. (10-76)

ProsLeMs

10-1. A permanent magnet has the shape of 2 right circular cylinder of length
L. I the magnetization M is uniform and bas the direction of the cylinder
axis, find the magnetization current Jeosities, Sy and ju. Compare the current
distribution with that of a solenoid.

10--2. Find the distribution of maguetiaating currents corresponding to a
uniformly magnetized sphere with magnetization M. According to Eq. (10-76)
the magnetic induction B is uciform inside such a sphere. Can you use this
information to design a current winding which will preduce a uniform mag-
netic ficld in a spherical region of space?

10-3. (a) The magnetic moment of 4 macroscopic body is defined as fr M dv.
Prove the relationship

fV M dy = _/’V tou v + fﬁs ros da,

where 8 is the surface bounding V. [Hint: Refer to the similur problem involv-
ing P ia Chapter 4.] (b) A permanent rhagnet in the shape of a sphere of radius
R has uniform magnetization Mg in the direction of the polar axis. Determine
the magnetic moment of the maguct from both the right and left sides of the
equation in part {a). :

10-4. (2) Given a magnet with magnetization specified: M(x, ¥, z). Each
volume element dv may be treated as a small magnetic dipole, M dv. 1f the mag-
net is placed in a uniforin magnefic field Bg, find the torque on the magnet in
terms of its magnetic moment (defined in Problem 10-3). (b) A magnet in the
shape of a right circular cylinder of length I, and cross section A is uniformly
magnetized parallel to the cylinder axis with magnetization Mo. The magnet
iz placed in a uniform magnetic field Bo. Find the torque on the magnet in
terms of its pele densities.

10-5. An elfipsoid with principal axes of lengths 2a, 20, and 2b is magnetized
uniformly in a direction parallel te the 2b-axis. The magnetization of the
ellipsoid is M. Find the magnetic pole densitics for this geometry.

* See, for example, B. C. Staner, Philosophical Magazine 36, p. 803 (1945),
and BR. M. Bozorth and D. M. Chapin, Jeurnal of Applied Physics 13, p. 320
(1942)
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10-6. Given a spherical shell, inside vadius K1 and outside radius Rg, which
is uniformly maguetired in the direction of the z-axis. The magnetization in
the shell is Mg = Aok, Find the seaiar potential U* for points on the z-axis,
hoth inside and outside the shiell.

10-7. A permanent magnet in the shape of & right cireular eylinder of length
L and radius K 15 oriented so that s symmetry axis coincides with the z-axis.
The origin of cocrdinates is at the center of the magunet. If the cylinder has
uniform axial magnetization M, (a) determine {7*(z) at points on the symmetry
axis, both inside and cutside the magnret, and (b) use the results of part (a) to
find the maguetic induction B, at points on the symmetry axis, both inside
and outside the magnet,

10-8. A sphere of mugnetic material of radius B is placed at the origin of
coordinates. The magnetization is given by M = {az? -+ b)i, where a and b
are constapis. Determine all pole densities and magnetization currents.

10-9. An annealed iron ring of mean length 15 cio is wound with a toroidal
coil of 106 turng. Deiermine the magnetic induction in the ring when the cur-
rent in the winding is (a) .1 amp, (b) 0.2 amp, and (¢) 1.0 amp.

10-10. A soft-iron ring with a 1.0 cia air gap is wound with a toroidal winding
such as is shown in Fig. 10-15. The mean Jength of the iron ring is 20 em, its
eross sextion is 4 em?, and its permeability is 3000 po. The 200-turn winding
carries a current of 10 amp. (a) Cailculate the magnetic induction in the air
gap. (b) Find 8 and H inside the iron ring. .

10-11. Calculate the sel-inductance of the ecurrent cireuit described in
Problem 10-10.

10-12. A magnetic eircuit in the shape of

is wound with 100 turns of wire earrying a current of 1 amp. The winding is
located on the extrems left-hand leg of the circuit. The height of the circuit is
10 cin, itgdength is 20 cm, the cross section of cach leg is 6 cm?, and its perme-
ability 18 5000 uo. Neglecting leakage, valoulate the magnetic flux through the
central leg and also through the extreme right-hand leg of the circuit.

10-13. A magnetic circoit in the form shown in Fig. 10--18 has a permanent
magnet of length 8 cm, a goft-iron path length of 16 cm, and an air gap of 0.8 cm.
The cross section of the iron and of the magnet is 4 cmn? on the average, whereas
the effective cross-sectional area of the air gap is 3 em?. The relative perme-
ability of the iron is 500U. (a) Calculate the magnetic flux density in the gap
for two different magnet materials: sintered oxide and 359, Co steel. Neglect
leakage. {b) The dimensions of the magnetic circuit are altered in one respect:
the air gap is decreaged to 0.8 min. Repeat the ealeulation called for in part (a).

10-14. ¥ind the magnetic induction in a uniformly magnetized sphere for
each of the materials shown in Fig. 10-10.
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10-15. A magnetic circuit in the form shown in Fig. 10-18 has an Alnico V
magnet, of length 10 cm, a soft-iron path of 16 cm, and an air gap of ! em. It
is also wound with 800 ampere-turns of wire (in a direction tc aid the flux pro-
duced by the magnet). Find the magnetic flux density in the air gap. (Neglect
leakage, take K., = 5000 for the soft iron, and assume that the cross sections
of the magnet, soft iron, and air gap are the same.)

*10-16. Calculate the demagnetizing facter of a long cylinder which is per-
manently magnetized at right angles to the cylinder axis. The magnetization
is uniform. ' :

10-17. A long cylinder of radius a and permeability  is placed in a uniform
magnetic field Bo such that the cylinder axis is at right angles to By. Calculate
the magnetic induction inside the cylinder. Make a semiquantitative sketch
showing typical lines of induction through the cylinder. (Assume from the
heginning that U* can be completely specified in terms of the cos § cylindrical
harmonics. This assumption is justified, since all boundary conditions can be
satisfied in terms of the cos § harmonics.)

*10-18. A long cylindrical shell (outside radius b, inside radius a, relative
permeability K.) is oriented normal to a uniform magnetic induction field Bo.
(a) Show that the magnetic induction B; in the vacuum region inside the shell
is parallel to Be. (b) Show that the magnetic shielding factor h,, is given by

) Bog (Km — 1)* ( a2)
I T T e S s
’ B, ik, 1



*CHAPTER 11

MICROSCOPIC THEORY OF THE MAGNETIC
PROPERTIES OF MATTER

In the preceding chapter we were concerned with the macrescopic
aspects of magnetization. The magnetic properties of maiter were in-
troduced explicitly through the function M, and this was relited to the
magnetic induction by means of experiraentally determined parameters.
We now look at matter from the microscopic point of -view {i.e., as an
assembly of atoms or molecules) and see how the mdividual molecules
respond to an imposed magnetic field. If this procedure were carried
through completely, we should end up with theoretical expressions for
susceptibility, and B-H relationships for all types of materials. Such a
procedure is certainly beyond the scope of this book; nevertheless, we
can show rather simply how the various kinds of magnetic behavior
come about and, in addition, derive expressions which predict the correct
order of magnitude for susceptibility in certain cases. A much more
thorough discussion of the topics preseuted here is to be found in books
on solid state physics.t :

In the macroscopic forraulation we dealt with two field vectors, B and
H, which we related through the equation B = uo(H 4+ M). From the
mwicroscopic viewpoint the distinction between B and H largely dis-
appears, because we deal with an assembly of molecules (i.c., with an
as=erably of magnetic dipoles or dipole groips) in vacuum. We are con-
cerned with the magoetie field near a molecule in vacuum or at the posi-
tion of a molecule when that molecule is removed from the system. Thus
B,, = poH,,. Here the subscript m stands for “microscopic,” but in the
following sections of this chapter the symbol B,, (and H,,) will denote
a particular value of the microscopic field, namely, the field at the posi-
tion of a molecule.

It is customary when discussing the microscopic field inside matter
to relate H,, to the macroscopic B field, instead of B,, to the B field,
because both H and H,, can be written simply in terms of integrals over
the current and dipole distributions. It makes very little difference,
however, whether we calculate H,, or B,,, since they differ from each
other only by the scale factor u,.

* This chapter may be omitted without ioss of continuity.

} See, e.g., C. Kittel, Introduction to Solid State Physics (John Wiley & Sons,
Ine., New York, 2nd ed., 1956), Chapters 9 and 15. Also, J. E. Goldman, The
Science of Engineering Materials (John Wiley & Sons, Inc., New York, 1957).

217
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11~1 Molecular field inside matter. The magnetic field which is effec-
tive In its interaction with atomic currenis in sn atow or molecule is
called the molecular field B,, = wpH,,. In some textbouks it is called
the local field. This is the magnetic field at a molecular {or atomic) posi-
tion in the materisl; it is produced by all external sources and by all
molecular dipoles in the material with the exceptien of the one molecule
(or atom) at the point under consideration. [t i3 evident that B,, need
not be the gsame as the macroscopie meagnetic induction field, since the
latter quantity is related te the foree on a current elernent whose diroen-
sions are large compared with molecular diruensions,

The molecular feld may be calculeted by a procedure similar to that
of Section 5-1 for the molecular electric field in a diglectric. We consider
a material object of arbitrary shape, which for convenicace we take to
be uniformly magnetized with magnetization M. Let us cut out & small
piece of the object, leaving a spherical cavity surrcuuding the point at
which the molecular field is to be computed. The waterial which is left
is to be treated as a continuum, i.c., from the macroscopic point of view.
Next we put the materiai back into the cavity, malecule by molceule,
except for the molecule at the center of the eavity, where we wish to com-
pute the molecular field. The molecules which have 3a~£, been veplaced
are to be treated, not as a continuum, but as individual d;poles or dipole
groups.

The macroscopic field H, the magnetic intensity in the specimen, can
be expressed, according to Egq. (10-27), as

L [IxE -1, 1 / L )
H 47:' lr — ¢'|3 v/ 4ar jr — 1r'[3 daf

1 ”c_m(r—:wd,
dwjg |r — '}

where the integrals extend over all sources: J, par, and 0. The molecular
field H,, may be expressed in a similar way, except that now there are
additional contributions from the suiface of the cavity and from the
individual dipoles in the cavity. The integral of py(r — 1')/lr — ¢'|*
over the cavity volume need noi be excluded specifically, since py =
—div M = @ in the uniformly magnetized specimen. Thus

H, = H+H +/, (11-1)

where H is the macroscopic magnetic intensity in the specimen, H, is
the contribution from the surface pole density on = M, on the cavity
surfaee, and H' is the contribuiion of the various dipoles iuside the
cavity.
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J'rom the corresponding derivation in Section 5-1, H, is seen to be

H, = iM. (11-2)
Wurthermore, the dipole contribution,
¢ w Loy |3 rgre | mi -
H = %Zi: s Al (11-3)

where r; is the distance from the ith dipole to the center of the cavity,
is of the same form as the corresponding electric dipole term E’ in Sec-
tion 5~1. Thus if we restrict our interest to the rather large class of
materials for which (1i-3) vanishes, Eq. (11-1) reduces to

H, = H + M, (11-4)
and

By = weHp. (11-5)

Equations (11-4) and (1i-5) give the molecular field in terms of the
macroscopic magnetic intensity and the magnetization in the sample.
T'or most diaraagnetic and paramagnetic materials the term $M = gme
i negligibly small, but for ferromagnetic ma.terml% the correction is
quite important.

11-2 Origin of diamagnetism. Diamagnetism is the result of Lenz’s
law operating on an atomic scale. Upon the application of a magnetic
field, the eiectronic currents in each atom are modified in such a way
that they tend to weaken the effect of this field. In order to calculate
the diamagnetic susceptibility of an assembly of atoms we must know
something about the electronic motion in the atom itself. We shall assume
that each electron circulates arcund the atomic nucleus in some kind of
orbit, and for simplieity we choose a circular orbit of radius R in a plane
at right angles to the applied magnetic field. Quantum mechanics tells
us that although this picture is approximately correct, the electrons do
not eirculate in well-defined orbits. To sclve the problem properly we
would have to solve the Schroedinger equation for an atomic electron
in a magnetic field; nevertheless, our rather naive “classical” calculation
will give the correct order of magoitude for the diamagnetic susceptibility.

Before the magnetic induction field is applied, the electron is in equilib-
rium in its orbit:

F, = muwiR, (11-6;

where F, is the electric force holding the electron to its atom, wg is the
angular frequency of the electron in its orbit, and ., is the electron mass.
Application of a magnetic field exerts an additional force —ev X B,, on
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the electron; assuming that the electron stays in the same orbit, we find
F, £ ewRB,, = mw’R,
whieh, when combined with Eq. (11-6), yields
+ewB,, = Mm(w — wy)(w + wg). (11-7)

The quantity Aw = w — wg is the change in angular frequency of the
electron. Thus the electron either speeds up or slows down in its orbit,
depending on the detailed geometry (i.e., on the direction of v X B,
relative to F,), but in either case in accordance with Lenz’s law: the
change in orbital magnetic moment is in a direction opposite to the ap-
plied field. This statement may be easily verified by the reader.

Even for the largest fields which can be obtained in the laboratory
(~10 webers/m?), Aw is very small compared with wg, so that (11-7)
may always be approximated by

e
Aw = =4 'é*m: Bn. (11—8)
The quantity (e/2m.)B,, is known as the Larmor frequency.

Up to this point we have merely assumed that the electron stays in
the same orbit. We have used this assumption together with the equilib-
rium of forces to derive (11-8). For the electron to stay in its orbit,
the change in its kinetic energy as determined from Faraday’s law of
induction must be consistent with Eq. (11-8). When the magnetic field
is switched on, there is a change in flux through the orbit given by
wR? AB,,. This flux is linked by An electron loops, where An is the num-
ber of revolutions made by the electron during the time in which the
field changes. The changing flux produces an emf

g = rRz%An = sz%ABm. (11-9)
The energy given to the electron in this process is &e¢, and this appears
as a change in kinetic energy:

m R’ — of) = erR* 9 AB, (11-10)
But AB,, is just the final value of the field B,,, and the average value
of dn/dt = (w -+ wg)/4mw. Thus

Aw = 9—7;-1—Bm,

in agreement with Eq. (11-8). Thus the assumption of a constant orbit
leads to no contradiction between (11-9) and the force equation.
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The change in angular velocity predicted by Eq. (11-8) produées a
change in magnetic moment given by

= — % pp2.°
Am 21(_7rR T

B,

4me R2uoH,,. (11-14)
In order to find the magnetization, this result must be summed over all
electrons in a unit volume. - For a substance containing N molecules per
unit volume, all of the same molecular species,

7,2
M~ Nebog Sp2 (11-12)

where the summation is over the electrons in one molecule. For diamag-
netic materials, H,, differs very little from H, so the diamagnetic

susceptibility Ne
__ NePpg 2 1

X = = Z Ri (11-13a)
This result has been obtained on the assumption that all electrons circu-
late in planes perpendicular to the field H,. When the orbit is inclined,
so that a normal to the orbit makes an angle 6; with the field, only the
component of H,, along this normal (H,, cos 6;) is effective in altering
the angular velocity of the electron. Furthermore, the component of
Am parallel to the field is smaller by the factor cos §;. Hence a better
approximation to the diamagnetic susceptibility is

2

Xw = — Nfﬁ‘? T REcos’ s (11-13b)
Diamagnetism is presumably present in all types of matter, but its effect
is frequently masked by stronger paramagnetic or ferromagnetic behavior
that can occur in the material simultaneously. Diamagnetism is par-
ticularly prominent in materials which consist entirely of atoms or ions
with “closed electron shells,” since in these cases ali paramagnetic con-
tributions cancel out.

11-3 Origin of paramagunetism. The orbital motion of each electron
in an atom or molecuie can be described in terms of a magnetic moment;
this follows directiy from Eq. (8-22). In addition, it is known that the
electron has an infrinsic property called spin, and an intrinsic magnetic
moment associated with this spinning charge. Each molecule, then, has
a magnetic moment m; which is the vector sum of orbital and spin mo-
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ments from the various electrons in the molecule. Briefly, paramagnetisin
results from the tendency of these molecular moments to align them-
selves with the applied field, just as the current cireuit of Eq. (8-19)
tends to align itsed with the field.

The situation is not quite so straightforward as that for a current
circuit, however. There are, in fact, two complications: (1) in the presence
of a ivagnetic field the electronic motions are quantized such that each
orbital and spin moment has only a discrete set of orientations relative
to the field direction. Iurthermore, no two electrons in the molecule
can occupy the same quantum state, so that if there are just enough
electrons per molecule to fill “electron shells,” then all possible orientations
must be used and m; is zero. Of course, paramagnetism can occur only
when m; ¢ 0. (2) The electronic motion inside an atom which gives
rise to m; also produces an angular momentura about the atomie nucleus;
in fact, ru,; is linearly related to this angular momentum. Under these
conditions the tragnetic torque does not direcily align the dipole mo-
ment m; with the field, but causes it to precess arcund the field at con-
stant inclination.* 7The atoms (or molecules) in cur material system are
in thermal contact with each other. In a gas or liquid the atoms arc
continually making collisions with one another; it a solid the atoms are
undergoing thermal oscillation. Under these conditions the various m,
can interchange magnetic energy with the therma! energy of their environ-
ment and make transitions from one precessicnal state to another of o
different inclination. The thermal energy of the system tries to act in
such a way as to produce a completely random ortentation of the m;,
but orientations aiong or near the field direction have a lower maagnetic
energy and thus are favored. The situation js quite similar to that of
polar molecules in an electric field, which was discussed in Section 5-3.

For a material composed entirely of one molecular species, each mole-
cule having magnetic moment m,, the fractional orieptation is given
approximately by the Langevin function, Eq. (5-21), with

Mmoot - )
= (11-14)
The magnetization is given by
M| == Nmglouthy - l—g (1i-iba)

L Yl

where N iz the number of molecules per unit volume. Hxcent for tem.-

* A discussion of the precession of m, in a uniform magnetic field is given in
many textbooks. See, e.g., H. Goldstein, Classical Mechanics {Addison-Wesley
. . - - . \
Publishing Company, Iuc., Reading, Muss., 1950}, pp. 176-7.
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peratures near absolute zero, the Langev in funstion can be approximated
by the first term in its power series:

N n.g .

M = e woH.,,, (11-15b)

which yields the paramagnetic susceptibility

X = "-‘%%éfﬂ (11-16)
Aceording to atomde theory, mg is in the range of a few Bohr magnetons
(1 Bohr magneton == gh/4mwm,, where h iz Planck’s constant). Equa-
tions (11-16) sud (11-13k) anccount for the order of magnitude of the
X3 in Table 10-1.

We may summatize the results of this seciion briefly as follows: In
order to exhibit paramagnetic behavior, the atoms (or molecules) of
the systemn must have permsanent magnetic moments, and these tend te
orient in the applied field. The various moleenlar momenis are decoupled,

i.e., they precess arcund the magnetic field as individuals (ot in unjson},
hut they are able to exchange encrgy because of thermal contact with
their environment. Hxeept for temperatures near absolute zere and
Asimultanéous large fields, the magnetization is far below the saturation
value which would ohtain when all the dipole moments are aligned.

11-4 Theory of fervomagnetism. In ferromagnetic materials the atomic
{or molecular) maguetic moments are very unearly aligned even in the
absence of an applied fie!ld. The cause of this alignment is the molecular
field H,, which, according to Fq. (11-4), does not vanish when H = 0
unless M vanishes simultaneously. A magnetization M does give rise to
s molecular field, but unless this molecular field produces the same mag-
netization M which is presumed io exist in the material, the solution is
inconsistent. Cur problem is to determine in what set of circumstances
tue magnetization can maintamn itself via the molecular field.

it will preve necessary to generalize Eg. (J1-4) to a certsin extent.
for the molecular field, let us write H,, = H 4+ YM, which, for H = 0,
reduces to

Y, = TM. (311-4u)

A\m:nrdmg to the simple theory of Secion 11-1, v == 4. Tf the terms
i Tig. (17-3) do uob sum 1o zero, ¥ may be d}ﬁerent from %; nevertheless,
we expect ¥ to be of this order of magnitude.

T.et vs restrict our atienticn to &’ material composed entirely of cne
atomic spevicg, each atom having magnetic ywoment mg. There are N
atoms per unit volume. If the atomic moments arve to be very nesrly
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aligned, M must be a substantial fraction of Nmg; for the sake of definite-
ness however, let us say
A7 > 0.7Nm,. (11-17)

According to Eq. (11-15), this implies that [cothy — (1,/y)] > 0.7, or y
[which is defined by Eq. (11-14)] > 3. Thus
mO“‘OHm

y = ’_'—"}7! > 37

which, when combined with (11-4a) and (11-17), yieids

w TN pppmp
0.7 'T“‘,"G—q‘;*"‘ > 3. (11-18)
This, approximately, is the condition for the occurrence of ferromagnetism.

In the previous section it was stated that atomic theory predicts mg
to be in the range of a few Bohr magnetons. On this basis, Eq. (11-18)
requires a ¥ of about 102, which is orders of magnitude larger than can
be accounted for in the derivation presented in Section 11-1. It would
thus appear that the origin of ferromagnetism is considerably more com-
plex than the corresponding situation in ferroelectrics (discussed in
Section 5-4).

In 1907 Pierre Weiss™ formulated his theory of ferromagnetism. Weiss
appreciated the essentisl role played by the molecular field; he could not
explain the large value of ¥, but he accepted it as a fact and proceeded
to develop his theory from this point. The predictions of his theory’
were found to be in close accord with experiraent. For this reason the
molecular field of Eq. (11-4a) is often called the Weiss molecular field.:

1t was left to Heisenberg,7 some twenty years later, to explain the
origin of the large value of v. Heisenberg showed, first, that it is only the
spin magnetic moments which contribute to the molecular field, and
second, that the field is produced basically by electrostatic forces. On
the basis of quantum mechanics he showed that when the spins on neigh-
boring atoms cbange from parallel alignment to antiparallel aligament,
there must be a simultaneous change in the eiectron charge distribution
in the atoms. The change in charge distribution alters the electrostatic
energy of the system and in certain cases favors parallel alignment (i.e.,
ferromagnetism). A spin-dependent energy, i.e., an energy which depends
on the spin configuration of the system, can be viewed in terms of the
force (or torque) which is produced on one of the atoms when the con-

* P, Weiss, Journal de Physique 6, 667 (1907).
1 W. Heisenberg, Zeiischrift fur Physik 49, 619 (1928).
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figuration is altered. The equivalent field turns out to be proportional
to M, but with a coefficient which depends in detail upon the charge
distribution in the atom under consideration.

The Weiss-Heisenberg theory can be used to predict the way in which
the magnetization of a ferromagnet changes with temnperature. It is
evident that the theory- depicts ferromagnetisin as the limiting case of
paramagnetista in an extremeiy large maguetic field, bnt with this field
coming from thee maguetization itself. Combining Eq. (11-4a) with
(11-14) and (11-15) yields

M- Nmo[coth y — !1/] (11-19)

and i
_ KTy aQ
R (11-20)

The spontancous magnetization, i.e., the magnetization at zero external
field, for a given temperature is obtained from the simultaneous solution
of Eqgs. (11-19) and (11-20). This is easily done by a graphical procedure:
We plot M versus y for both (11-19) and (11-20), as shown in Fig. 11-1.

Ny i~
Moy .
Ving [(*ntb g - :;]

:///1/ Tty

0 2 3 4 b

Fig. 11-1. Determination of the spontancous magnetization M (T) with the
aid of the Langevin funciion.

The intersection of the two curves gives a magnetization M (T) which
is consistent with both equations. As the temperature is increased, the
linear curve, Eq. {11-20), becomes steeper, but Eq. (11-19) is unchanged.
Thus the intersection point moves to the left in the figure, and a lower
value for the spontanecus magnetization obtains. Finally, a temperature
is reached at which Tq. (11-20) is tangent to (11-19) at the origin; at
this and higher temperatures the spoutaneous magnetization is zero.
This temperature is the Curie lemperature, T., above which the spon-
{aneous magnetization vanishes aud ordinary paramagnetic behavior
results.

A plot of M(T versus temperature, obtained according to the above
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Fie. 11-2. The magnetization of a ferromagnetic material as a function of
temperature. T, is called the Curie temperature. (The curve shown has been
calculated with the aid of the classical Langevin function; quantuma-mechanical
corrections change the shape of the curve somewhat, bringing it into agreement

with experimental data.)

procedure, is displayed in Fig. 11-2. It is in approximate agreement*
with experimentally detérmined values of the spontaneous magnetization
for a ferromagnetic material.

11~5 Ferromagnetic domains. According to the preceding section, a
ferromagnetic specimen should be magnetized very nearly to saturation
(regardless of its previous history).at temperatures below the Curie
temperature. This statement appears to be contrary to observation. We
know, for example, that a piece of iron can exist in either a magnetized
or unmagnetized condition. The answer to this apparent paradox is that
a ferromagnetic material breaks up into domains; each domain is fully
magnetized in accord with the results of the preceding section, but the
various domains can be randomly oriented (Fig. 11-3) and thus present
an unmagnetized appearance from the macroscopic point of view. The
presence of domnains was first postulated by Weiss in 1907.

¥ic. 11-3. Ferromagnetic domain structures: (a) single crystal, (©) poly-
crystajline specimen. Arrows represent the divection of magnetization,

* Detailed quantum corrections to the theory presented here bring the
theoretical curve into good agreement with experiment.
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Fig. 11-4. Structure of transition region, or “Bloch wall,” between domains
in a ferromagnetic material.

In passing from one domain to an adjacent one, the atomic moment
vector mo gradually rotates from its-original to its new direction in the
course of about 100 atems (Fig. 11-4). This region between the two
domains is called a domain wall. It Woulﬂ appear that an atomic spin
moment in the wall "region is subjected to a slightly lower molecular field
than is an atomic spin moment inside the domain proper. This observa-
tion by itself would favor a single domain conﬁguratlon On the other
hand, a specimen consisting of a single domain must maintain a large
extemal magnetlc field, whereas a multidomain specimen has a lower

‘magnetic energy” associated with its field structure. Thus the multi-
domain structure is usually energetically favored.
~ The macroscopic aspects of magnetization in ferromagnetic materials
‘are ‘concerned with changes in domain configuration. The increase in

magnetization resulting from the action of an
. applied magnetic field takes place by two inde-
(@  pendent processes: by an increase in the volume
of domains which are favorably oriented relative
to the field at the expense of domains which are
unfavorably oriented (domain wall motion), or
by rotation of the domain magnetization toward

. the field direction. The two processes are illus-
®)  trated schematically in Fig. 11-5.

In weak applied fields the magnetization usu-
ally changes by means of domain wall motion.
In pure materials consisting of a single phase,

(© Fie. 11-5. Magnetization of a ferromagnetic ma-
terial: (a) unmagnetized, (b) magnetization by domain
wall motion, (¢) magnetization by domain rotation.

\\\\\\ \\\\\\\\\‘\‘\‘
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the wall motion is to a large extent reversible in the weak-field region.
In stronger fields the magnetization proceeds by irreversible wall motion,
and finally by domain rotation; in these ‘circumstances the substance
remains magnetized when the external magnetic field is removed.

The experimental study of domains has been made possible by a tech-
nique first developed by F. H. Bitter.* A finely divided magnetic powder
is spread over the surface of the specimen, and the powder particles,
which collect along the domain boundaries, may be viewed under a micro-
scope. By means of this technique, it has even proved possible to observe
domain wall motion under the action of an applied magnetic field. The
size of domains varies widely, depending on the type of material, its
previous history, etc.; typical values are in the range from 107° to
10~2¢cm?,

11-6 Ferrites. According to the Heisenberg theory of ferromagnetism,
there is a change in electrostatic energy associated with the change from
parallel to antiparallel spin alignment of neighboring atoms. If this energy
change favors parallel alignment, and is at the same time of sufficient
magnitude, the materia} composed of these atoms is ferromagnetic. If
the energy change favors antiparallel alignment, it is still possible to ob-
tain an ordered spin structure, but with spins alternating from atom
to atom as the crystal is traversed.

An ordered spin structure with zero net magnetic moment is called
an antiferromagnet (Fig. 11-6b). The most general ordered spin structure
contains both “spin-up” and “spin-down” components but has a net,

REEREERE NG
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EEEEER KR B

Fia. 11-6. Schematic répresentation of atomic spins in ordered spin struc-
tures: (a) ferromggnetic, (b) antiferromagnetic, (¢) ferrimagnetic.’

* F.-H. Bitter, Physical Review 41, 507 (1932). For a brief discussion of the
technique, see L. F. Bates, Modern Magpetism (Cambridge University Press,
3rd ed., 1951), p. 457.
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nonzero magnetic moment in one of these directions; such a material is
called a ferrimagnet or simply a ferrite. The simplest ferrites of magnetic
interest are oxides represented by the chemical formula MOFe,03, where
M is a divalent metal ion such as Co, Ni, Mn, Cu, Mg, Zn, Cd, or divalent
iron. These ferrites crystallize in a rather complicated crystal structure
known as the spinel structure. The classic example of a ferrite is the
mineral magnetite (Fe304), which has been known since ancient times.

Ferrites are of considerable technical importance because, in addition
to their relatively large saturation magnetization, they are poor con-
ductors of electricity. Thus they can be used for high-frequency appli-
cations where the eddy-current losses in conducting materials pose serious
problems. Typical resistivities of ferrites fall in the range from 1 to
10* ohm-m; for comparison, the electrical resistivity of iron is approxi-
mately 107 chm-m.
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PropLEME

11-1, A Bohr magneton is defined as the magnetic momént of an electron
citculating in the classic “Bohr orbit” of the hvdrogen atom. This orbit is a
circular orbit of exactly ane de Broglic wavelength, fyr which the coulomb sttrac~
tion provides the cenfripetal acceleration (see. e.g., Seare and Zemsnsky, Uni-
versity Physics, Chapter 48, Addison-Wesley Publishing Co., Ine.). Show that
1 Bohr magneton. = ei/4wm, where m, & the mass of ihe electron and & is
Planck’s constant.

11-2. The Bohr magneton ig & natural unit for measuring the magnetic
moment of an atom. Caleulste the magnetic moment per atom, in Bobr mag-
neton units, for iron, nickel, and eobalt, nuder vonditions of saturation mag-
netization. Use the data in Table 19-2.

11-3. Calculate the relative strength of the interaction between two typical
magnetic dipoles, compared with the interaction beiween two fypical elostric
dipoles. To be explicit: caleulate the torqus exerfed on cne dipale by ths other
when they are orieated perpendiculrely to each other 2t a distarce of one aug-
strom unit; take each magnetic dipole = 1 Hoir magueton, sach elecisie
dipole = e X 0.1 sngstrown. This caleulation shows that the hasie ruagnetic
interaction is several ovders of magnitude smaller thau the electrical interaciior
in matter.

11-4. Caleulate the diamagnetic susceptibility of neon at standard tempera-
turc and pressure (0°C, 1 atm) on the sssumptien that oaly the eight outer elec-
trons in each atom contribute, and that their mesn radiug is B = 4.0 10 -? ¢,

11-5. The magnetization of a ferromaguetic material drops cssentially o
sero at the Curie tempersture, In Fiy. 11-1 the Curic temperature is represspted
by the straight line which is tangent to the Langevin funciion af the origin,
TTse the experimental value of the Curie temperature of iron to Jdetermine 7
for iron.

11-6. The gyromagnetic ratio of a eurrent distribution is defined as the ratic
of magnetic moment to angular momentum. Caleulate the gyromagnetic ratio
of a sphere of mass A and charge @ which is voteting with angular velcelty w
about an axia through ite center, on the sssumption that the msay @ distribated
uniformly throughout end tho charge is distriboted uniformiy oa the suriace
of the sphere.



CHAPTER 12
MAGRETIC ENERGY

Establishing a magnetiz feld requires the expenditure of energy; this
follows directly from Faraday's law of induction. If an external source
of emf & is applied to o circuit, then, in gensral, the curreni through
the ecircuit can be expressed by the equation

Bo -+ &= IR, (12-1)

where & is the inducad emi aud R is the resistance of the current circuit.
Ths work done by &g in moving the charge increment dg == I di through
the circuit is

Sodg = 8pldt = —8Idl + I*R di

= I a& -~ I’R dt, (r2-2)

the last form of which is chtained with the aid of Faraday’s law, Eq. (9-1).
‘The term [2R df represents the irreversible conversion of electrical energy
into heat by the circuit, but this term absorbs the entire work inpui
ondy in cases where the fux change is zero. The additional term, [ d@,
is the work done against the induced emf in the circuil; it is that part
of the work done by &p which is effective in altering the inagnetic feld
structure.  Disvegarding the {*R di term, we wrile

Gy == T dw, (12-2)

where the subseript ¢ indiontes that this is work performed by external
slectrieal energy soursea vy, by badteries). The work increment [12-3}
may be either positive or negative. It is positive whea the flux change
d% through the drouil e o the same direciion a8 the fux produced by
the curvent I,

For a rigid stationary eireuit showing no enerzy losces other than
Jeole heat 1092 (e ¥, no bysteresis), the term ¢W, is equal to the change
in magneite energy of *he cirguit, Hysterasiv luse will be discussed in
Section 12-#, bub for ibe present we shall vesteies our atlention to re-
versible moagnetic svstenos.

12-1 Moagnetic energy of coupled circuits. Tu this scetivn we shall
derive sn expressiop for the magnetie energy of « svatem of interscting
eurrent ciramite, I there are a circuits, then, socording o g, (12-3),
the electrizal work gnae againat the indueed em:f’s is given by

W, = B 1,d%,. (12-4)
LLBY

234
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This expression is perfectly general; it is valid independently of how the
flux increments d®; are produced. We are particuiarly interested, however,
in the case where the d®; are produced by current changes in the » cir-
cuits themselves. In these circumstances the flux changes are directly
correlated with changes in these currents:

WL
dd; = dI’dI = ZM,, dl;. (12-5)

=1 gl

If the circuits are rigid and stationary, then no mechanical work is associ-
ated with the flux changes d®;, and dW, is just equal to the change in
magnetic energy, dW, of the system. Note that here we restrict our at-
tention to stationary ecircuits, so that the magnetic energy can be cal-
culated as a work term. Later we shall let the various circuits move rela-
tive to one another, but then we will not be able t¢ identify dW with
adWo.

The magnetic energy W of a system of n rigid statiovary circuits is
obtained by integrating Eq. (12-4) from the zero flux situation (corre-
sponding to all I; = 0) to the final set of flux values. For a group of
rigid circuits containing, or located in, linear magnetic media, the &; are
linearly related to the currents in the circuits, and the magnetic energy
is independent of the way in which these currents are brought to their
final set of values. Since this situation is of considerable importance, let
us restrict our attention to the rigid-circuit, linear case.

Because the final energy is independent of the order in which the cur-
rents are varied, we may choose a particular scheme for which W is easily
caleulated. This scheme is one in which all currents (and hence all fluxes)
are brought to their final values in concert, i.e., at any instant of time
all currents (and all fluxes) will be at the same fraction of their final
values. Let us call this fraction «. If the final values of the current are
given the symbols
I(}' )

oy L]

f
I§ f) 1(2f),

then I; = oI’; furthermore, d&; = &) de. Integration of Eq. (12—4)

yields
W= Z 1<f><1><f>/ ada

t==1
Dl
)
i=1

Having used the superscript (f) merely to designate a quantity which
remains constant while « varies, we now find it convenient to drop the
superscripts and write
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W =4 I& (rigid circuits, linear media). (12-6)

i=1

With the aid of Eq. (12-5), which for a rigid-circuit, linear system may
be integrated directly, the magnetic energy may be expressed in the
following form:

7 n
=43 3wt
i=1j=1
= 30,17 + 3Lo15 + - - + 3L,12
+ MyoIy 7o A Wyl s+ -+ My,
4 Maniylg 4+ o My lnq 0, (12-7)
(rigid circuits, iinedr media).
Here we have used the results and unotation of Sections 9-3 and 9-4:
M;; = Mji; M;; = L.
For two coupled circuits, the last equatiun reduces to

= 3, 1% + MI,I; + 3L,I3, (12-8)

where, for simplicity, we have written M for M;,. The term MI,1,
may be either positive or negative, but the total magnetic energy W
must, be positive (or zero) for any pair of current values: I; and I 2.
Denoting the current ratio I,/I, by z, we obtain

= 3I5(Lyx® + 2Mx + L) > 0. (12-9

The value of x which makes W a minimum {or maximum) is found by
differentiating W with respect to x and setting the resu!t equal to zero:
M
z=—7- (12-10)
The second derivative of W with respect to x is positive, which shows
that (12-10) is the condition for a minimum. The magnetic energy
W > 0 for any z; in particular, the minimum value of W (defined by
x = —M/L;) is greater than or equal to zero. Thus
M 2M?
T, L, + Ly 2
or
LiL, > M?, (12-11)

a result which was stated, but not proved, in Section 9-3.
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12-2 Energy density in the magnetic field. Fquation (12-7) gives the
magnetic energy of a current system i terws of cireuit paramebers:
currents and inductances. Such a formulation s particularly useful
because these parameters are capable of direct experiruental messure-
ment. ©n the other band, an slternative fornadation of the magnetic
energy in termas of the field vectors B aund i i of considerable interest
because it provides & picture in which energy in siored in the raagnetic
field itself. This picture can be extended, s« iz done i Chapter 15, to
show how energy moves through the electremsgnetic fisld in nonstationsry
processes.

Consider a group of rigid current-carrving clrenits, nene of which
extends to infinity, immersed in a medinn v i linear magnetic prop-
erties. The energy of this system is giveu by [iq. {12-8). For the present
discussion it i8 eonvenient to assume that each sircuid consists of only a
single loop; then the flux &; may be expressed as

%= [ B onda= ¢ A, (12-12)
s

v

where A is the local vector potential. Subsuituiion of this vesult into

(12-6) yields
W= % E?gyf TA - i (12-138)

We should like to mske Eq. (12-13a) semewhai more general. Suppose
that we do not have well-defined current circuits, but instead each
“circuit” is a closed path in the medium (which we teke to be conducting).
Fauation (12-13a) may be made to approximate this situation very closely
by choosing a large number of contiguous circuits (C,), replacing
I; dt; — J dv, and, firally, by the subsatitution of

/’ for Z:: 9(0{.

W= ngV J-Ado (12-13b)

Hence

The last equation may be further trapsformed by using the field equa-
tion curl H = J, and the vector identity (I-7):

div(AXH =H.curlA — A -curlH,

whence .

W::%/ H«ﬁurlAde%foH-nda, (12-14)
v 8

where S is the surface which boundé the volume . Since, by assump-
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tion, none of the current “circuits” extends to infinity, it is convenient
v move the surisce N out to a very large distance so that all parts of
this surface are far from the currents. Of course, the volume of the sys-
tem must be increased aceordingly. Now H falls off at least as fast,
as 1/#?, where r is the distancs from un origin near the middle of the
current distribution to a characteristic point on the surface 3; A falls
off at jesst as fast as 1/r; and the surface ares is proportioval to rZ
Thus the coniribution from the surface integral in (12-14) falls off as
1,/r or fuster, snd if § is movad out to infinity, this contribuiion vanishes.

Ry dropping the surfacs integral in (12-14) and extending the volume
term to include ail space, we obtain

W} /V B B, (i2-15)

ginse B == curl A. This resuit is completely analogous to the expression
for electrostatic energy, Fq. (6-17). FEquation (12-15) i8 restricted to
systems coniaining linear wagnetic medin, since (6 was derived from
Eq. (i2-6).

By reasoning similar to that of Section G-3, we are led {0 the concept
of energyv density in a magnetic fleld:

w = $H - B, (12-18a)
which, for the case of isotropic, lnear, magnetic materials reduces to

w= 4uH> (12-16b)

12-3 Forces and torgues on rigid circmits. Up to this point we have
developed a number of alternative expressions for the magnetic energy
of 8 system of current circuits. These are given by Lgs. (12-6) and
(12-7), and {12-15). We shall now show how the force, or torque, ou one
of these circuits may be calculated from a knowledge of the magnetic
ENergy.

Suppose we allow one of the circuits to make a rigid displacement dr
under the influence of the magnetic forces acting upon it, all currents’
vemaining constant. The mechanical work performed by the system in

these circumstances is
’ AW, = F - d1. (12-17)

But conservation of energy requires that
AW + dW,, = dVW, (12-18)

where W is the change in magnetic energy of the system and dW, is
the work performed by external energy sources against the induced emf’s.
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Before we can proceed to an expression linking W and the force on a
circuit, it will be necessary to eliminate dW, from Eq. (12-18). This
is easily done for a system of rigid circuits in linear magnetic media.
If the geometry of the system is changed but all currents remain un-
altered, then, according to Eq. (12-6),

dW = % > I;d®.. (12-19)
But, from Eq. (124),
de = Z I,‘ d‘i),‘.

Thus
aW, = 2 4dW. (12-20)

Using this equation to eliminate dW, from (12—18) and combining the
result with (12-17), we obtain

dW = F -dr,
or
F = grad W. (12-21)

The force on the circuit is the gradient of the magnetic energy.
If the circuit under consideration is constrained to move in such a
way that it rotates about an axis, then Eq. (12-17) may be replaced by

dWm: 'c'd9=7'1d01+7'2d02+1'3d03,

where ¢ is the magnetic torque on the circuit and d@ is an angular dis-
placement. Under these conditions,

oW

'1'1=-aFl;

(12-22)
and so on.

Just as in the electrostatic case (discussed in Section 6-7), in order
to make use of the energy method it is necessary to express W in analytic
form, i.e., the specific dependence of W on the variable coordinates
(z, u, 2, 8y, B2, Or 3) must be given. When this is done, however, the
energy method becomes a powerful technique for calculating forces and
torques. .

We shall illustrate the method by considering two examples. Addi-
tional exercises of this type will be found in the problems at the end of
the chapter. Tor our first example let us calculate the force between
two rigid current circuits. The magnetic energy is given by Eq. (12-8),
and the force on circuit 2 is

Fo==grady W = I J,grado M (12-23)

3



12-3] FORCES AND TORQUES ON RIGID CIRCUITS 237

where the mutual inductance 3/ must be written so that it displays its
dependence on ro. Neumann'’s formula, Eq. (9-35), shows this dependence
explicitly, so we may write

= Mooy, - dl,; e
F, = i I,I, %C; ¢Cu (dll dly) grad, |1’2 — rll

Mo

. (l'g _ rl) PR
= -2, 9€c. 9602 (dl, - dly) T (12-24)
au expression which evidently shows the proper symmetry, ie., F, =
—F;. However, we already have an expression for the force between
two circuits, Eq. (8-25), and this appears to be at variance with the
formula just derived. Actually, the two expressions are equivalent, as
may be easily verified. Let us expand the triple product in the integrand
of Eq. (8-25):

dly X [dly X (r2 — r)] = dlildly - (r2 — 1)} — (r2 — 1,)(dl; - dl).
The integral containing the last term on the right is identical with (12-24);

that containing the first term may be written

Mo dly- (r — 11) 9-
o I, fa, dl, U P (12-25)
Now dlg«(rg — ry) is |ry — ry| times the projection of di; on the
vector rg — r;. Let us denote |r; — r;| by rz;; then the projection
of dlg is just dry;. The integral over Cy may be carried out at fixed diy:

the upper and lower limit being identical because of the complete circuit.
Thus (12-25) vanishes, and Eq. (12--24) is equivalent to Eq. {8-25).
As a second example, consider a long solenoid of N turns, and length [
carrying current I. A thin iron rod of permeability u and cross-sectional
area A is inserted along the solenoid axis. If the rod is withdrawn
(Fig. 12-1a) until only one-half of its length remains in the solenoid,
calculate approximately the force tending to pull it back into place.
Solution. The magnetic field structure associated with this problem
is quite complicated; fortunately, however, we do not have to calculate
the entire magnetic energy of the system but merely the difference in
energy between the two configurations shown in Fig. 12-1(a) and (b).
The primary field structure (produced by the currents) is relatively
uniform in the solenoid. The field structure associated with the mag-
netized iron rod is complicated, but it moves along with rod. The essen-
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Frae. 12-1. Force on soft-iron rod inserted into s solencid (by the energy
method).

tinl difference between configurations (a) and (b) is that a length Az
from the extreme right-hand end of the rod (cutside the field region)
is effectively transferred to the uniform field region inside the solenoid,
at a place beyond the demagnetizing influence of the magnet pole. Thus

W(zo -+ Az) =~ Wi(zg) + % [4 (e poH

erﬁ
== W(ro) + $u — no) Z\i‘ﬁ"‘ 4 Az,
and
N2I%A
Foo= 3 — o) =5 (12-26)

12-4 Hysteresis loss. In the preceding sectiong we have limited our
discussion to reversible magnetic systems, and in most instances to linear
systems. We shall now say something about energy changes in systems
containing permanent magnet material, that is, systerns in which hysteresis
plays a prominent role. Let us consider an electrical cireuit, in the form
of a closely wound coil of N turns, whieh surrounds & piece of ferro-
magnetic material (Fig. 12-2). If the coil is connected to an external
source of electrical energy, the work done agsinst the induced emf in
the coil is given by Eq. (12-3). In (12-3), however, the flux change d®



12-4] HYSTERESIS LOSS 239

18 the total flux change through the cireuit; for the present purpose.it is
convenient te lei the symhbo! d® stand for the flux change through a
single turn of the eoil. Thus, cu the assumptlicn that the same flux links

every twum,
Wy = NI 6. (12-3a)

Lot us treat the ferromagnetic specimen as forming part of & mag-
aetic eirenit. Then NJ may be replaced by #£H . dl around a typical
flux patk, sad Eq. (12-3a) becomes™

Wy = f FPHE - i = yﬁ 4 oPH - d,
whare A is the cross section of the magnetic circult appropriate to the

lengih Interval dl. Since dl ig always tangent 1o the fiux path, the pre-
ceding equation muy be written as

= ?1 6B - F dl = /’P OB - H v, (12-27)

wheve ¥ is the volume of the magnetic cirevit, 1e., the regicn of space
in whieh the magnetic field is different {rom ze,ro.

Fre. 12-2. A ferromagnetic specimen forming part of a magnetie circuit.

If the ferromagnetic material in the system shows reversible magnetic
behavior, Eq. (12-27) may be integrated from B = ( to its final value,
to vield the magnpetic energy of the gystem. For “linear” material, the

* The analysis presented here may be put on a somewhat more rigorous basis
by replacing the magpetic circuit with a large number of magnetic flux paths of
various lengths (magnetic circuits in parallzl). Eguation (12-3a) then becomes

W, = NIS, 58; = Ef 5, - dij,

wheve §®; is the flux change associated with one of these paths. The final result,
Eg. (12-27), is unchanged.
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Fia. 12-3. Work done per unit volume in cycling a ferrcinagnetic material.

energy so obtained is identical with that expressed by Eq. (12-15). But
Eq. (12-27) is much more general than this; it correctly predicts the
work done on the magnetic system even for cases in which there is
hysteresis.
According to Eq. (12-27), a change in the magnetic field structure
implies a work input
dw, = H-dB (12-28)

associated with each unit volume of maguetic material (or vacuum) in
the system. Of particular interest is the case where the material is
cycled, as it would be when the coil surrounding the specimen is sub-
jected to alternating current operation. In one cycle the magnetic in-
tensity H (for a typical point in the specimen) starts at zero, increases
to a maximum, H,.x, decreases to —Hp.x, and then returns to zero.
The magnetic induction B shows a similar variation, but for a typical
ferromagnetic will lag behind H, thus tracing out a hysteresis curve
(Fig. 12-3). The work input (per unit volume) required to change the
magnetic induction from point @ to b on the hysteresis curve,

b
(wb)ab == / HdB:

is just the area between the hysteresis segment ab and the B-axis; it is
positive because both H and dB are positive. The contribution (ws)pe
is also the area between the appropriate hysteresis segment (bc) and
the B-axis, but it must be taken negative, since H and dB are of opposite
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sign. Similar arguments can be made about (wp).q and (wp)g.. Thus,
in cyeling the material once around the hysteresis loop, the work required
per unit volume is

wy = fH dB, (12-29)

which is the area enclosed by the hysteresis loop.

At the end of one complete cycle, the magnetic state of the material
is the same as it was at the start of the cycle; hence the “magnetic
energy” of the material is the same. It is evident, then, that Eq. (12-29)
represents an energy loss. This loss appears as heat; it comes about
through the irreversible changes in domain structure of the material.
Hysteresis loss is an important factor in circuits subjected to alternating
current operation. Equation (12-29) represents the energy loss per unit
volume per cycle; thus the energy loss per unit time is directly propor-
tional to the frequency of the alternating current.

According to Eq. (12-28), the work required to change the magnetic
induction in a unit volume of material is

dwy = H-dB = poH dH + ueH - dM. (12-28a)

It is sometimes convenient to regard the uoH dH term (the work done on
the vacuum) as taking place whether the material is present or not.
From this point of view, then, the term ugH - dM is the specific work done
on the material. This is the approach usually taken in thermodynamics
textbooks; it forms the basis for discussion of such processes as “magnetic
cooling.”

Since the integral of H dH vanishes for a complete evele, Tg. (12-26)
is equivalent to

wy = #05611 M. (12-29n)



242 MAGNETIC ENBRGY fonar. 12

Prosrzms

12-1. Given a current circuit in a preseribed magnetic field. The magnetic
force on each cirouit element di is given by I dl X B. Ii the cireuit is allowed
tc move under the intluences of the magnetic forces, such that & lypical ele-
ment is displaced 5r and a# the saie time the current £ is held sonstaui, show
by direct calculation that the mechaniesl work done by the circuit is dW,, =
I @®, where d® ie the additicnal fiux through the circuii.

12-2. -Given a set of interacting currani creuits in s linear magneti, wedium,
All gircuits with the exception of sireuit 1 are held stationary, but cireuit 1 is
ullowed to move rigidly. The currents are all held constant by means of bet~
teries. Show from the combinstion of Bys. (12-4), (12-6}, and (1%-1R}, thut
the mechanical work done by the spoving circuit is W, = 7y 4P, where
d®; is the change in fux through circuit i.

12-3. (onsider two interacting current circuits characterized by the indue-
tances L1 = 3F%, My = May = 8/Y20¥?, and Ly = BI%, where B and s
are constants. This iz p reversibie magnetic aystem but not s lineac ope. Cal-
culate the magnetic encrgy of The system in sere of the final currents f {7 and
I, Do this in two sways: first, by hringing the currents o thelr Bnal »alaes in
concert; second, by keeping {2 = 0 while {1 is brought fo its finel value, then
changing fg.

124, A ciewi?t in the form ol & sivevier turn 0‘ wire of radivs b 1s placed
at the center of n larger turn of radius o, & <0 a. The amall cirovit is fixed o
that it is free to rotate sboub cue of its diameters, this diameter being located
in the plane of she lacger circuit 'The circuite carry the stesdy currenls Ty
and I, respectively, If the angle hebtween she normals to the bwo circuiss is 6,
calculate the torque on the movable cireull. In what direction ie this torgue
when [ anc 7, rirculate in the same seose?

#12-5. A U-shaped slectromaguet of length {, pole separation d, and perme-
ability u has a squ&ra crons sechion of aren 4. ¢ is wound with IV tures of
wire carrying a current . Caleulate the force with which the rmagnet helds s
bar of the same material, of ssme croas section, against i¥s peles.

12-6. A permanent megnet with constant insgneiization, and x cirouit which
is counected to & hotiery, form an isolated systern. Tle cireuit s slowed o
move relative to Lhe tangnet, the current § ia the cireult beéing niatntained con-
stant.  The meclnnizal work done by the oireuit is giver in Froblewm 12-1.
What conclusion can vou draw abouy the chenge in misgnstic encrgy of ¢his
system?

12-7. The maguetic induetion Seld betwesn the poles of ‘.:m eleciromagnat ia
relstively uniforn ard is held a1 the sonstant value Bg. A paramagnetic rod
whzch m consty nmed m move very vieally s }laned i the Hm-. as showd i*a n

~J

culatf* -,hf, *’or o the '"wi f ou.‘:!ib g punatiesl velue for dhe f{)x‘*t‘\;‘»
rod material is sthanium, 4 = i em? sad Bo = (25 wim?,

*13-8. From the result of Pegblea, 121, ¢he force on a current oirent in s
prescribed moagretie feld iz given by F o= I ¥$. If the cireuit is very stusll,
the magnetio field B miay be ireatsd 23 constant over the surface bounded by
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Fia. 12-4. A paramagnetic rod inserted between the pole faces of 8 magnet.

the eircuit: furthermore, the circuib itself may be characterized by its magnetic
dinole moraent m. Show that when the prescribed magnetic field has no sources
{ 3, ju == 0) at the position of the dipole, the force on the dipole is

3
1.6
e

§F = (m-¥)B

12-9. A rigid circuit cousisting of a single loop of wire is located in a radial,
inverse-square, magnetic induction field, B = Kr/r3, Show that the force
on the circuit is ¥ = KIVS, where O ig the solid angle the rircuit subtends at
the field center, and { is the current in the eircuit.

12--10. The center of a plane circular cireuit of rsdiugs R and congisting of
one turn lies on the x-axis at distance x from the origin. The circuit carries
the current I, and its positive normal points in the —z direction. Find the
force exerted on the circuit by a radial induction field diverging from the origin,
B = Kr/r3.

12-11. Estimate the aress enclosed by the two hysteresis curves shown in
Fig. 10~-8, and celcuicte the power loss per unit volume due to hysteresis in
thege materials st 60 cycies/sec operation.

$2-12. The core of a generstor armature ie made of iron whose average
hvstoresis Joop under operating conditions has an srea of 2000 joules/m?®. The
core i evlindrical in shape, with a length of 0.4 m and a dismeter of 0,75 m. If
iv rotates ab 1800 vom, calculate the rate at which feat w produced in the core.

12-13. A current circuit in a prescribed magnetic field roves under the
influence of maguetic forces. The mechanical work done by the circuit is given
in Problem 12-1. Suppose now that the circuit 8 sn afomic circudf, and that
the atomic current 13 held counstant because of general quantum principles
‘note that we are neglecting a small shange in current due to diamagnetism).
What ix the changs sn wagnetic ecergy of the eircuit? The result of this prob-
len. i $he basis for the magnetic dipole energy in the caleulanion in Sectien 11-3.



CHAPTER 13
SLOWLY VARYING CURRENTS

13~1 Introduction. In Chapter 7 the idea of an electrical circuit was
introduced, and an analysis was made of the currents in such circuits
when they are excited by constant emf’s. These ideas will now be ex-
panded to ineclude slowly varying emf’s and the resulting slowly varying
currents. To understand properly what is meant by “slowly varying,”
Maxwell’s equations* must be used; however, the general ideas can be
understood without recourse to the details of these equations.

For sinusoidal variations of emf in circuits containing linear elements,
the basis for elementary circuit theory, the behavior of a circuit is char-
acterized by a frequency w.t An electromagnetic wave of this frequency
in free space has a wavelength X = 2mc/w, where c is the velocity of light.
The principal restriction to be imposed in order that the current in the
circuit may be called slowly varying is that the circuit should not radiate
an appreciable amount, of power. This restriction can be met by requiring
that the maximum linear dimension of the system, L, be much smaller
than the free space wavelength associated with the driving frequency,
that is,
2me

2me
w

or w K 57 (13-1)

L <
If this condition is satisfied, then for every element dl of the circuit earry-
ing a current [ there is, much less than one wavelength away, a corre-
sponding element —dl carrying the same current. This clearly ensures
cancellation of the fields produced by these elements at distances of the
order of a few wavelengths in all directions, and thus shows that the fields
associated with the circuit are confined to the vicinity of the circuit.
To see what practical restrictions are imposed by Eq. (13-1), L ~ Az/10
has been used as the maximum circuit dimension in constructing Table
13-1. The frequencies chosen are a power line frequency, a low radio-
frequency (broadcast band), a high radiofrequency, and a microwave

* Maxwell's equations are treated in seme detail in Chapter 15. For those
who are particularily interested, it is worth correlating the material presented
in Chapter 15 with that presented here.

t The quantity o is 27 times the frequency and iz sometimes called the
angular frequency. The use of w instead of 2xf is of considerable advantage in
many branches of physics. In particular, for the present discussion it eliminates
a multitude of 2a’s from the circuit equations.

244



13-2] TRANSIENT AND STEADY-STATE BEHAVIOR 245

TaBLE 13-1
f, eycles/sec w, rad/see A, m L, m
60 376 5% 108 5 X 105 (250 mi)
106 6.28 X 108 300 30
30 X 108 1.88 X 108 10 1
1610 6.28 X 1010 0.03 0.003

frequency. It is clear that for the first three frequencies it is feasible
to construct circuits confined to the distances indicated; however, for the
last one the circuit must be built in a cube about 0.1 inch on a side, which
is a jeweler’s job at best. It should also be noted that at 30 megacycles/sec
(30 Mc) the wavelength and circuit dimensions are of laboratory size,
and hence that care must be used in applying ordinary circuit theory at
this and higher frequencies. In the balance of this chapter it will be
assumed that the slowly varying criterion is satisfied, without furthex
explicit comment.

13-2 Transient and steady-state behavior. If a network of passive
elements is suddenly connected to a source or sources of emf, currents
arise. Regardless of the nature of the applied emf’s, the initial variation
of the currents with time is nonperiodic. If, however, the emf’s vary
periodically with the time, then a long time after the application of the
emf’s the currents will aiso be found to vary periodically with the time.
{Actually, of course, they become strictly perodic only after infinite time;
however, any desired approximation to periodicity can be attained by
waiting a sufficiently long time.) It is convenient to discuss the behavior
of circuits in two phases, according to whether the periodic or non-
periodic behavior is impertant. The periodic behavior is referred to as the
steady-stote behavior while the nonperiodic behavior is known as the tran-
sient behavior. Both aspects are governed by the same basic integro-
differential equations; however, the elementary techniques used in solving
them are radically different in the two cases. The analysis presented here
will be resiricted to elemeutary transient analysis (primarily excitation
by covstant emf’s) and steady-state analysiz for sinusoidal excitations.
For further details the reader is referred to the books of Guillemin and
of Bode,* aud to others too numerous to mention.

* E. A. Guillemin, Communication Networks, 2 vols., John Wiley & Sons, New
York, (1931 and 1935), and H. W. Bode, Network Analysis and Feedback Ampli-
fier Design, D. Van Nostrand Co., Princeton, N.J. (1945).
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13-3 Kirchhoff’s laws. In Chapter ¥, Kirchhoff’s laws were introduced
for direct current {4-¢) circuits; these must now be generalized to include
slowly varying currents. The first generalization js to note that not only
resistors but also capacitors and inductors must be included as cireuit
elements. FEach such element has a potentinl difference between its
terminals which must be included in Kirchhoff's loop law. The name
“IR-drop”. is no longer appropriate for all of these, therefore the name
counter vollage will be adopted to specify the difference in potential be-
tween the terminals of a passive element. 'T'he other generalization is fo
.observe that both of Kirchhoff’s laws must apply at each instant of time,
that is, they must apply to the instantaneous valaes of the currents,
emf’s, and counter voltages. The laws may now be stated:

1. The algebraic sum of the instantanecus emf’s in a closed loop equals
the algebraic sum of ihe instantaneous counter voltages in the locp.

I1. The algebraic sum of the instantaneous curremts flowing foward a
Junction 18 zero. ‘

The meaning of the second of these laws is clear: if currents directed to-
ward a junction are called positive then those oppositely directed should
be called negative, and the law says that as much current enters the
junction as leaves it. Basically, the first Jaw represents conservation of
energy; however, it is beset with difficulties in sign convention. The sign
convention to which we will adhere is best explained in terms of a single
simple mesh, as shown in Fig. 13-1. Tn this figure a source of emf &()
is shown connected in series with 2 resistance R, sn inductance L, and a
capacitance C. An arrow labeled I(f) has been drawn io indicate the
assumed (arbitrary) positive direction for ihe current  All signs are
ultimately referred to this direstion. The eref 5(¢) is positive if it tends
to cauge the current to move in the assumed direction, ie., if the top
terminal in Fig. 13-1 is positive with respect to the bottum terminal. The
resistive counter voltage is just IR, as ic d-¢ circuits. If d7/dt is positive,

{ 1
T — 5
,//;“ R
! NS
/""L‘\ “1 L\
HO, <34
E / cﬁ;
| - ~ . e n._,.]n,.... .
i - oo, 1,
¢ ¢
Rovann cmme webs e mie s ety e o v e e o

Fia. 13-1. A sevies eirenit of vireintt clements,
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an emf will be indueced in the inductance which tends to cause a current
in the opposite direciion to that assumed for I, i.e., the upper terminal
of L must be positive with respect to the Jower teminal. Since this is the
same sense as TR with respect to the direction of 7, the counter voltage
is just L(dI/di).* 'The capacitative counter voltage depends on the
charge on the capacitor, which may be either positive or negative, de-
pending on whether we cousider the upper or the lower conductor. This
difficulty is resolved by writing

t
Q= | I dt, (13-2)

to
where tg is chosen so that Q{{y) is zero. With this choice of @ a positive @
makes the upper terminsl of the capacitor positive, and thus produces

the capacitative counter voltage -+Q/C. Kirchhoff’s emf law for the
circuit of Fig. 13-1, and indeed for any single loop, is

t
dr | 1 / :
() == - — e t, -
(& RI+4 L 7 T told (13-3)
which is the basie integrodifferential equation of circuit theory.

13-4 Elementary transieat behavior. The only transient behavior to be
considered here is thatw associated with the sudden application of a con-
stant emf & to a network of resistors, capacitors, and inductors, the first
example being the simple L-R circuit shown in Fig. 13-2. For this cir-
cuit, Eq. (13-3) becomes

= r1+ LY (13-4)

I :g
T N J/ %

R

~—

Fig. 13-2. Transient response of an R-L circuit. Circuit diagram.

* 14 is worth noting that the induced emf is written —L{dI/di); however,
being an emf, it would normally be written on the other side of the equation
from the counter voltages. Thus no incousisteancy is introduced by writing
--L(dI/dt) for the counter voltage.
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after the switch S is closed. Before the switch is closed the solution is
trivial, being just 7 = 0. Equation (13-4) is a first-order linear differen-
tial equation with constant coefficients, hence can always be solved with
one arbitrary constant in the solution. The solution is

8 37, =t/ L
I{t) = ¢ — Ke™'™I0, (13-5)
with K the arbitrary constant. Since the circuit contains an inductance
which prevents an abrupt change in the current, the curreut just ufter the
switch is closed must be the same as the current just before the switch
is closed, i.e., zero. If the switch is closed at { = {,, this requires that

_gf_ . —toR/L __ SO
7 Ke =0 (13-6)
or :
K = & gtoriL, (13-7)
R
The complete solution is then
I(t) — %[1 - e(to--t)R/L]’ (]3‘“8)

which is plotted in Fig. 13-3. There are several useful, easily obtained
facts which can be found from Eq. (13-8) and Fig. 13-3. First, I./R has
the dimensions of time and is called the time constant. Since 1/¢ = 0.36%,
the time constant is the time required {or the current to reach 0.632 times
its final value, §/R. In five time constants the current reaches 0.993
times its final value, which is conveniently remembered as 999,. The
initial slope d7/dt is just the final current 8/R divided by one tinie coun-
stant L/ R, l.e., a slope sach that i the current continued to increase at
ihis rafe 1 would reach its final value in one time constant. The useful-
ness of these facts is that, by simply sketching a standard exponential
curve, they enable evaluation of the exponential funection involved

,&.
R

I(t)

Y AN ‘

lo 1 TTTTTLL
Time

Fic. 13-3. Transient response of an R-L circuit.
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in a simple transient problem to an accuracy of a few percent. Many
other aspects of a resistance-inductance circuit can be explored, and a
gimilar treatment can be applied to resistance-capacitance circuits. Sev-
eral of the problems at the end of this chapter are devoted to accomplish-
ing this end.

The second example to be considered is a series R-L-C eircuit which is
suddenly connected to a constant emf & Such a circuit is shown in Fig.
13—4. The appropriate equation after the switch is closed is

i
6= RI+ LY + %/m 10 d, (13-9)
where again ¢, is a time at which the charge on the capacitor is zero.
In the interest of simplicity it will be assumed that the capacitor is
mitially uncharged and that the switch S is closed at ¢ = ;. Equation
(13-9) is rather formidable and unfamiliar; however, by simply differcn-
tiating it once with respect to the time it becomes

dg _ d’r I
V7 +Ldtz e

which is an ordinary second-order linear differential equation with con-
stant coefficients. The technique for solving such equations are well
known, and in fact for the case at hand, d8§/dt = 0, the solution is*

B N T RE it
r= {A exp [-’ \[?fé ~ ALz ‘] + B e"p[ﬂ \/z(? Yy ‘n e"‘p[ ST |

(13-11)
30 long as neither L nor C is zero. If either vanishes, an indeterminacy
appears in Eq. (13-11); however, Eq. (13-10) can still be solved for
I. = 0;in fact, the solution is simpler than that for Eq. (13-11). Further-

(13-10)

5\ !
+
s = L
= L
l T~

Fia. 13-4. Transient response ot an R-I-C circuit. Circuit diagram.

* Here j is the unit imaginary number, that is, j = v/ —1.
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Lit)

Fic. 13-5. Transienf response of an -I-C circuit.

more, the case (' = § corresponds to the uninteresting case of an open
circuit. To complete the discussion of this peinf, if ! = w0, which corre-
sponds to short-circuiting the capaeitor, Fqg. (13-11) reduces to Ty, (13-3),
with now two arbitrary constants to be obtained by fitting beundary
conditions. This, of course, reflects the faet that all knowledge of & was
lost in going frorm Eq. (13-9) to Eg. (13-10).

We return now to the solution of (13-11), where it remains Lo evaluate
the constants 4 and B. For the current to be real, B must be the complex
conjugate of A. Since the switch is clesed at ¢ = {3, it i8 convenient to
measure the time from ¢ = {3 by replacing { with ¢ — ;. Hurthermore,
at £ = i, the current must be zere, which means that vhe two imaginary
exponentials must combine to give s sine function. These obssrvations
lead to

e — 1
I e Ty RU—t0)i2L Rz o g

Iy = De sin '\/L(’ s — 45) b {13-12)

where D is a single real constant still to be evalusted. This evaluation &

accomplished by noting that 8t ¢ = {,, ¢ and [ are both zero, aud hence
that

-l ‘ .
’ iit finmtor ‘1“’ ’ !

Using this initial condivion gives

The solution is now complete. The curtent esoilaies vwith o frequency
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o L RE
TNLC T a2’
with, however, an amplitude which decreases with time and whieh is
given by De R“=t/2L This behavior is shown in Fig. 13-3.

"This completes the elementary transient analysis to be presented here.
The balance of this chapter will be devoted to circuits excited by sinu-
soidal emf’s in the steady state, i.e., sufficiently long after the excitation
has been applied to ensure that the transients are vegligible.

13-5 Steady-state behavior of a simple series circuit. The behavior of
the circuit of Fig. 13-1, with the following excitation, will now be studied:

&(t) = &g cos wi. (13-15)

This could simply be written in place of &§(f) in Eq. (13-1) or Eq. (13-10)
and the resulting equation solved; however, a more fruitful procedure is
30 note that 8, cos w! is the real part of £4e™*. If a fictitious complex volt-
age 3y -+ jéy were applied to the circuit the resulting current would
most certainly also be complex, £, -+ jIy (it iz implied hero that &y, &,
I, and I are all real). Putting these fictitious quantities into Eq. (13-10)
gives us
dey | .dSs d’I; ar, I\ . ( ,d%, dly 72)
FRER (L e PRG )i\l v Ry )
(13-16)

The only way this equation can be sutisfied iz if the real parts on the left
and right are equal and the imaginary parts ou vhe left and right are equal.
Thus I, satisfies Eq. (13-10) with Jd&;/di on the left, and /g satisfes
Eq. (13-10) with d&;/dt on the ieft. This means that if 8(f) is the real
part of some complex function it is sufficient to solve Eq. (13-10} with
the complex function for &%), and then obtaio ihe physical current by
taking the real part of the conplex solution. For the excitation &g cos wi
it is approprinte to use &x¢’ and take the cesi part of the solutiou to be
the physical carrent.  In sciae instances it nay be praferable to use
@O iy order to ohtain the response to cos il - ¢l

If £ is used in Bq. (13-i0), then the current will be 7 o2’ with
I, some complex constant. Dircet substitution iuto the equation gives

U]

.jc)SUCj“’ = {~w2L -+ Jw B 4 ﬁi Toe’®* (13-17)

Dividing by jer chunges this fo

) 1]
N (13-18)
8 ‘.

Lol
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which is in the form

8oe’®t = ZIe’™" (13-19)
with
. 1 )
= R + ]COL + 3.;)—(—7: (13“20&)
or
. 1 .
Z=R+]j (wL _ w"c> (13-20b)

The tmpedance Z of the circuit consists of two parts: the real part or
resistance (R), and the imaginary part or reactance {X). The reactance
is further divided into the tnductive rcactance X; = wl, and the capaci-
tive reactance X¢ = —1/wC. The fact that the bmpedance is complex
means that the current is not in phase with the applied emf. It is some-
times convenient to write the impedance in polar form:

i Z = |2)e", (13-21)
w1
. 1Z| = [R? + (0L — 1/wC)?!'? (13-22)
an
6 — tan~! 9L—‘“ﬁ14‘3—c)- (13-23)

Using this form for the impedance, the complex current may be written as

() = I_BZOT i@t=0 (13-24a)

and the physical current is given by

om

|

2 cos (wt — 6). (13-24b)

Q

If 6 is greater than zero the current reaches a specified phase later than
the voltage, and is said to lag the voltage. In the opposite case the cur-
rent leads the voltage. This formally completes the study of the simple
series circuit, although later we shall examine the solution with care, to
enhance our physical understanding of the situation.

13-6 Series and parailel connection of impedances. If two impedances
are connected in series, then the same current flows through each of them.
The voltages* across the two impedances are Vy = Z;J and Vy, = Z,].

* In this and the remaining sections of the chapter we shall use the symbol V'
in place of AU for the potential difference across an element, or group of elements.
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The voltage across the combination is V; + Vo = (Z; + Z5)I. It is
clear, then, that the connection of impedances in series add the imped-
ances, that is,

Z =2+ 7y -+ Fa-t - (series connection). (13-25)

It is important to note that the impedances add as complex numbers.
If Z1 = R1 - ]Xl and Zz == R2 -+ ng, then

Z=27Z1+2Z;= (B + Ry) +j(X, + Xo). (13-26)
In polar form, ’

Z = |Z|¢°, 1Z] = |(R1 + R+ (X; + X2)V3,

-1 Xy + X5
R+ R,

= tan (13-27)
Note that the magnitude of Z is not the sum of the magnitudes of Z;
and Z,.

If impedances are connected in parallel, then the same voltage appears
across each, and the currents are given by I; = V/Z,, Iy, = V/Z,, etc.
The total current iz

: |4 |4 1 1
o e e e e = ),
from which it is clear that
1 1 1 .
7= 7 + Z, + - (parallel connection). (13-28)

Here, too, the addition is the addition of complex numbers.
Equations (13-25) and (13-28) provide the basis for solving problems
involving more complex configurations with a sicgle eoif As an example,

we now consider the circuit of Fig. 13-5. The impedance consists of a

S It

Fic. 13-6. A typical a-c circuit.
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resistor in sevies with the parallel combination of a capacitor and an in«
ductor. This is written as

Z= R+ —p ! : (13-29)

i
Toa T 0L T a0

Alternatively,

Ry + jwl (13-30)

Z = By A T 70cTR, +el)

or

; (Ry + jol)[(1 — &’LC) — jwRs(]
Z= Bt S e terger 0 (189D

The only other worth-while mapipulatiou at this tine is the separation
into real and imaginary parts:
o R, wL(l — «’LC) — wRIC
Z= Bt 5oy 7 orRaes T (1 = @IL0)? + wBRIC
(13-32)

Having found Z, we now determine the current by dividing Z into §ge’®*.
The study of this eircuit will be continued later, in connection with

resonance phenomena.

13-7 Power and power factors. The wower delivered to a resistor may
he determined by muitiplying the voltage across the resistor by the cur-
rent through the resistor. However, for the more general case, such as the
impedance shown in Fig. 13-7, a more subtle approach is required. If
V{t) and I(¢) are the complex voltage and current as shown, then the
instantaneous power is

Piust = Re I(t) Re V(1). (13-33)
The average power is a more important quantity, with the average being

taken over either one full period or a very long time (many periods).
In Section 16-5 it is shown that

Re (1 06"‘") Re (Voef“‘) = 4 Re (J :Vo), (13-34)
(10)
N z

Fia. 13-7. Measurement of power.
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where Iy is the complex conjugate of 7,. if the phases are chosen so that

Vg is real and, as usual, Z = |Z¢*°, then
P = Re I{5) Ko V{f) == Hly| [Vl cos . (13-35)

The factor oue-half in Eq. (13-35) represcuts the fact that the average of
sin®wt or cos®wi is one-hialf. The other interesting factor is cosine 6,
which takes into account the fact that ths current and voltage are not in
phase. Cosine 8 is frequently called the power faclor of an alternating
cawrent {a-c) cireutf.

As a final comment, we mention that the effsctive values of the voltage
and current are often defined by

. /2 : 2, o
Vege == "“5“ Vol, Foge = }?/** (1ol (13-36)

The virtue of these definitions is that a given Vi applied to a resistance
dissipaies the same power as a constant voltage of the same magnitude.
The specification of effective values is very common, e.g., 115-volt a-c
ines are 115 effective volt lines.

13~8 Resonance. Equation (13-22) shows that a simple series L-R-(
circuit has a frequency-dependent impedance which is a minimum at
w? == @} = 1/LC. At this frequency the impedance is just R, the phase
angle is zere, and the current is a maximaum of magnitude &¢/R. This
is a resonant phenomencn much like that observed in force-damped
mechanical oscillators. 1If the current is plotied as a funetion of fre-
gnency, a curve of the form shown in Fig. 13-8 js obtained. Several
curves are shown; all are based on the same values of Z and C, but the
series resistance varies from curve to curve. It is clear that the curves
arc sharper for small than for large values of the series resistance. The

1
i
| / \
!
|
|
2.1
! PN
§ v \ ™\
! 4 e —
! /%/’ I 5\\:’;%
e |
g T T Ty T T e

Fig. 13-8. Resonance curves for a series B-L-C cireuit.
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current falls to 4/2/2 times its maximum value at a frequency where the
magnitude of the impedance is /2 times R, or where
iwL ~ g (13-37)
wC'|
For relatively sharply peaked responses this obtains at values of w not
far removed from wy. We then write w = wg + Aw, and obtain

1 1 ' o

Using w2 = 1/LC and (1 + Aw/wg) ™' = 1 — Aw/wq gives
or

2wl R

“oa — wol (13-39)
The quantity

— = Yo
Q = wol/R or Q = 31aa] (13-40)

characterizes the sharpness of the resonance and is known as the () of the
circuit. For elementary purposes, ¢ may be considered to be a property
of the inductor only, since most of the unavoidable series resistance is
associated with the wire with which the inductor is wound. However, a
more refined treatment shows that the capacitor losses must alse be in-
cluded in computing Q’s. The curves of Fig. 13-8 are labeled with the
appropriate @ values.

As the driving frequency is varied, not only the magnitude but also
the phase of the current varies. This variation is shown in Fig. 13-9
for the same @ values used in Iig. 13-8. Below resonance, the phase
angle of the impedance function is negative; therefore the phase of the
current is positive and it leads the volfage. Above resonance, the oppo-
site is true and the current lags the valiage.

FiG. 13-9. Phase ungle of the impedance in a typical R-L-C serics cireuit.
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It is interesting to note that the usual radiofrequency resonant eir-
cuits found in communications equipmernt are series resonant civenits,
in spite of their parallel-circuit appearance. In the most simple case this
is because the driving power is inductively coupled inte L and thus ap-
pears as an emf in series with L.

Resonance is not restricted to series circuits like those just discussed;
parallel circuits may also exhibit resonant characteristics. The cireuit
of I'ig. 13-6 exhibits such a resonance. Defining the resonant frequency
for a parallel resonant circuit is not 2s simple as it is for a series civeuit.
Some of the possibilities are: (1} wy = /v/LC. (2) the frequency at
which the impedance [given by Eq. (13-31)] is a maximum, or (3) the
frequency at which the power factor is unity. Each of these three choices
gives a different frequency; however, for high @ circuits they are very
nearly the same. The first choice is by far the most useful in practice
because it makes many series resonance results directly applicable to
the parallel resonant case. One very interesting result is obtained by
using Eq. (13-31) to evaluate Z, with B, = 0 and wo = 1/+/LC. The
result is

7 == woL[‘i’—;{i - ]:Iy (‘" = wo). (13_41)

For a high @ cireuit the j can be neglected, with the result that the im-
pedance at resonance is @ times the inductive reactance st resonaiice.

The subject of resonant circuits can be pursued at great length; how-
ever, to do so here is probably unwarranted. Some of the problems cx-
tend this seetion, and very comprehensive details are given in the work
by Terman,* to which the interested reader is referred.

13-9 Mutual inductances in a-c circuits. Solving a-c¢ eircuit probiems
involving mutual inductances presents a minor difficulty in assigning the
correct sign to the mutual Inductance. This difficulty can bie readily
resolved by noting that the sign to be associated with the mutnal in-
ductance depends on the assumed divection of the current in the two
cireuits involved, and on the way in which the windings are connected.
The notatioa 3 ;; will be used for the pure mutual inductance between
two circuits.

It was shown in Chapter 9 that the emf in winding 2, due 1o a changing
current in winding 1, is given in magnitude by

al,
dt

Eo == 1’”21

(13-42)

* Terman, Radio Engineers Handbook, NcGraw-Hill, New York, 1943.
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For sinusoidal currents, using complex notaticn, we have

& = joMg,I10e™" {13-43)

or
82 = jwﬂfmfl. (13“44)

In what follows, the symbol My, will be taken to be a positive quantity
and the sign of &; will be displayed explicitly; in other words, M3 in
"Eq. (12-44) will be replaced by ==Mqy, with M4y a poesitive quantity.
To demonstrate the technique for assigning signs we now consider the
circuit shown in Fig. 13-10, in which two impedances Z; and Z5 are com-
bined with a mutual inductance and connected to a source of emf £(t) =
8oe’*t. The mutual inductance is Jabeled M, and is taken to be a posi-
tive number. The black dots in the figure indieate the ends of the two
windings, which are simultaneously positive; that is, if the lower wind-
ing is excited by & sinusoidal current which makes the left-hand terminal
positive at some time t;, then the voltege induced ix the upper winding
makes the left-hand terminal of the upper winding positive at ;. The
equation for the upper branch, in accordance with Kirchhoff’s law, is

Z Iy + jwli Iy + joMy2Is = &. {13-45)

The plus sign is used with the mutual inductance because a positive I3
gives a voltage in the upper branch which has the same sense as an IR
drop. The second equation is

JoM 191y - Zody + juLels = &, (13-46)

where M3 = M, has been written in the interests of symmetry.

The assignment of the sign is on she same basis as before, and may be
checked by noting that M,, should appear in the branch-one equation
with the same sign as M »; in the branch-two squation. Equations (13-45)

@

¥1a. 13-10. Circuit with mutual inductancec.
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and (13-46) may be solved simultaneously by standard techniques to

ield,
v S Zy + jwLy — jwM o
(Z1 + jwLlh)(Z3 + jwLg) + w2M?2, ;

Zy + qwly — jwM,, .
(Zl + Jle)(L.z + jO)Lo) -+ w21’i!2

Combining the two to obtain the total current 7'y -+ I, gives

0

(1347}

I

Zy + joby + Zy + jwls — 2jwM;,
71 + L) Zs ¥ joly) + wibdy, = (3748

I=I1+1I,=8

The ccefficient of & on the right side is the reciprocal of the impedance
presented to the generator, or the net impedance between points @ and b.
It is obvious that if M;; is zerc, the impedance is the parallel combination
of the two branch impedances. For the connection shown, as Mg in-
creases so does the impedance.

The circuit obtained by interchanging the leads on one winding of the
mutual inductance is shown in Fig. 13-11. Note that the only difference
is that the black dot has been moved from the left end of the upper
winding to the right end. The result is to change the sign of the M,
term in ¥qgs. (13-45) and (13-46), with the result that

(Zl +ij1)Il — jwﬂflzlz == 8,
and (13-49)

—joM oIy + (Zs + jwL) !y = 8.,
The currents are easily found and combined to obtain the impedance:

_ (Zy + jely)(Zs + juls) + oM (13-50)
Y= Zy Fjwl) + Zo + jwhy + 2jwM s’

Za

e 2, Iy -
a E— ;[ b
!ﬂ
e
g
Iy

——

Fig. 13-11. Circuit of Fig. 13-10 with the sign of the mutual inductance
reversed.
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which is the same as in the previous case when the mutual inductance is
zero. The relationship between Z;, for finite My, and Zg for M, = 0
depends on the parameter in a rather complicated way. We will state
here only that Z,, may be larger or smaller than the Zy for My = 0.

The basic circuit for the most commor mutual inductance device, the
trausformer, is shown in Fig. 13-12. &, and R are the resistances of the
primary (driving) and secondary (driven) windings, L, and Ly are their
self-inductances, and M is the (positive) mutual inductance between
them. Zp is the impedance of the load connected to the secondary wind-
ing, and &(f) = §pe’* is the voltage across the primary winding. If
currents I;¢% and I.e™® are assumed to be in the directions indicated,
then Kirchhoff’s voltage law requires that the equations

8o = 1Ry + jwL I, + jwMI,,
and (13-51)
0 = IRy + jwLyly + juMIy + 1271,

be satisfied. The solutions to these equations are

I [L ““ Rz + JwLn
= (Ry + jwL)(Z1, + Rs + jwLs) + w2M? 8o,
and (13-52)-
Io = '—']wﬂ’[
2 = R T oL (Zr + Ra T jwla) + widf2 ©

These relatively complex equations represent an exact solution for the
circuit of Fig. 13-12.

For many purposes it is much more convenient to think in terms of.
an ideal transformer, i.e., one for which the relations

Vi=ag == b (13-53)

e ¢y

‘\ //-—N-\ ';E\') - //, B AN ——L a
(8 ) ) 1'13 él“-’ ) I[ 7 |
-/ )3 g K
S 0? e o~ ]

Le J

Fig. 13-12. A transformer.
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are satisfied, where the constant @ is independent of frequency, 1'y, is the
voltage across Z1, and all other quantities are as shown in Fig. 13-12.
The condition that must be satisfied to ensure the second of these relations
is

Zp + Ry 4 jwLs
JoM -

a, (13--54)

which is satisfied if wlg > |Z1, + R,|. Similar conditions can be found
which will ensure that V /&, == a.* The conditions are complex and
not too easy to satisfy; however, practical transformers exist which satisfy
them over relatively wide frequency ranges. For such devices,

1

I, = — -;11) Vi = a&,,

and
S _ _}:L_. — g_.& rr
Il = (1212 = a2 (13 u'))

The last of these relationships shows that the transformer acts also as
an impedance transformer, with transfermation ratio ¢™% It is left as
an exercise to show that for very close coupling of the two windings

a = Ny/N,, that is, the turns ratio.

13-10 Mesh and nodal equations. More complex a-c circuits raay be
approached in two ways: one based on Kirchhoftf’s voltage law and
known as mesh analysis, and the other based on Kirchhoff’s current law
and known as nodal analysis. Each method has its advantages and dis-
advantages. Since choosing the expedient method can greatly simplfy
some problems, both methods will be considered in this section.

The first step in applying mesh analysis is the assignment of meshes.
This is accomplished by assuming closed loop currents such that at least
one current goes through each element. For example, in Fig. 13-13 three
meshes are shown, labeled I,, I, and I3. This is, of course, not the only
possible choice; several others are possible and useful. If Kirchhoff’s
voltage law is applied to each of these meshes, we obtain

11(Z3 + Z4) — 1574 —~TsZ3 = 8,
—1,Z, + 17y + Zy + Z4) — T2y = (),
—1:Z3 — 127 +I3(Zy + Z3 -+ Z5) = 0.

(153-56)

Note that the minus signs appear because in mesh one, for exarnple, I,

* The details are given in Guillemin, loc. ¢if., Chapter VIIT,
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Zg —l

| S

i 13& % |
2.l

et 1

i

Fic. 13-13. Illustration of the use of mesh analysis in a-c circuits.

flows through Z, counter to the direction of 7. Equations (13-56) can
be solved most easily by determinantal techniques, resulting in expres-
sions for the set of mesh currents in the circuit. It is useful to note that
the mesh eguations can be written as

N Zil; = 8= 1,2,...,n) (13-57)

=1

(with » == 3 in the circnit above). In this notation, Z;; = Zj, which
is a useful check on the mesh equations.

As & second example, consider the circuit of Ifig. 13-14. The appropriate
equations for this circuit are writter as

I.(Z, + Z3) + T2y = By,
(13-58)
01 Zg + Io(Zy + Zs) = &

There is no reason why &, and &, raust be in phase; usually they wiil not
be, but will be expressible as £; = |8,o/e’™, 83 = |8,5]e/“* 7. 1t is,
however, very important to assign the phases correctly, and this is most
convenieutly accomplished by examining the relative phases at i = 0 and

1
e

1
""‘“-"'! Z; r"’“? "‘{ Za ] -~

7 i

-y
T it - ]
OlEDIE I IO .
T ff e &) T

Fig. 13-14. Further use of mesh ¥z, 13-15, Prectical generator con-
equaiions. neeted to a lead 2.
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assigning directions (senses) with respect to the assigned mesh currents.
1t is also irportant to note that unless all of the generators have the
samne frequeney the entire technique fails {more properly, the problem
reduces to the superposition of two independent problems, esch involving
one generator and one frequancy).

Before proceeding to discuss the alternative nodal equations, it is ap-
propriste to discuss voltage and current generators. In the preceding
sections, sircuit problems have been phrased in terms of pure sources of
emf. Such idealized deviees canrot be constructed, of course; practieal
devices always have a certsin internal impedonce. Thus a practical
generator consists of o source of emf, §(¢), in series with an impedance Z;,
which is the internal impedaace. Such a generator is shown in Fig. 13-15
connecterd to a lead Zp. Several observations may be made. First, for
maximuin pewer iransfer to the external load, Zy = Z7; that is, Z; and Z,
should have equal resistive parts, and resctive parte which are equal in
magnitude but opposite in sign. The proof of this is left as an exercise.
Becondly, & voltage gonerator is equivalent to a current generator de-
livering & current JF(f) == &£()/Z; shunied by the internal impedance.
This equivalence for the circuit of Fig. 18-15, is shown in Fig. 13-16.
1t 1s easy to show this eguivalence if it )5 noted that an ideal current
generator delivers the current (1) to any load connected to its terminals.
The equivalence further means that in any cireuit problem the gen-
erators may be faken either as veitage generators or as current generstors,
to suit the convenience of the situation.

'The nodal equations for a circuit result from the application of
Kirchhoft’s current laws te each of the nodes. In this context a node is 2
point at which three or more elements join. As a simple example of the
application of the nodal equations, we vefer to the circuit of Fig. 13-17.
The nodal equations are ohtainad by requiring that the algebraic sura of
the currents to each node be zere. The nodes are numbered, starting
with zerc for the node whose potential is the referenoce for the circuit. If
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Fro. 13~16. A “current gorerstor”
which iz equivaleat to the vodisge Fio. 1317, (Hustrating the roethod
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generator of Fig. 13-15, of nodal anaiysic in a-c circuits.
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TFre. 13-18. Another circuit illustrating nodal analysis.

the potential at node 0 is taken to be zero, then at node 1

_.V2

10 = 1+ P
42

(13-59)

where V; and V, are the potentials of nodes 1 and 2 respectively. At

de 2,
noae ‘7 . Vl V2

0=zl gt gt

(13-60)
Before proceeding, we make the observation that a quantity which is
the reciprocal of an impedsnce would be a great convenience. Such a
quantity is the admittance, symbolized by Y. Y = 1/Z. Admittances
in parallel add, while admittances in series combine by adding reciprocals.
In terms of admittances, Fqs. (13-59) and (13-60) become

It) = (Y14 Y)Vy — Y3V,
(13-61)
0= —Y Vi +(Yy+ Ys+ YoV
which are somewhat more convenient. The simultaneous solution of
these equations yields the nodal voltages, ¥'; and V.
We shall consider one more example of the use of nodal equations;
namely, to the circuit shown in Fig. 13-18. The nodal equations are
simply written down in the form

I, =Y Vi+4 YoV, — Vi) + Yu(V1 — Va),
0= Yy(Vy — Vy) + Y3Vo+ Ys(Vy — Va), (13-62)
Io= YgV3s+ Y5(V3 — Va) + Yu(Vy — Vi)

These equations may be solved by standard techniques to obtain the
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voltages at the nodes. The fact that voltages rather than currenis are
obtained when the cquations are solved is a major advantage, partic-
ularly in communications cireuits.

13-11 Driving point and transfer impedances. We shall now present
simple definitions for the driving point and transfer impedance of a four-
terminal network. These definitions are presented because these terms
appear with increasing frequency in the technical literature, and because
they are sometimes a serious stumbling block to the uninitiated. Consider
a four-terminal network, and call terminals 1 and 2 the input, and 3 and
4 the output. If a generator of emf § and internal iinpedance Z; is con-
nected betweea terminals 1 and 2, snd an impedance Z; between ter-
minals 3 and 4, as shown in Fig. 13-19, there will be a current I; in Z;
and a current, I in Z7. The driving poiut impedance Zp is

3

n

Zo =1 (13-63)
and the transfer impedance is
Ty = £ (13-64)
L

1t should be noted that Zp and Zr both depend on Z; and Zp, as well as
on the internal structure of the network.

RS |4
£ R i‘l
(/ 8 \ Network N 71,
./ ! |
l T

T T

Tig. 13-19. A four-terminal network.

A brief treatment such as the above carmot do justice to the subject
of network theory; classics such as that of Guillemin, sas well as the
multitude of more recent, hooks, should be consulted for the details of
this coruplex subject.
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ProgLEMS

13-1. An inductance of 2 henries apsd s resistance of 3 ohins are connected
in series with a 5-volt battery and a switeh. Determine the current, and the
rate of change of current (d/dd) in the cirenih at the foliowing times after
the switch is closed: (a) 0.3 sec, (b) 1 see, {e) 4 scc.

13-2. A circuit consisting of an inductance Lo, a resistance h’o, and a batterv

& has a steady current I = 89/ through it. A switch in the ecircuit is
opened at time ¢ = 0, creating an arc across the switeh. If the arc resistance
is given by k/I, where the constant & < &g, determine the current through the
arc as a function of time. What is the final steady value of current through
the arc? '

13~3. A capacitor C, a resister R, and a b&ttvry So are connected in series
with a switch. The swiich is closed at time ¢ = 0. Sct up the differeniial eque-
tion governing the charge Q on the capacitor. Deterrmm & ag o function of time.

13-4. A capacitor € with charge @Qp is suddenly connected in series with a
resistance R and inductance L. Deterruine the current as a funetion of time.
Show that there are three different types of sclution, depending upon whether
R2 — 4L/C is less than, equal to, or greater than zero. The first of these
conditions is called underdamped, the sccond critically damped, and the third
overdamped.

13-5. The circuit. of Fig. 13-1 has an additional capacitor €7 shunting the
entive R-L-C combination. R = 100 ohms, L = 1 henry, € = 100 uf, and
¢ = 104f. Make a plot of the impedance |Z] versus frequency from zero to
I o= 10* cycks/se

13-6. The series combination of a resistance B and an m*lur‘taroe L is put
in parallel with the series corabination of resistance & and capacitance C. Show
that if 8% = L/C the impedance is independent of frequency.

13-7. A wire-wound resistor has a d-c resisiance of 90.00 ohms and sn in-
ductance of 8 phenries. What is the phave angle of the tmpedance at 1000
cycles/sec? A rapacitor is placed in parsilel with the resistor to reduce the
phase angle to zerc at {000 cycles/sec without changing the resistance appreci-
ably. Over what runge of frequency is the phase angle less than it was before
the capsacitor was added? '

13-8. An a-c generator with internal impedance Z; is connected in series with
a variable load imped&nce Zr. Prove that msximuin power i3 transferred to the
load when Z; =

13-9. Given t}‘e r-xrcmt of Fig. 13-6, with L = 4 mh,C = 2pf R; = 25 ohms,
Rs = 40 ohms. Find the following set of frequencies: () where w = 1/4/LG,
(b) where the impedance s maximum, (c} where the current through ) is in
phase with the generator valtage.

13-10. Show that the guantity @ defined in the text can b2 expressed as 2
times the maximum erergy stoved in the sircult, divided by the evergy dis-
sipated in one cyele. This giatement is sometines ased 2g the definition of @
and is independent of apecific ciredit paramete

13-11. A crossover network for a hi-fi get iv to be designe
apeakers (each of resistance ) are connected to the outpul sk

£

o g0 that twa loud-
2 of an anplifier.
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Fraver 13-20

Gne apeaker iz to receive predominantly high frequencies, the other predemi-
nantiy low frequencies. The network is as shown in Fig. 13-20. The two capaci-
tors are each of cavpacitance € and the two inductors each of inductance L.
{a) Find a relationship between L and C for 2 given R such that the network
presente o purely resistive load (=R) tc the amplifier at sll frequencies.
{b) The crossover frequency . i8 defined as the frequency at which each
speaker receives half of the power delivered by the amplifier. Tor a given R
and «, detervuine L and C.

13-12, A 1-uf capecitor is firsd charged to 100 volis by connecting it to &
battery; it is then disconnected and lmmediately discharged through the 300-
turn winding on a ring toroid. The toroid has 2 mean radius of 20 cm, a 4-cm?
eross-sectlonal area, and an air gap of 2 mm (see ¥ig. 10-15). Neglecting copper
losses, hysteresis, and [ringing, calculate the maximum magnetic field sub-
sequently praditeed in the air gap. Take the relstive permeshility of the toroid
equal to 5000.

13-13. A potential difference of 1 volt at a frequency f = 10¢/x eycles/sec is
impressed across the eircuit of Fig. 13-21. The mutual inductance of the coils
is such that they are in opposition. ¥Find the current in the upper branch.

11,000 @
AT e

$ wh | i

060060 ;

B

j&-14. A Dﬁ“{‘y&li* power transformsy (barns vatio 2:1) has a primsry io-
dnetance of 100 henries and a d-~ resigtunce of 20 obws  The coupling cacfhi+
cient, between primary and secondary is clese to anity. 1 10060 velts is placed
across the primary. caleulate the carrent in the primary winding (a) when the
secondaty is open-circuibed, (b) when a load resistance of 20 obms is in the
secondary ecireuit.
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Ficure 13-22

*18-15. Three identical capacitors and three identical inductors are con-
nected as shown in Fig. 13-22. Find the resonant frequencies of the system.
(Hint: Use mesh analysis, with current of an assumed frequency w, and show
that the three equations obtained are compatible for certain « only.)

13-16. In the circuit shown in Fig. 13-14, Z; = 2 4 5j, Z2 = 8 — 7,
Z3 = 4+ 3j. The voltage generators are in phase with each other: & = 10
volts, &2 = 2 volts. Determine I3 and 2.

13-17. In the circuit shown in Fig. 13-17, I(t) = I1e™* and Z4 is replaced by
a current generator Ize?“!. The two current generators are in phase with each
other. Z; and Z3 are capacitors of reactance 40 and 60 ohms respectively. Zo
is a pure resistance of 20 ohms. I; = 5 amp, Iz = 25 amp. Determine the
node voltages at 1 and 2 relative to point 0.



*CHAPTER 14
PHYSICS OF PLASMAS

Gases which are highly ionized are good conductors of electricity.
The charged particles in such a gas interact with the local electromagnetic
field; furthermore, the organized motion of these charge carriers (currents,
fluctuations in charge density) can produce magnetic and electric fields.
When subjected to a static electric field, an ionized gas acts like any
other conductor; the charge carriers in the gas rapidly redistribute them-
selves in such a way that most of the gas is shielded from the field. To
the relatively field-free regions of the gas where positive and negative
space charges are nearly balanced, Langmuirt gave the name plasma,
while to the space-charge or strong-field regions on the boundary of the
plasma he gave the name sheaths. “

Equivalently, we may say: an ionized gas which has a sufficiently large
number of charged particles to shield itself, electrostatically, in a dis-
tance small compared with other lengths of physical interest, is a plasma.
A somewhat more precise definition in terms of the shielding distance
will be given in Section 14-1. The earliest interest in plasmas was in
connection with gaseous electronics (electrical discharges through gases,
arcs, flames}; more recent interest has heen directed toward problems in
theoretical astrophysics, and the problem of ion containment in thermo-
nuelear (fusion) reactors.i

The general area of study embracing the interaction of ionized gases
with time-dependent electromagnetic fields is calied plasma dynamics.
For many of the preblems in this area, and these are the more important
and interesting ones, it is impossible to treat a plasma adequately in
terms of a purely macroscopic formulation. Instead, it is necessary to
use what is known conventionally as kinetic theory. The motions of
individual ions and electrons must be studied; their collisions with other
particles must be taken into account through solution of the Boltzmann
transport equation. Thus a rigorous formulation for plasma problems
exists, but their solution is extremely difficult in general, except for situa-
tions where it is permissible to neglect some of the terms in the Boltzmann
equation. There are, however, three approximate formulations which
provide considerable insight into what is happening inside the plasma.

* This chapter may be omitted without loss of continuity.

1 1. Langmuir, Physical Review 33, 954 (1929).

1 See, for example, Lyman Spitzer, Physics of Fully lonized Gases, Interscience,
New York (1956), and Amasa Bishop, Project Sherwood—The U. S. Program in
Controlled Fusion, Addison-Wesley Publishing Co., Inc., Reading, Mass. (1958).

269



270 PHYSICS OF PLASMAS [crHar. ¥4

The first of these methods is equilibrium theory, which rests on the
premise that collisions between charged particles are sufficient to main-
tain the well-known Maxwell-Boltzmann velocity distribution for particles
in the body of the plasma:

N;(v) dvg dv, dv, = N ( 812 g=mpV12KT gy . dv,.

21rIcT
where Ny; is the number of particles of type j per unit volume in the
plasma, v, (etc.) are the components.of veloecity, m, is the mass of type j
particles, and 7' is the absolute temperature. Kinetic and transport
properties may then be calculated in terms of this velocity distribution

The second approximate method is orbit theory, which treats the motion
of charged particles (ions and electrons) in prescribed electric and mag-
netic fields. These fields may be functions both of position and. of time.
Orbit theory is a good approximation to particle motion in a plasma
when collisions between particles do not play the dominant role, Le.,
when the mean free path for collisions is large compared with character-
istic dimensions of the orbit. Under these conditions the effect of collisions
can be treated as a perturbation, and the primary problem centers around -
making the “prescribed” electromagnetic field self-consistent; in other
words, the prescribed field must be the sum of the external field and the
field produced by the orbiting ‘particles.

The third approximate treatment is the hydromagnetic formudation.
Heré one uses the classical eiectromagnetic equatlons (Maxwell’s equa-
tions) in conjunction with the classical equations of fluid motion. Bvi-
dently, the hydromagnetic treatment is just a macroscopic description
of the plasma; it becomes 2 good approximation when the mean free path
for collisions is very small compared with distances of physical interest
in the plasma system. The hydromagnetic picture forms a good starting
point for discussing the collective motion of particles in the plasma, e.g.,
plasma oscillations.

The rigorous kinetic theory approach to plasma problems is beyond
the scope of this book. On the other hand, many important properties
of plasmas can be discussed in terms of the approximations outlined
above. For simplicity we shall assume that the plasma consists of electrons
(charge, —e) and singly charged positive icns (charge, --¢); neutral
atoms may be present, but we shall ignore such complications as 10mzmg
collisions and recombination of electrons and ions.

In Section 14-1, and again in Section 14-7, we encounter a plasma
under stationary or.stesdy-state conditions, for which equilibrium theory
is well suited. In Sections 14-2 and 14-3, on the cther hand, we shall
be much concerned with individual particle motiocu, and here orbit theory.
is.applicable. Finally, in Secticns 144 through 14-6 we shall treat some
dynamic aspects of the plasma, and we shall do this within the hydro-
magnetic framework.
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14~1 Elecic:cal neutrality in a plasma. One of the most important
propertles of a plasma is its tendency to remain electrically neutral, ie,
its tendency to balznce positive and negative space charge in each macro-
scopic volume element. A slight imbalance in the space-charge denmtles
gives rise to strong electrostatic- forees which act. wherever possible, in’
the direction of restoring neutrality. ‘On the other hand, if a plasma is
deliberately subjected to an external electric field, the space-charge den-
sities will adjust themselves so that the major part of the plasma is
shielded fiom the field.

Lewus consider a rather simple example. Suppose a spherical charge
4@ is introduced into a plasma, thereby subjecting the plasma to an
electric field. Actusally, the charge +Q would be gradually neutralized
because of being continuousiy struck by charged particles from the
plasma, but if the charged object is physically very small, this will take
an appreciable period of time.. Meanwhile, electrons find it energetically
favorable to move closer to the charge, whereas positive ions tend to
move away. Under equilibrium conditions (see Sectiori 5-3), the proba-
bility of finding a charged particle in a particular region of potential
energy W is proportional to the Boltzmiann factor, exp (—W/kT). Thus
the electron density N, is given by

_ U — UO) .
= Ny exp (e )’ (14-1)

where U is the local potential, Uy is the reference potential. (plasma
potential), T’ is the absolute temperature of the plasma, and k is Boltz-
mann’s constant. N, is the electronic density in regions where U = Us,.

If N, is also the positive ion density in regions of potential Ug, then
the positive ion density N; is given by

— _ .q_:y_)
N¢:= Ny exp(A A (14-2)

The potential U is obtained from the solution of Poisson’s equation:

LdfadU)_ _ 1,y - 2o (U—-.U.o. 4
73 3 (r i - (N?e N.e) P sinh | e T (14-3a)

This differential equation is nonlinear, and hence must be integrated
numerically. On the other hand, av approximate solution te (14-3a)
which is rigorous at high temperature is adequate for our purposes here.
If kT > eU, then sinh (¢U/kT) ~ eU/kT, and

1 d{( 2dUY _ 2Nge® .. .
73 d@r (" dr) = ekt (U U0 (14-3b)
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the solution of which is E
o ()
= [J —x —_=.

Uy + Treqr exp 5 (14-4)

Here r is the distance from the spherical charge -+Q, and h, the Debye
shielding distance, is given by

kT \'/2

Thus the redistribution of electrons and ions in the gas is such as to
screen out @ completely in a distance of a few h.

An ionized gas is called a plasma if the Dehye length, &, is small com-
pared with other physical dimensions of interest. This is not much of
a restriction so long as ionization of the gas is appreciable; at 7' = 2000°K
and No = 10'® electrons or ions/m® the Debye length is 2.2 X 10~°
meter.

14-2 Particle orbits and drift motion in a plasma. The orbit of a charged
particle-qg moving in a prescribed electric and magretic field may be
calculated directly from the force equation: :

F = ¢(E + v'X B). (14-6)

We shall find it convenient to start with relatively simple field configu-
rations, and then to generalize to fields which are slowly varying in space.

A constant electric field applied to a plasma is not particularly interest-
ing because the plasma adjusts itself by developing a thin sheath of space
charge which shields the main body of plasma from the field. On the
other hand, a constant magnetic field causes the particles to gyrate about
the field lines without altering the space-charge distribution.

Case 1. Uniform magnetic field. E = 0. This is the same motion as
that described in Problem 8-1, but because it forms the basis for more
complicated orbital motion in plasmas, we discuss it here in some detail.
It should be emphasized, however, that Case 1 is applicable to many
other situations besides plasmas, e.g., it is fundamental to the operation
of particle accelerators, such as the cyclotron and betatron.

The Lorentz force is always at right angles to the velocity v of the
charged particle; hence its kinetic energy remains constant:

K = Impw?

= constant, (14-7)
where m, is the mass of the particle. It is convenient to resolve the
velocity v into two components: vy, parallel to B, and vi, in the plane
perpendicular to B. .Since vy is' unaffected by the field, Ky = my})
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remains constant also. It follows that
K1 = $mp} = K — K, (14-8)

is also a constant of the motion.
The Lorentz force provides s centripetal acceleration. Thus

and R (the radius of the orbit) is given by
— Mmpbl -9
R = 4B (14-9)
The radius R is frequently called the Larmor radius of the particle. The
complete motion of the charged particle is described. as a gyration of
the particle in an orbit (the Larmor orbit) superimposed on the uniforni

motion of the orbit center, or guiding center, along a magnetic fieid line.
The resulting helical motion is shown in Fig. 14-1.

ifﬁﬁﬁ
oU U

Fie. 14-1. Particle motion in a uniform magnetic field.

The magnetic field acts to confine the plasma by bending the particles
in circular orbits. Of course, no confinement is observed in the field
direction. For ions and electrons of the same kinetic energy K, the
electrons gyrate in much smaller orbits, the ratio of the two Larmor
radii being equal to the square root of the mass ratio.

An interesting quantity which we shall have occasion to use later is
the magnetic moment of the gyrating particle. By definition, the magnetic
moment m is given by

m = current X area
%WRZ = %—L- (14-10)

Inspection of Fig. 14-1 shows that m is directed opposite to the magnetic
field and is thus a diamagnetic moment.

Case 2. Uniform electric and magnetic fields. E L B. If an electric and
a magnetic field are simultaneously applied to a plasma, and E is per-
pendicular to B, then there is no tendency to produce a sheath’ in fact,
we ‘shall see that positive and negative space charge drift together in
the same direction. For convenience, let the particle velocity v be
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written as
vV=ug+V; (14-11)

then Eq. (14-6) may be written as
F=qE+u; XB+ v XB). (14-12)

A particular choice for ug causes the first two terms on the right of this
equation to cancel each other:

= 2B, (14-13)

The remaining force, gv’ X B, is just what was studied under Case 1.

The total motion of the particle is thus made up. of three terms:
(a) constant velocity v/, parallel to B, (b) gyration about the magnetic
field lines with angular frequency vi/R = ¢B/my, and (c) a constant
drift velocity ug = E/B at right angles to both E and B. Some examples
of this motion are shown in Fig. 14-2.

The velocity ug defifed by Eq. (14-13) is called the plasma drift velocity
or the electric drift velocity. It is important to note that uz does not depend
on the charge, mass, or velocity of the particle; thus all components of
the plasma drift along together even though their individual gyrations
may be vastly different.

Our derivation of Eq. (14-13) was obtained in a nonrelativistic fashion;
if either ug or v should approach ¢ (the speed of light), then Eq. (14-11)
must be replaced by an expression consistent with a Lorentz transforma-.
tion. On the other hand, it turns out that Eq. (14-13) for the drift
velocity is always correct* so long as |E| < ¢|B|. If [E] > ¢|B|, the mag-
netic field cannot prevent the particle from moving in the direction of E.

Case 8. Magnetic field constant in time, but space-dependeni. E = 0.
Let us suppose that a charged particle is moving in a nearly uniform
magnetic field, one in which the field lines are slowly converging in space.
The particle motion may be treated as a perturbation of the helical orbit
in Fig. 14-1. '

»The motion will be something like that shown in Fig. 14-3; the reader
may easily verify that there is a force tending to push the particle into
the weaker magnetic field region. To specify the problem precisely it

* The simplest way to treat the case where |E| is less than but not small com-
pared with ¢/B| is to make a Lorentz transformation, jransforming both the
particle velocity and the fields. The velocity of the moving system is given by
ug (Eq. 14-13), and the force in the moving system is given by

. 2\1/2
F/ = ¢(v' X B) (ml - “")



14-2] PARTICLE ORBITS AND DRIFT MOTION IN A PLASMA 275

Fig. 14-2. Crossed electric and magnetic fields. Particle motion in plane
perpendicular to thé magnetic field. The figure shows opposxtel\, charged ions
of different initial momenta.
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will be assumed that the flux line through the guiding center coincides
with the z-axis, and that the magnetic field has azimuthal symmetry about
the z-axis. Taking the z-component of Eq. (14-6), we obtain

F,= mp%’{- = qvsB,|reep. (14-14)

But divB = 0 or, for the case in po'mt,

= ).

Qaiq,

1
v ar B+
Since the field lines are converging slowly, dB,/dz may be taken con-
stant over the orbit cross section, yielding i

9B,
Brlrar = —4R %% (14-15)

Furthermore, v is analogous to the v, of Case 1. Making these substitu-
tions in Eq. (14-14) gives

dv”

(e

_ __% o 22

0B,

A

, (14-16)

= —m
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Fig. 14—4. The particle winds in a tighter and faster helix until it is reflected.

the last form being obtained through the use of Eq. (14-10).

The total kinetic energy K of the particle is unaltered in the magnetic
field, since the Lorentz force, which is always at right angles to the
velocity, can do no work. K, defined in (14-8), is not constant here;
neither is K, but we may write

d : d \
i (mprf) = di K — K1)

- dK 1.
dt

o a. i
= U (mB.), (14-17)

the last form coming from Eq. (14-10). On the other hand, we may
multiply Fq. (14-16) by vy = 9z/8t to obtain

d 4 2, _ dB, 3z
g (mpty) = —m s 3
- —mf‘%, (14-18)

where d4/dt represents the time derivative taken along the dynamical
path. By comparing (14-17) and (14-1%) we see that the magnetic mo-
ment m is a constant of the motion. It sheuld be emiphasized, however,
that this is an approximate resuit which holds only so fong as 3, varies
slowly. If B were to change substautially in distances of the order of E,
the approximations used in the derivation of {14--18) would break down.

Of further interest is the fact that the particle is constrained to move
on the surface of a flux tube. This follows because the magnetic flux
through the orbit is

2 2

_ — mpb L

P = B,rR* = B, qu;z
L Ay Koo 2wy (14-19)

= m
¢ B, 7% ’
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and m is constant. The motion of the particle is depicted schernatically
in Fig. 14-4.

The z-component (parallel component) of the force, Eq. (14-16), is
always in such a direction as to accelerate particles toward the weaker
part of the field. Gyrating particles which are approaching regions of
stronger magnetic field ave thus slowed down, ie., v is decreased. Ou
the other hand, conservation of energy requires that simuitaneously the
orbital motion », be speeded up. If the convergence of the magnetic
field is sufficient, the particle will gyrate in an ever-tighter helieal spiral
until it is finally reflected back into the weaker field.

14-3 Magnetic mirrors. The results of the preceding section show that
a slowly converging magnetic field can, in principle, confine a plasma.
At right angles to the principal field direction the particles are bent into
circular orbits; along the principal direction of the field the particles are
slowed down and finally reflected by the converging field lines. Such a
field configuration is called a magnetic mirror. At least two mirrors must
be used in any confinement system; a system of this type is shown in
Fig. 14--5.

Not all particles can be confined by the mirror systein, however. The
field lines cannot be made to converge to a point; thus there.is a large
but not infinite magnetic field B,, at the mirror. If the particle has too
much “axial kinetic energy” it will not be turned back by the mirror field,
and it will be ahle to escape.

Current =
windings EIk T e T

Tength along cylinder

Fia. 14-5. Magneiic mirror system.
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Because the magnetic moment is a constant of the motion, we find,
according to Eq. (14-10}, that

Koi _ Kiyi

BO BIA.

Here the subscript 0 refers to the central region of Fig. 14--5, and the
subseript 1 to the reflection point. At the reflection point, however,
Ky = K. Furthermore, K, the total kinetic energy, is a constant of the
motion. In order that the particle be reflected, the mirror field B,, must
be greater than Bj; that is,

B, > B, = “K‘I{IBOs

or
Koi o Bo . c
K B (14-20a)
If the initial velocity vo makes an angle 8, with the field direction, then
Vo = Vg €0s O and vg1L = vy sin 6. Equation (14-20a) then reduces to
sin? 8, > 20, (14-20b)
B,

as the criterion for reflection. For example, if the mirror field is one
hundred times as intense as By, then partlclestxth velocities making an
angle of less than 6° with the field direction cscape from the system.

The collisions between particles in the central region of the mirror
system tend to produce an isotropic velocity distribution. Thus the net
result of collisions is.that particles are continually scattered into a region
of velocity space such that they can escape from the system. As a result
of collisions particles can also “diffuse” at right angles to the field direc-
tion, and so eventually escape.

14-4 The hydromagnetic equations. Collective motions of the particles
in a plasma, such as the “pinch effect” and plasma oscillations, are handled
best in the hydromagnetic formulation. According to this description,
the plasma is regarded as a classical fluid which obeys the conventional
equations of hydrodynamics. The fluid, however, is an electrical con-
‘ductor, and thus electromagnetic forces must be taken into account
explicitly.

The foree on a unit volume of the plasma may be written as

F, = J X B — grad p, (14-21)

where J is the current density and p is the fluid pressure. Other forces,
such as gravitational and viscous forces, may also be included, but are
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neglected here in the interest of simplicity. Because of the approximate
electrical neutrality of the plasma, the term pE need not be included along
with other force terms in (14-21). Deviations from neutrality must be
considered, of course, in Poisson’s equation, but they are usuaily ignored
in the dynamical equations.

Momentum balance requires that

g.dt = Q‘{at-i—(v grad) v ]

= J X B — grad p, (14-22)

which is the equation of motion, or the Euler equation, of the fluid. Here {
is the mass density of the plasma and v its fluid velocity. For problems in
which the hydrodynamic motion is not particularly large, the term con-
taining (v - grad) v can usually be neglected.*

It is sometimes convenient to interpret the J X B term of Eq. (14-21)
as arising in part from a “magnetic pressure.” This can be done with the
aid of Ampere’s circuital law, Eq. (10-26), which, specialized to the
plasma case, is

curl B = uy¥, (14--23,
and the vector identity 4
B X curl B = grad (}B%) — (B - grad) B. (14-24)
Thus
JXB= — L BxculB
Ho
= —grad (—B—i) + L (B - grad) B. (14-25)
Zug Ho

The quantity BZ/2ue, whicb is, of course, the magnetic energy density,
thus plays the role of a magnetic pressure, p.,:

B2

Pm = 5o

(14-26)
It should be emphasized, however, that —grad p,, gives in most cases
only part of the magnetic force; the remaining force comes from the
(1/mo) (B - grad)B term. When 'J = 0, the two terms on the right of
(14—25) cancel each other.

As an example of the utility of the magnetic pressure concept, consxder
a unidirectional magnetic field. The equation div B = 0 guarantees that

* Although it may not be neglected in steady-flow problems for which the
term dv /9t vanishes explicitly. ’
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B does not change along the field direction. Sincé space variations can
occur only in directions at right angles to B, it follows that (B - grad)B = 0
for this case. Equation (14-21) reduces, therefore, to

F, = —grad (p + pm),
and the condition for static equilibrium of each volume element is
P + pm = constant.

In other words, for this example the sum of the fluid pressure and the
magnetic pressure must be space-independent.

In addition to Eqg. (14-22) and the macroscopic equations governing
electricity and magnetism,* we require two additional relationships to
complete the hydromagnetic formulation. These are: (1) the equation
of continuity for the plasma fluid:

%% + div (¢v) = 0, (14-27)

and (2) an equation relating J to the field quantities. The latter rela-
tionship is simply a generalized form of Ohm’'s law which, under certain
conditions, may be written as?

J=gE +vXB) ‘ (14-28a)

Here v X B is the motional electric field arising from hydrodynamic
motion of the plasma in g magnetic field, and ¢ is the conductivity of
the plasma.

An approximation which is frequently mwade is that of infinite conduc-
tivity. The advantage of this approximation is that it permits a sub-
stantial simplification of the hydromagnetic equations, thus presenting a
much clearer picture of the physical processes going on in the plasma.
In some problems, particularly astrophysical ones, the approximation is
quite good. For the case of infinite conductivity, Ohm’s law reduces to

g — »,
E+vXB=0. (14-28b)

Infinite conductivity (or, for practical purposes, high conduectivity)
has an important consequence, namely, that the magnetic flux is frozen
* The Maxwell equations are summarized in Section 15-2. The reader will
note that ¥q. (15-13), the original Ampere’s circuital law, has been modified
through inclusion of the displacement current, 65/8t. Actually, the displace-
meut current does not play an important role in most hydromagnetic phenomena.
T A more general forin has been given by Spitzer, op. cit.
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FiGuRe 14-6

into the plasma. If Eq. (14-28b) is combined with the differential form of
Faraday’s law of induction, we obtain

%? — curl (v X B). (14-29)
The normal component of this equation integrated over a fixed surface S
yields

d
‘—i—i/SB-nda—/Scurl(va).nda,

or
dd i
Td-=fv><B-dl::fB'(dl><v), (14-30)
1 c c

where C is a fixed contour in space through which tbe plasma moves due
to hydrodynamic motion. From Fig. 14-6 we see that $¢ dl X v may be
regarded as the increase in area, per unit time, of the cap surface which is
bounded by C, and £¢ B - dl X v is the magnetic flux associated with this
increased area. Equation (14-30) simply states that the flux change per
unit time through the contour C is just what we should calculate geo-
metrically on the basis that all flux lines move along with the fluid. We
conclude, therefore, that the lines of magnetic induction are “frozen” into
the perfectly conducting material.

14-5 The pinch effect. The tendency of a high-current discharge
through a plasma to constrict itself laterally is known as the “pinch
effect.” The basic mechanism causing the pinch is the interaction of a
current with its own magnetic field or, equivalently, the attraction be-
tween parallel current filaments. The piuch effect was first predicted by
Bennett, and later independently by Tonks.* A somewhat different pic-
ture of the pinch, showing its inherent instability, has heen given by
Rosenbluth. '

* W. Bennett, Physical Review 45, 890 (1934); L. Tonks, Physical Review 56,
369 (1939).

1 M. Rosenbluth, “Dynamics of a Pinched Gas,” from 3 agnefohydrodynamics,
edited by Rolf Laudshoff, Stanford University Press, 1957.
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Let us consider a current discharge of cylindrical symmetry through
the plasma. From Ampere’s circuital law, the magnetic induction at
distance r from the axis of the discharge is given by

,
B(r) = % / J(@yr dr. (14-31)
@ o
From this it follows that
B pme o .
5 = e ), OO A+ el ()
- — % B(r) - uoJ(r). (14-32)

The magnetic force per unit volume is
Fo = J X B = —J(r)B(r)a,, (14-33)

where a, is a unit vector in the r-direction. Eliminating J(») between
(14-32) and (14-33) yields
1 8B |

F,= — —~B— — -—B* 14-34
Y Mo or bo? ( )

This force can be converted to an equivalent pressure, p.q, by writing

F, = —3peq,/dr, and then integrating:
1 .., 1 [ B
eq = 5— B+ — | =dr. 14-35
Pea = 30 MoJo T ( )

We are particularly interested in the pressure on the lateral boundaries
of the discharge. Following Rosenbiuth, we restrict our attention to the
high-conductivity case where the magnetic field lines cannot penetrate
appreciably into the conducting fluid.* Here the integral in (14-35) con-
tains no contribution from the discharge region. At the boundary of the
discharge, r = R, and the pressure is just what we have called the mag-
netic pressure, p,:

1 g2,
m = 5— B*(R). 14-36).
P = 5~ B(E) (14-36)

It is evident from (14-35) that the magnetic pressure is uniform in the
outside region, but zero or very small inside the dischargs. Thus the pinch
effect can be viewed as coming about from the sudden buildup of magnetic
pressure in the region external to the discharge.

* The nonpenetration of the field lines follows from the results of the pre-
ceding section and the fact that both the current and magretic field are initially
very small in the discharge.
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The pinching of the discharge results in plasmsa compression. If the
pinch could contract in a stable manner it would proceed until the mag-
netic pressure in the external region was equal to the fluid pressure in the
discharge. Let us treat the plasma as a perfect gas, whose fluid pressure
p = NET. Then, at the final radius R of the discharge,

1

RTLYE N R =
5 BU(R) = 7% = NET,

2 472R:

where I is the current in the discharge. This expression may be solved
for the current:

47
— !_‘"_0_ --1
=2 M) AN kT,

12 =2 i‘-ﬂ)'“‘ T RENET

since conservation of particles requires that A N, = wRZN. Here
Ay is the initial cross section of the discharge, Ny is its initial particle
density, uo/4m = 107" w/amp-m, and Boltzmann’s constant & == 1.38 X
072 joule/°K. In order to achieve the temperature of 10® °K required
for a thermonuclear (fusion) reactor, with Ag == 0.04 m? and Ny == 102!
particles/m?®, a pinch current of approximately one million amperes is
required.

It is easy to see that the pinch is an inherently unstable phenomenon.
The magnetic pressure on the boundary of the discharge depends on its
radius as well as on its detailed geomelry. Small perturbations will grow
if the pressure changes which result are such as to enhance these perturba-
tions. Figure 14-7 shows that small ripples on the bounding surface of
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Fig. 14-7. Instabilities in the pinched
plasma: (a) saussge instabitity, (L) kink
instability.
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the discharge, as well as kinks, fall into this category, producing the so-
called sausage and kink instabilities of the pinched plasma.

 14-6 Plasma oscillations and wave motion. One of the interesting
properties of a plasma is its ability to sustain oscillations and propagate
waves. Various types of oscillatory behavior are possible, and because of
the nonlinear character of the hydrodynamic equations these oscillations
can be quite complex. We find it expedient to restrict our attention to
some rather simple cases which, nevertheless, have been cbserved in con-
trolled experiments.

Case 1. Electrostatic plasma-electron oseillations. Electrostatic oscilla-
tions in a plasma were first discussed by Tonks and Langmuir.* Actually,
there are two possible types of electrostatic oscillations: high-frequency
oscillations which are too rapid for the heavy ions to follow, and oscilla-
tions of the ions which are so slow that the electrons are always distributed
around the ions in a statistical manner. We discuss the first case only,
the so-called electron oscillations.

Let us fix our attention on a region of plasma containing a uniform
deusity of positive ions, N. There are no negative ions. Initially, the clec-
trons also have uniform density N, but let us suppose that each electron
is displaced in the z-direction by a distance  which is independent of the
y- and z-coordinates and is zero on the plasma boundaries. The displace-
ment of electrons disturbs the neutral plasma, producing a charge in each
volume element Ar Ay Az:

- 9¢ -
= Ax Ay Az Ne 3 (14-37)

The motion of the electrons produces an electric field E(x, t) which, be-
cause of the symmetry of the problem, is in the z-direction. Thus

divE = s 3p,
€0

or

oL _ 1,08 14
3 é@Aca.L" (14-38)
which, when integrated, yields
€0

* 1, Tonks and I. Langmuir, Physical Review 33, 195 (1929).
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Fig. 14-8. The segment, ABCD, of plasma maoves in the pesitive y-direction.
The currents which are generated are depicted schematicaliy.

Here, the constant of integration has been taken equal to zero, since
sheath formation will shield the plasma trom a uniform electric Geld.

The force on each electron is -2k, which, according to Eq. (14-39), 1s
proportional to the displacement ¢ 1% is also seen to be a restoring force.
Thus each electron oscillates about ils criginal position with simple
harmonic motion. The equation of motion for each electron is

d*s . No* , .
e Zz—,g T e £ == (L {14--10)
L& Q
The “plasma frequency,” 7, = w,/2m, is defined, therefore, by
N2 \1/2 -
w, = | (14-41)
g€

where m, 18 ?,hf‘- electron rnass. AR & n‘.mwn) al exarmaple. we have f, =

18

4.0 x 16Y sec ! for u particle density N 1678 electrons/m®.

Case 2. Hydromagnetic or dlfvén waves. Ayidrsmagnetic wav 15 represent
irue wave propagalion in a conducting m\f:-iium which is subjected to a
constani magnetic field. This behavior, which was first predicted by
AMvén* in 1942, iz consistent with the hydrorougretic formuiation of a
plasma discussad it Section 144,

Before proceeding to the differential equations, ket us look at the pb ysical
processes i the plasma from as alementary g viewpoint as possible. Con-
sider an infinite plasma subjected to « constant, wniform maguetic field
B, whick ix divected aleng the z axis. 1f a segment of the plasna, the
rectanglar seetion ABCT in Fig. 14-8 that extends paraliel to the y-axIs,
is given o velocity v divected parallel to the positive y-axis, then the charge
cartiers (ions and elecirons) experience forces

¢V % Bg)

'Y)

= H. AHven, Cosmical Flectrodgnamues, Oxford Universisy Press, 1050
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which tend to separate the positive and negative carriers. The segment
ABCD thus becomes a seat of emf, its right-hand end tending to charge
up positively, its left end negatively. But since we are dealing with & con-
ducting medium, the plasma external to 4BCD completes the electrical
circuit. A few of the current lines are shown in the figure.

The induced current now interacts with the magnetic field By. It is easy
to verify that the force density J X By in the segment ABCD is such as
to appose its motion, whereas the force on external parts of the plasma is
such as to accelerate it in the positive y-direction. Iiventually, ABCD
will have slowed down, and its motion will have been transferred to
neighboring segments of the plasma. The mechanism is still operating,
however, and the whole process is repeated, thus propagating the dis-
turbance farther in the z-z-direction.

We now turn to the differential equations. Let B = By 4 B, where
By is the constant, uniform field paraliel to the z-axis and B; is the magnetic
" field set up by the induced currents. Using the results of the preceding
paragraphs as a guide, we look for the simplest type of wave motion,
characterized by vy, ., J;, and By, other components vanishing. From
Ampere’s circuital law,

— S o, (14-42)

and the Euler equation of the fluid, Eq. (14-22), gives the two relativns

a
.a”.l! = —J,Bo, (14-430)
and
—_ . 4
0= JuB, — 3 (14-43b)

tquations (14-43) may be combined with {14-42) to yisld

Ovy _ By 9By

D 2o O (14-44)
and
. "2 .
gg e fi;l:; 53_%).2}”2 (14-45)
The generalized Ohni’s law may be written as
By = By 2,
= 0By — 5;}4'5 Q%l’- {14-46)
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Finally, Faraday’s law yields
9By 9K,
a 3z
If v, is eliminated between Egs. (14-44) and (14-46), and E, eliminated

between the resulting equation and (14-47), we obtain, on the assumption
of constant

(14-47)

8By, _ Bt 9°By, , 1 8°By,
3B T wof @22 T gug 372t (14-48)
which is the equation governing the propagation of Alfvén waves.

If the conductivity g of the plasma were infinite, then (14-48) would
become identical with the wave equation whose solution is discussed in
Sections 15-4 and 15-5. In these circurstances, Eq. (14-48) describes a
plane, undamped wave moving parallel to the z-axis with phase velocity

y 4 \/-"Ogr
As a numerical example, take By = 0.01 w/m?, { = 1075 kgm/m? =
103 gm/cm?; then vp = 2800 mi/sec.

In order to see what results for finite conductivity, we try a solution to
(14-48) of the form

(14-49)

By, = by exp [oz + jowt].

This solution is satisfactory provided
2

2 w
= e, 14-50
T W T jelgno (14-50)
with v, as defined in (14-49). For small damping,
) (1)2 )
= £ |j— K 14-51
* (J Up + 29pov3 ( )

Thus the solution to Eq. (14-48) is a damped plane wave propagating in
the =-z-direction. The distance z¢ in which the amplitude of the wave is
reduced to 1/¢ of its original value is

2g1ov5 29B§ -
e = (14-52)

g =

14-7 The use of probes for plasma measurements. A plasma consists
of electrons, ions, and perhaps neutral atoms. The electrons gain energy
from eleétric fields at the boundary of the plasma as well as from the
ionizing collisions in which they are produced, and the velocities of the
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~electrons become random through collisions with ions. Thus we can speak
~of an electron temperature, T.. lu fact, for plasmas creaied in the labora-
tory (ares, electrical discharges), the electrons are found to have a Maxwell-
Boltzmann "elor’l%v distribution, which means, of course, that they may be
characterized by o temperatuve. Flectron teraperatuves i typical are
‘plasmas range from several thousand 1o 50,0007k,

To a certain extent, the preceding discussion also applies o the heavy
ions; however, ions do not necessarily have the same temperatures as
electrons. 1f a substantial difference between the mean kinetic energies
of ions and electrons exists, then it takes several thousand collisioes per
particle to equalize the energy difference, and this may require a time
longer than the mean life of an ion in the system.

Interesting quantl‘mes to be determined are the particle temperatures,
particle densmes and random current densities in the plasma. Langmuir
and Mott-Smith* have shown that a small metal electrode or “probe”
inserted into the plasma can be used to determine soms of these quantities
experimentally, by applying various potentials and measuring the cor-
responding collected currents. An electrode not at plasma potential will
be enveloped by a sheath which shields the plasma from the disturbing
field caused by the electrode. The sheath is, in most cases, quite thin,
and if the probe is maintained negative, zero, or slightly positive with
respect, to plasma potential it will barely disturb the bulk plasma.

The eurrent-voltage relationship for a typical probe is shown i Fig. 14-9.
When the probe is at plasma potential, it collects both the random eleciron
and the random ion currents. But the random eleciron currendt is so murh
greater than the ion current that the former dominates, the reaszen for
this being that the electrons have much larger average veloeities than do
the ions. As the probe is made negative it repels elecirens and the olec-
tron current drops off; at point Uw, the foating potential, the net current
10 the probe is zero; finally if the probe is made negative enough, only the
ion current density J; is collected. 1If the probe is made slightly positive
with respect to the plasma, the ions are repelled and the electron current
density J. is collected. If the probe iz made even more positive, it will
hegin to act like a secondary anode and the current-voltage bebavior will
become complicated, depending in detail npon the nature of the plasma.

Lev us corwsider a plasma consisting of positive ious {singly charged)
and electrons. The ion density is equal to the electron deunsity iu the
neutral region:

Ni= N_,== N, (14-53)

If the electron distribution is characterized by the temperature T, then,
“according to kinetic theory, the randorc electrou current densiby is

*1. Langmuir and H. Mott-Smith, General Fleciric Review 27, 449 (1924);
Physical Review 28, 727 (1926).
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:j I)

Ji_L ——‘_/(;” [ ('11—_'4 !

“Probe potential

Fia. 14~9. Current-voltage characteristic of « probe inserted in a plasia.
Uog is plasma potential.

- /\"]Vc 1,2 »
Ty = 1Noel = NoeATe ), (14-54)

2rm,
where 7 is the average thermal velocity of the electrons. 'This is the elec-
tron current collected per urit area of the probe in the region U = U7y
to U = Upg. 1If the probe is made negative, the electron current density

falls off, because only a fraction of the electrons has encrgy sufficient to
penetrate the potential barrier:

U — UO> .o ( U — Uo) . ,

[ — [ — AN o7 — e b, 7 /
JhL = J,exp (0 T = 3N .Texple T, for 7 < Uy,
(14-55)

The ion current density, on the other hand, is constant in the negatitc
potential region, namely, J;. The total probe current is thus

Jp = Jeexp <e£k:l’ 29) =S,

/

and the electron temperature is found fo be

i | d ' , N o
A, = ;i[ﬁf In (J, -+ Ui])j' (14- 56)

The particle density N can now be determined from Eq. (14-54) by using
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the experimental value of J, corresponding to the plateau region to the
right of U in the figure. It should be noted that Eq. (14-56) and the shape
of the J,-U characteristic are independent of the absolute value of U,
thus the potential of the probe can be measured with respect to any
fixed potential (for example. an electrode potential} in the plasma.

Probe characteristics are well understood,; hut before the data obtained
from probe measurements can be interpreted unambiguously it is neces-
sary that certain conditions be satisfied: (1) ihe probe should be small
compared with the mean free paths of electrous and lons, (2) the sheath
should be small compared with the dimeonsions of the probe, (3 the
ionization in the sheath must be pegligible, {4) sccondary emissicn fron:
the probe must be negligible. and {5} there must be no plasma oscillations.
In addition to these requirements, it is tacitly assumed that there is no
magnetic field present; the use of probes in plasmas containing magnetic
fields has been discussed by Bohm, Burhop, and Massey.

We end this section with a discussion of the sheath surrounding the
negatively charged probe. The equation governing the potential U in
the sheath region is Poisson’s equation:

VI = —:ne(_Nf — N, (14-57)
0

where NV; and N, are the local ion and eleetron densities. An approximate
plot of U versus distance from the probe is given in Fig. 14-10. It is con-
venient to make the substitution U = —V, where V is a positive quantity,
and since the sheath thickness is small compared with the dimensions of
the probe, we may use a one-dimenstonal version of (14--57):

av i
“mme = -— (N — N). 1458
d:CZ ‘“0 . ] e) ( )
0 g
. R
— V- T—w-—"r"'
; ; Plasma
{ Sheath H
Transzition
region

—v,!

Fig. 14-10. Pict of potentia! versus distance from the probe.
* Chapser 2 of Charcoteriniics of Electrical [Rscharges in Magnetic Fields,
edited by A. Guthric and B. K. Wakeecling, McGraw-H:ll, New ¥ork, 1049,
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Electrons are distributed in the sheath in approximately a statistical
fashion:

N, = Ngexp [T—e—(zﬁ’l—v"—)] (14-59)

where N is the electron density at plasma potential — V. The ion density
is related to the ion current, J;, in accordance with

Ji == Niev,- = N,~e ;\/26V . (1-1*—6():1)
m;
In the plasma, outside the sheath, the lon current is given by
DYSYN
J; = Noevio = Nye \/:-“}’, (14-60b)
7

provided the plasma potential, —17,, is measured relative to the point
where the positive ions are formed. Thus
N:= N, l:-‘l (14-61)
Substituting Bgs. (14-59) and (14--61) into (14-58) yields the so-called
plasma-sheath equation:
v . 1 71/2l —~1/2 —e(V — Vo)]
-—&;;2— = —;Noe[‘ 4] V — exp — kTg ) (14“62)
The last equation may be multiplied through by (dV/dx)dx = dV
and integrated to obtain

1{dV)® 1 , ET,  —e(V — V
E(JE) = ENoe[zvé’QV”Z + = fexp o k-ﬁ~—"~)]+0, (14-63)

where the constant ¢ is determined from the condition that dV/dx = 0
at the sheath edge, i.e., where V = V. Thus

W 1y 2Ve kT -
C=—-c Nee - (14-64)

For all points in the sheath, ({V/dz)? > 0; examination of Eq. (14-63)
shows that this condition is satisfied only if-
Vo > kT,

b~ } { " t,
2 5 (14-65)

2, relation first peinted out by Bohm.* In other words, for a stable sheath

* Qee Chapter 3 of the book edited by Guthric and Wakerling, op. cit.
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to form, the ions which reach the sheath from the plasma must have a
kinetic energy at least half as large as £7'.. Since stable sheaths always form
under these circumstances, 1q. (14-65) effectively determines V; in fact,
the inequality in (14-65) may usually be replaced by an equality sign.

The sheath thickness may be found by integrating (14-63); we do this
only for very negative probes, for which N, may be neglected. Here

(4}5)2 - 4_15._1_[(1/)_ ] ANl vlE
dx = €9 170 ! - €q

=oALy (14-66)
e €o

which, when integrated, yields

/
46(1)12“'/72/4

Ty = 3(8mi/e)l/4Ji1/2 ) (]4_67)




293

ProBLEMS

14-1. The condition for orbit theory to be a good approximation to the
motion of an electron in a plasma is that % >> 2xm,/Be, where 7 is the mean
collision time (see Chapter 7) and 2nm,/Be is the cyclotron period in the mag-
netic field B. Show that this statcment is equivalent to 7 << ng, where 14 =
B/Noe is the Hall resistivity.

14-2. Given a steady-flow hydromagnetic problem in which v, J. and B arc
mutually orthogonal. Assume that v is in the z-direction, and that v, J, and B
are functions of £ only. Assume also that the channel cross section (perpendicular
to z) is independent of z. Show that

2
v = vo~2—§_iv—o[230/fdx+ﬂo(ﬁdx>];

where vg is the velocity when { = {o, B = Bo.

14-3. Derive Eq. (14-65) by examining Eq. (14-63) relative to the neigh-
borhood of V = V.

14-4. The current-voltage characteristic is measured for a probe which is in-
serted into the plasma of a current-discharge tube. The probe has an area of
0.05 cm?2. All voltages are with respect to a fixed reference potential:

U,, volts I, milliamp U,, volts I, milliamp
40.0 —20.5 35.0 —0.34
39.0 —20.4 34.0 —0.096
38.0 -7.5 33.0 —0.011
! 37.0 —2.7 31.0 -+0.033
i 36.0 —0.98 g 29.0 +0.041

Determine the electron temperature in the plasma, the clectron density, and
the floating potential of the probe.



CHAPTER 15
MAXWELL’S EQUATIONS

15~1 The generalization of Ampere’s law. Displacement current. In
Chapter 8 we found that the magnetic field due to a current distribution
satisfied Ampere’s circuital law,

fI—I. cdl = [S I n‘da. (15-1)

We shall now examine this law, show that it fails, and find a generalization
which is valid.

Consider the circuit shown in Fig. 15-1, which consists of a small
parallel-plate capacitor being charged by a constant current I (we need
not worry about what causes the current). If Ampere’s law is applied to
the contour C and the surface S;, we find

5£CH-d1=fSJ-nda=I. (15-2)

If, on the other hand, Ampere’s law is applied to the-contour C and surface
S, then J is zero at all points on Sz and

56611 Cdl = fszj-nda, = 0. (15-3)

Equations (15-2) and (15-3) contradict each other and thus cannot both’

Plates of
capacitor

Fic. 15-1. The contour C and two surfaces, Sy and Sg, for testing Ampere’s
circuital law, )

204
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be correct. If € is imagined to be a great distance from the capacitor, it
is clear that the situation is not substantially different from the standard
Ampere law cases considered in Chapter 8. One is thus led to think that
(15-2) is correct, since it is not dependent on the new feature, namely, the
capacitor. Equation (15-3), on the other hand, requires consideration
of the capacitor for its deduction. It would appear, then, that (15-3)
requires modification.

The proper modification can be made by noting that (15-2) and (15-3)
give different results because the integrals on the right-hand sides are
different. Phrased matbhemasatically,

J~n2da~~[ J-nida = 0. (15-4)
82 Sy

S, and S, together form a closed surface (they join at C); bowever, ny
is outward drawn and n; ihward drawn. If this fact is taken into account,
{15-4) may be written

J-nda # 0, (15-5)

81482

"which is just the form of the integral in the divergence theorem. It is
clear that the integral would vanish and thus remove the disparity be-
tween (15-2) and (15-3) if J were replaced by a vector J' with zero di-
vergence. That is, since

‘., - 1 ? dp
fslm ¥ -nda [V div J de, (15-6)

the vanishing of the divergence of J’ ensures that th- surface integral
vanishes. This in turn indicates that reglacing J and J' in Ampere’s
cireuital law would be satisfactory from the standpoint of the consistency
of (15-2) and (15-3).

It must be remembered, however, that the original Ampere’s law is
satisfactory in many cases. We then write

J=J+e (15-7)

where e is a vector which is, loosely speaking, important in problems
involving capacitors and not important in conduction problems. Further-
more, « must be such as to make the divergence of J* vanish. If we take
the divergence of (15-7) and set it equal to zero, we have

div J’ = div J + div e. (15-8)

The divergence of J may be replaced by —ap/dt, since differential con-
servation of charge requires that

div ]} +.»%‘g- = 0. (15-9)
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div ] = — %’;i + div a. (15-10)

But the electric displacement D is related to the charge density by
div D = p. (15-11)

If « is taken to be daD/at, div J' = 0. We make this choice and write
Vo= J+ %?—, (15-12)

which gives the modified Ampere’s law:

curl H = J + 20 (15-13)
The introduction of the second term on the right, which is known as the
displacement current, represents one of Maxwell's major contributions
to electromagnetic theory.

15-2 Maxwell’s equations and their empirical basis. Equation (15-13)
is one of the set of equations known as Maxwell’s equations. The entire
set consists of (15-13) plus three equations with which we are alreadv
familiar, namely :

carl® = 3+ 20, (15-13)
curlE = — %-’? (9-6) (15-14)
GvD=o (4-29) (15-15)
div B = 0, (®30) (15-16)

Each of these equations represents a generalization of certain experimental
observatious: (15-13) represents an extension of Ampere’s law; (15-14) is
the differential form of Faraday’s law of electromagnetic induction; (15-15)
is Gauss's law, which in twrn derives from Ceculomb’s law; (15-16) is
usually said to represent the {act that single magnetic poles have never
been observed.

It is clear that Maxwells equations represent mathematical expressions
of certain experimental results. In this light it is apparent that they can-
not be proved; however, the applicability to any situation can be verified.
As 2 resalt of extensive experimental work, Muxwell’s equations are now
known to apply 1o abnost all macroscopie situations and they are usually
used, much fike conservation of momentum, as guiding prineiples.
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15-3 Electromagnetic energy. It was shown in Chapter 6 that the

quantity
WE a= -%-/’ E- D dv (}5“17)
"7

can be identified with the electrostatic potential energy of the system of
charges producing the electric field. This was done by computing the
work done in establishing the field. In a similar way

Wy = %/ H-Bd (15-18)
vV

was identified, in Chapter 12, with the energy stored in the magnetic
field. The question of the applicability of these expressions to nonstatic
situations now arises.

If the scalar product of (15-13) with E is taken, and the resulting equa-
tion is subtracted from the scalar product of (15-14) with H, the resulting
equation is

H. curlE — E-curlH — — H. ‘-’E—E CE-J. (15-19)

The left side of this expression can be converted into a divergence by
using the identity

div(AX B = B-curlA — A -curl B

to oblain
3B

div(EXH) = ~ H-5° —E. ‘Gi‘ —E-J. (15-20)

If the medium to which (15-20) is applied is linear, i.e., if D is proportional
to E and B is proportional to H,* then the time derivatives on the right

* A medium is linear if B = uH and D = €&, with u and e quantities which
are independent of the field variables and which do not depend explicitly on the
time. A notable exception to linearity occurs in the case of ferromagnetism,
where the relationship between the magnetic induction and the magnetic in-
tensity depends not only on the magnetic intensity but also on the past history
of the specimen.

It @houlu, however, be noted that amsotropv alone docs not invalidate the

cxpressions

d B 1949
~Z(E- D R
Ey (E- D) and H 3 = 33 (H - B).

an 1
E 5 =3

In the case of anisotropic media, the relationship between E and D can be written

s
3

Di = Z e,',‘E,.

1=1
Conscquently,
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can be written as

g0 g dp i 9 9.
Eoar = E QtéEm %faéE = at§E D
and
B _ g% 10w 9y,
Hegp=H gl = hug " = S 4H-B
Using this relationship, (15-20) takes the form
div (E x H) = —~%%(E—D+B-H) —~J-E.  (15-21)

The first term on the right is the time derivative of the sum of the electria
and magnetic energy densities; the second term is, in many cases, just
the negative of the Joule heatmg rate per unit volune. Integrating over
u fixed volume V bounded by the surface S gives

. d X "
J[dev(EXH)dv-w;i-ifvg(E-D—%-B H)dv—-/VJ-Edv.
Applying the divergence theorem to the left side, we obtain
fsEXH-nda:» -—/ 3(E-D-+B- H)dv_fj’ E dv.
Rewriting this equation:

. ._i/ . . yf . .
/VJ Ed = o V%(E D+B-Hd + ' EX H-nda, (15-22)

3

1 3 (aE, )
521“’E‘t‘0z"

=1 7

3=
a

DO =

A simple argument based on the conservation of energy (Wooster, Crystal
Physics, Cambridge Umversxty Press, 1938, p. 277) shows that ¢; = ¢;;. Using
this result to interchange 7 and j in the last term, we have

23t i D) = Z;;E"’ 3
If [e;] is a set of constants independent of E and of ¢, then
6D oD
2at(E D) = EE Z_;e,, ;‘E E. o

Thus it is scen that anisotropy alone does not restrict the derivation.
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makes it clear that the J - E term is comprised of two parts: the rate of
change of electromagnetic engrgy stored in V, and a surface integral. The
iefv side of Eq. (15-22) is the power transferred into the electromagnetic
field through the motion of free charge in volume V. If there are no
sources of emf in V', then the left side of (15-22) is negative and equal to
minus the Joule heat production per unit time. In certain circumstances,
however, the left side of (15-22) may be positive. Suppose that a charged
particle ¢ moves with constant velocity v under the combined influence
of mechanical, electric, and magnetic forces; the rate at which mechanical
work is done on the particie is

Foo-ves —q(E+vXB) vae= —¢E- -V
But according to Eq. (7-4) the current density is defined by
J =73 Nagv;
3
thus the rate at which mechanical work is done (per unit volume) is

ZNiFm'fo ‘ij

and this power density is transferred into the electromagnetic field.

Since the surface integral in (13-22) involves only the electric and
magnetic fields, it is feasible to interpret this term as the rate of energy
flow across the surtace It is tempting to interpret £ X H itself as the
energy flow per unii {ime per unit area. The latter interpretation, however,
leads to certain inconsistencies; the ouly interpretation which survives
careful scrutiny is that the integral of E X B over a closed surface repre-
geuts the rate at which electromagnetic encrgy crosses the closed surface.
The vector E X H is known as the Poypnling vector, and is usually repre-
sented by the symbol S.

Equation (15-22) thus expresses the conservation of energy in a fixed
volume V.

15~4 The wave equation. One of the most important applications of

Maxwell’s equations is in the derivation of equations for electromagnetic

waves. The wave equation for H is derived by taking the curl of {15-13):

curl curl H = curl J -4 curl %—? .

Putting D = €E and J = ¢F and assuming g and € to be constants, we
obtain

curlcurl H = gcurl E + ¢ (—% curl E.
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The order of time and space differentiation can be interchanged if E is
a sufficiently well-behaved function, which. we assume to be the ecase.
Equation (15-14) can now be used to elimjpate curl E, which yields

a’H

dH
P c 2 5-2
curl curl H g € (15-23)

where B = uH, with u a constant, has been used. The vector identity
curl curl == grad div — V?° (15-24)

is now used to obtain
SH *H

1v — 2 == — —— — — e
grad divH — V°H 9K, e

Since u is a constant,

divH = :—:di'v'B = 0;

consequently the first term on the left side of (15-25) vanishes. The final
wave equation is

, ’H 3H
VH — en—n — gur = 0. (15-26)

The vector E satisfies the same wave equation, as is readily seen by
first taking the curl of Fq. (15-14):

curlcurl E = ~— curl%l—i—‘

Using (15-13) to eliminate the magnetic field and treating ¢, u, and € as
constants yields
: ) "B
curlcurl E = —gpu ST e
Applying the wvector identity (15-24) and restricting the application of
the equation to charge-free space so that div D = 0 gives

2 $)
V’E — ep%—g — gp%? == 0. (15-27)

The wave equations derived above govern the electromagnetic field in
a homogeneous, linear medium in which the charge density is zero, whether
this medium is conducting or nonconducting. However, it is not enough
that these equations be satisfied; Maxwell’s equations must also be satis-
fied. It is clear that Eqgs. (15-26) and (15-27) are a necessary consequence
of Maxwell’s equation, but the converse is not true. In solving the wave
equations, special care must be used to obtain solutions to Maxwell’s
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equations. One method which works very well for monochromatic waves
is to obtain a solution for E. The curl of E then gives the time derivative
of B, which for monochromatic waves is sufficiently simply related to B
so that B can be easily found.

Monochromatic waves may be described as waves which are character-
ized by a single frequency. The methods of complex variable analysis
afford a convenient way of treating such waves. The time dependence of
the field (for definiteness we take the vector E) is taken to be as eI 80
that

E(r, 1) = Ey(x)e " (15-28)

It must be remembered that the physical electric field is obtained by
taking the real part* of (15-28); furthermore E,(r) is in general complex,
so that the actual electric field is proportional to cos (wt + ¢) where ¢ is
the phase of E,(r). Using (15-28) in Eq. (15-27) gives

eTUVIE, + wPeuE, + joguE,) = 0 (15-29)

for the equation governing the spatial variation of the electric field (the
common factor e~7! can, of course, be dropped). The next task is to
solve Eq. (15-29) in various special cases of intercst to determine the
spatial variation of the electromagnetic field.

15-5 Plane monochromatic waves in nonconducting media. The most
easily treated solutions of Eq. (15-29) are those known as plane wave
solutions. In the case of a dielectric medium with zero conductivity,
Eq. (15-29) becomes

V2E, - €uw’E, = 0. (15-30)

A plane wave is defined as a wave whose amplitude is the same at any
point in a plane perpendicular to a specified direction. 1f, for example,
the specified direction is the z-direction, then E, must be the same at all
points which have the same z value. [n other words, E, = E4(z). The
form of (15-30) for this case is greatly simplificd, becoming just

B
dz2

- euw By = 0. (15-31)

* As discussed in Chapler 13, one goes {rom the couvenient mavhematical
description in terms of eomplex variables te the physical guantitios by taking
either the real or imaginary part of the complex quantity. The choice ol reat
or imaginary part is quite arbitrary. The two choiees differ only by a phase
shift of /2; however, one must always make the same hiciec .na given proh-

N

lem. Tn this and the {following chapter the rest parh of coms guantities will
represent the physical quantities unless otherwise cxpiicitly noted.

aw
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The z and y derivatives have disappeared because E, does not depend on
either & or y; the second partial derivative has become an ordinary de-
rivative because E, is & funciion of a single variable. The solution to
equation (15-31) is well known. It is just

Eoz) = Eo™ 7Y, (15-32)

with By a constant vector. Equation (15-32) gives a solution to (15-30)
with wavefronts perpendicular to the z-axis; however, not all these solu-
tions satisfy Maxwell’s equations. The particular equation not satisfied
in this case i (15-15) which, subject to the restrictions which have beea
imposed, is equivalent to

div E, = 0. (15-33)

Since E, is independent of both x and y, (15-33) becomes

(%.E”(z) = Fjov e Eele) = 0. (15-34)

This can be true ouly if E,.(2) == 0; in other words, if E; has no z-com-
ponent. This then shows that the electric vector of a plane wave must
be parallel to the wavefronts. In general, the electric field for a wave
with wavefrants perpeundicular to the z-axis is

E,(z) = (iFo, + jEo,)™*V* *. (15-35)
.

The magnetic field to be associated with this electrie field is obtained
by taking the curl of Eq. (15-35):
curl B,(2) = F [—jwv eniflo, + jo/ ep jEole V™
and equating it to jwB,. This procedure derives from the Meaxweli cqua-
tion (15-14) through the substitution E = E,e 7% B = B.e . The
resulting spatia! portion of the magnetis induction is

. . o e T e . on
Bs = R 1‘*E0y1 '*’ EO:CJ]'\/ €4 Q{J Ve 2) (lom‘ii'))

or, as may be easily verified,
B, = TVeuk X E,. {($16-37)

Thus B, is perpendicular to hoth ¥, and to the z-axis. The direction of
propagation is conveniently defined as the direction of the maximum rate
of change of phase of B, {or B,). Ja the case considered above, the direc-
tion of propagation is the z-directiva if the plus sign is used; or the minus
2-direction i the iniuus sign is used.

To recapitulate: a plane monochrematic wave propagated in the plus
z-direction is deseribed by
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E(r, 1) = By(e)e™*! = Bgel V% o= N
(15-38)

— TV Ed 2w
B(r. t) = B,(2)e 7" = Vepk x Epef V¥ om0

with Eo av arbitrary veetor parallel to the xy-plane.

Plane waves traveling in the z-direction are adequate for problems in
which the.choice of the z-direction is arbitrary; however, in many problems
a system of axes is chosen for other reasons, for example because of bound-
ary conditions. In such cases jt is necessary to costruct plane waves with
arbitrary directions of propagation. Sﬁppose a plane wave solhition with
direction of propagation u is to be constructed, where u is a unit vector,
Then u plays the role of k in the preceding discussion, and the variable z in
the exponent must be replaced by u - 1, the projection of r in the u direction.
The only other change is that E must be perpendicular to u iustead of ta
k. Thus a plane wave with divection of propagation parallel to u is
deseribed by

E(r, £ = Enejw{w’fi:;-r—-—t}’

cu ot (15-29)
B(l" t) == \//_eﬂu X E()el I\/;,Eur,_nj

with Ey perpendicular to u but otherwise arbitrary. A ifrequently used
notation puts ]
WV Epu = . (15140}

This vector  is called the propagation vector. In terms of the propagation
vector, the equation for a plane wave traveling in the « divection is written
48

E(l’, t) = E{)ej(“'r.—uh, ~
1 ~ Ky e § (i0‘41)
Blr, #) = =« X Ege ™0

The velocity of propagation of a plane monochromatic wave is preciscly
the velocity with which plenes of constant phase move. Constant phase
means, of course, that

K- — wt == constant. (15-42)

If « - r is written £, with « the magnitude of « and f the projection of r
in the x direction, then Eq. (15-42) becomes

k& — wi == constant.

Differentiating with respect to the time yields

=T L (15-43)
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for the velocity of surfaces of constant phase. In free space, v, = ¢ =
1/V €opo, so that, in general, .
Vo = e 5
NG & (19749
The expression ¢ = 1/v/eguo = 2.9979 % 10® m/sec is the velocity of
light in vacuum; this, of course, is just what we expected, since light is a
form of electromagnetic radiation. But when Maxwell first announceds
this result it was considered a great triumph of his theory, since up to
that time the electromagnetic nature of light was only a speculation. The
quaatities K, and K,, in Eq. (15-144) are the dielectric constant and rela-
tive permeability, respectively, of the medium.
From (15-44) it is clear that the optically defined index of refraction is

n = VKK . (15-45)

Sitice for the most transparent media K, is very close to unity, the index
of refraction is just the square root of the dielectric constant for these
media. With these results, it is possible to consider some extremely
interesting and important optical problems. These, however, will be
postponed to the next chapter.

156" Plane monochromatic waves in conducting media. In a conduct-
ing medium the wave equation reduces to
VE, + w’euF, + jwguE, = 0 (15-29)

for a monochromatiec wave of frequency w. As before, plane waves with
wavefronts parallel to the xy-plane are guverned by

d’E, | . 5
- T W epEs + juguE, = 0 (15-46)
dz2

with E, a function of 2 only. The solution to this equation is found by
writing E; = Eg¢’?. Using this in (15-46) gives

—v% + wlep + jugu = 0. (15-47)
The usual techniques of the algebra of complex numbers enable us to
separate ¥ into real and imaginary parts, « and 3, either as
Y = a+ j8 = F(w'en” + w’g’u?) " *(eos ¢ + jsin o),
¢ = btan™} Of (15-48u)
or as

o

o= Fovarls ® W@, 8 = aguj2a. (13-18h)
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Both are convenient; the choice depends on the problem being considered.
Thus the plane wave traveling in the z-direction is described by
B,(2) = Eoot 707 (15-49)

3

which eclearly represents an exponentially damped wave traveling in the

plus z-direction. The equations above are exaet but complicated; hence it

is convenieat to examine certain approximations. If the frequency is

below the optical range, ¢ > ew for metallic conductors. In this range,
= w/4 and

= Vagp bvn = = Vg2 (15-50)

The term 1/5 measures the depth at which the electrie field falls to 1/e of
its value at the surface. This depth is known as the siin depth, and is
usually represented by 8. The major importance of the skin depth is that
it measures the depth to which an electromagnetic wave can penctrate
a conducting medium. TI'ine silver, for example, has an effective coun-
duetivity

g = 3 X 107 mhos/m*

at microwave frequencies. At a frequency of 10" cycles/see, which is
a common mierowave region, the skin-depth is

![\’)

- 0.2 X 107% em.

\/ 2 % 1003(3 X 107 (dr X 10-7)

Thus at microwave trequercies the skin depth in silver is very smali, and
consequently the difterenre ‘n pm‘formawp betwecii a pure silver com-
ponent and a silver-plated brass cormapovent would be expected to be
negligible,  This is indeed t;xe case, and the plating technigue is used to
reduce the matevial cost of high-quality wavoguide components.
As a second exasaple, we now calewlats the frequency at which ﬂ)"

skin depth in sea water is one mster. For sea water, u = ug and ¢ =

+.3 mhos/m. The ¢xpression for the frequency correspouding to a given
skin depth &8s

i , Lo 5
2 2 . i85 X 107 4
S — cosee T me e sec”
it 62 } K dm X 10-7 §2° 8?
which yieids
Foem 208 v 107 les ‘see,

*One ehe i oue reeipoeal ohm: it is o unit of couduelance sr reciprocal

resiebanee {soe Chapler 7)
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or a frequency of 30 ke for a skin depth of one meter. If & submarine ig
equipped with a very sensitive receiver and if a very powerful transmitter
is used, it is possible to communicate with a sibmerged submarine. How-
ever, a very low radiofrequency must be used, and ever: then an extremely
severe attenuation of the signal cccurs. At five skin depths (5 m in the
case calculated above), only 19, of the initial electric field remains, and
only 0.019, of the incident power.

*15-7 Spherical waves. As an example of & mors difficult wave problermn,
where in fact it is not easy to find even the elementary waves, we consider
the wave equation in spherical coordinates. The wave equation for the
electric field in & nonconducting reedivm is

2 a*E ir k0
T2E - eu T Q. {1551

For monochromatic waves, the equation foc the spatial portion becomes
V2E, + euw’E, = 0. (15-52)

The difficulty in using spherical coordinates is that one would like to
express the vector B, in terms of radial, azimuthal, and meridional com-
ponents, cach expressed as functious of the radius, azimuth, and colatitude.
If this is done, then it is not sufficient to use the expression for the La-
placian in spherical cocrdinates in Iig. (16-52); rather, it is necessary to
define the Laplacian of a vector by

Vi, = -—curl curl B, -+ grad div E,. {15-53)

The divergence of E, is still zero; however, the radial compoenent of
curl curl B involves not only the radial compenent of E,, but also ifs
azinauthal and meridional componeunts. The § and ¢ components are simi-
larly complicated, and the final result is three simaltancous partial differ-
ential equations involving the three ecomponents of E,. The separation
which occurs for the vector Laplace equaliou in rectangular coordinates
does not cccur in spherical coordinates; it is in fact peculiar to rectangular
coordinates. It should be pointed out, however, that rectangular com-
ponents of B, may be used; in this instance they would be written:
E,m(]', 67 (p)r Ew(": 9.‘ ¢‘)7 ~E81(T’ 9: d”

A simple procedure civeumvents the difficulty discussed above. Con-
sidet bhe sealar Helmnol

toaby egunlion:

VI ety == O {15-54)

whose solutions aie, as will be seea shortly, readliy found. Buppose that
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¢ is any one of the solutions, then E; = r X grad y satisfies the vector
Helmholtz equation, Eq. (15-52):
—curl curl B, -+ grad div B, 4 euw’E, = 0. (15-55)
To verily this, note the identity
E, = r X grady = —curl (ry), ' (15-56)
which follows from the vector identity

curl (Ag) = ocurl A — A X grad ¢ (15-57)
and
curl y == 0. {15-58)

Since the divergence of any curl is zero, it is necessary to consider only
the curl curl term in Eq. (16-55). The curt of E, can be found by using
the vector identity

curl (A X B) = AdivB — BdivA -+ (B: grad)A — (A-grad)B (15-29)
to obtain
curl (r X grady) = v — grad ¢ divr + (grad ¢ - grad)r
— (r - grad) grad . (15-60)
As was shown in Problem 1-13, (A - grad)r = A for any vector A; also,
the divergence of r is three (3). The first term of Eq. (15-60) can be
reduced by using the fact that ¥ satisfies the scalar Helmholtz equation,

thus leaving only the last term as a possible source of complication. The
vector identity

grad (A-B) — (A grad)B + (B- grad)A + A X curl B - B X curl A,
(15-61)
with A = r and B = grad ¢, gives

grad (r - grad ¢) = (r - grad) grad ¢ -+ (grad ¢ - grad)r. (15-62)

The last two terms of Eq. (15-61) vanish because the cuxl of any gradient
is zero, as is the curl of r. Using these relationships in Eq. (15-60) leads to

curl r X grad ¢} = — euw’ry — 3 grad ¢ -+ grad ¢
— grad (r- grad ) -+ grad ¢. (15——63)
Finaily, taking the curl of Eq. (15-63), we obtain

curl curl (r X grad ¢) = —eww” curlny = euw’ X grad ¢, (15-64)
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which is just the vector Helinholtz equation. No explicic use of tbhe
spherical coordinate system: has heen made; bowever, since r is normal
to o surface of constant radws in spherical eoordinates. the soluiion
r % grad .y would be sxpected to be particularly useful in th
It is in fnet not very asetal 'noother contdinate systemas.
Having found that r ® grady is a soiution of the veeror Helinholtz
equation, with ¢ a solution of the scalar flelmholiz equation, it becomes
pertinent to find out how such schitions can be used Lo construet electro-
magnetic waves. The procedure is very sunpls. The spatial variation
of the electric field is taken as

g avstem,

»
—
Gz

E, = r X grad ¢. (15-36)

The magnetic field must be so chosen that it, together with E;, satisfies
Maxwell’s equations. To this end we write Eq. (35-14) ss

curl E; = juwB;, {1565

where the standard ¢! time dependence has been: assumed, Bquution
(15-63) gives the curl of E; explicitly or, in a shorter form,

B, = .—jicurl (r X grad ¥). - {15-64)

Since the divergence of any curl vanishes, Eq. (15-16) is satisfied. That
Eq. (15-13) is satisfied is obvious from the fact that E, and B, ars beth
solutions of the wave equation, which in turn vepresents a comvination
of Egs. (15-13) and (15--14).

The solution represented by Ege. (15-36) and (15-66) is pot the ot
general solution that can be derived from a given . Another solution
is obtained by putting

B, = Veur X grad ¢ O 15-67)
andd ohtaining the electric field from Ba. (15-13) (with J == 0),
By = ==z eourd (r X grad y). (15-68)
[BAVE 3 ’

The consideratiovs detailed above show that E, B} form a solution to
Maxwell's egnations, just as E,, B, do. The solutions differ in that E,
ot nuy point is tangeut to a spherical surface through the point with center
at the origin of coordinates: ou the other hand, Bf has the same property.
These tacts lead to the soiuvion ¥y, B, being somcetimes called trausverse
electric, and BL, Bl trausverse magnatic, transverse meaning perpendicular
1o the radial direction.

In the preceding sectious the probiem of solving the veetor Helmhoilz
aquation has been rediced 1o that of solving the sealar HWebuholtz equa-
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i't‘ibn. In spherical coordinates this is accomplished by the technique of
separation of variables already familiar from potential problems (Chapter
3). In terms of spherical coordinates, the scalar Heimholtz equation is

_1_9_423-/«) 1 a( a¢) 1 0%
r2Q( ar +r25m080 Smaaa +r2wsinzoa¢2 kY =0,

. (15-69)
where k2 = euw? and ¢ is assumed to have the form
¥ = R(r)O(0)d{¢). (15-70)
Substituting this assumed form for ¢ in (15-69) and dividing b;;r ¥ gives
ll‘.:sm Oad;rzif Osmﬁa%sx d®+—}i—>g;2-—x2rzsin20=0,

(15-71)

after multiplying by r2sin? 8. The third term depends only on ¢, and
this is the only term which depends on ¢. Consequently this term must

be a constant, which is chosen to be —m?. In other words,

d*s,

v m’®, = 0, (15-72)

where the subscript m serves to indicate that & depends on m. Rewriting
Eq. (15-71) using (15-72) gives
1 d 2 d R 2 2 1 d si _(,l.(:)_ - _7!_{,1 _ - N
Ra' ar + 8 md 0 s O (15T3)

The first two terms depend only on r, while the last two depend only on 6.
Thus the sum of the last two must be a constant, which is chosen as
—I(l + 1). The sum of the first two terms must, of course, be I({ + 1).
Thus there result two equations:

1 d . dOu, [  m? ]
s 250G T ) — 50w =0 (15-78)
and
%72%—‘ [+ 1) + %Ry = 0. (15-75)

"The solutions of Eq. (1 5—72) are well known:
&, = ¢ ™ (15-76)

The solutions of (15-74) are less well known, but some have already been
met in Chapter 3, where solutions for m = 0 were discussed. These solu-
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tions* are the Legendre pelynomials P;(cos 8). The solutions of (15-74)
for arbitrary m <l are known as the associated Legendre polynomials.
They may be defined by
PR = (1 — w22 Py, (15-77)

with © = cos 8. It‘is clear that PY(u) = Pi(u), the ordinary Legendre
polynomial. For m # O the functions are given in Table 15-1.

Finally. Eq. (15-75) must be considered. The change of variable from
rto £ = «ris readily accomplished; the resulting equation is

4,24 p 2p _
dEf PT: R, — [+ 1)+ R = 0. (15-78)
The substitution R; = &£~ Y/2Z; transforms this equation into
d’z dZ '
2 ____{ _____l . 2 2 — .
AN
TaBrLe 15-1
ASSOCIATED LEGENDRE PoOLYNOMIALS, P(u), WHERE % = c0s §
Designation » Function
Po(u) 1
Pi(u) u = cos 0
Pi(u) 1 —uH"? = sine
Pa(u) :}(3u,2 — 1) = %(3cos 20 + 1)
Pi(w) 3u(l — u)V'? = %sin 20
P3(w) 3(1 — u%) = £(1 — cos 20)
P3(u) é—(5u3 — 3u)
P3(u) 30 — G — 1)
Piw) 15u(l — u®)
| Piw) 150 — WB¥?

* In Chapter 3 these functions were written P(f). Since, however, the
Legendre polynomials are polynomials in cos @, it is more common to write'
Py(cos 8); we follow this practice in the present chapter as well as in the suc-
ceeding one.
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This equation, which is very familiar to mathematical physicists, is known
as Bessel’s equation. The solutions of the equation are also well known,
and have been extensively investigated and indeed tabulated. The com-
mon solutions are designated Ji4q/2(k?) and Ny/9(kr) and are known
respectively as the Bessel function and the Neumann function, of order
! + 4. For purposes of the wave equation, it is extremely convenient to
define spherical Bessel functions by

Jilkr) = Nn/2xr J14qy2(k7), ny(kr) = V'w/2kr Nyyq2(kr);  (15-80)
and from these in turn we obtain
RO(kr) = ji(ar) + jnalkr),  REY = ji(kr) — jny(kr). (15-81)

The functions j;(kr), m(kr), h{¥(xr), and k{2 (kr) are all solutions of the
radial equation, Eq. (15-75). These functions are tabulated for I = 0, 1,
and 2 in Table 15-2. The h’s are particularly convenient for radiation
problems because for large values of r they behave as

h(l (KT) ("'.7) l_f_:ii ,

K730 KT
A R 14
e
REP(kr) — L,

KT —0 KT

and thus lead to outgoing and ingoing spherical waves.
A general form for y may be written as

= \/7/2kr Z (xkr) P} (cos Q) e ime, (15-82)

The corresponding vector fields are computed by using Eqs. (15-56) and
(15-66) for.the TE waves, and (15-67) and (15-068) for the TM waves.
The simplest interesting choice of ¢ is 19, which is just

V1o = ;1; & [1 + -7—] cos 6. (15-83)

Kr

The gradient of ¥ is

Kr2
(15-84)
The spatial portion of the electric field is
I
E, =r X grad y;o = ~a¢Loe L{T A2r Jsm 8, (15-85)

where Ej has been introduced to make the equation dimensionally correct.
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The spatial dependence of the mnagnetic induction is given by
B, = -»i-l— curl E, -—] e’ ‘~lf~ Gl 2 cos fa
s = "(.d - .7 40 Kkr2 ' k2r3 r
—J —I—E i [‘l S —Z—J sin fas.  (15-86)
w ° r Kr2 K2r3 ’

As will be seen later, these arc just the fields produced by a radiating
magnetic dipole. It 1s interesting to note that only the portions of E,
and B; which are proportional to 1/r contribute to the net radiation. All
other terms give terms in the Poynting vector which fall off moere rapidly
than 1/r%, and which consequently have integrals over spherical surfaces
which vanish as the radii of these spherical surfaces go to infinity.. The
spherical wave solutions are particularly important in considering the
radiation from bounded sources, which will be treated in the next section.

TasLe 152

SrHERICAL BESSEL AND NEUMANN IFuNnceTions

Type Function
Jo(p) (1‘/p) sin p
| no(p) ~~(1/p) cus p
() ~(j/p)e”
P (i/p)e "
J1(p) (1/p%) sinp ~ (1/p) vos p
ni(p) —(1/p) sin p — (1/p°) cos p
, W) | —=(1/p)e" (1 + i/p)
: 15 (o) —(1/p)e™(1 = j/p)
| j2(p) [5- ; l]smp — 3 cosp
- o3 p p?
n2(p) - 35 sin p — [ij - 1] Cos p
! o P n.
15" (p) (i/p)e” (J SR -%)
p p
e |~/ (1 -3 ;33)
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15-8 The wave equation with sources. In the preceding sections, plane
and spherical waves have been treated without inquiring how these waves
were produced. The problem now is to consider prescribed charge and
current distributions, p(r, ¢) and J(r, #), and find the fields produced by
them. There are several wavs of approaching the problem, of which the
most fruitiul is. the potential approach, which s developed analogously
to the procedures used in electrostutics and magnetostatics. Sinece the
magnetic induction has zero divergence it may always be represented as
the curl of a vector potential, that is,

B = curl A. (15-87)

Using this expression for B in Kq. (15-14) gives

a
curl E -+ 3 curl A = 0. (15-88)
Assuming sufficient continuity of the fields to interchange the spatial and
“temporal differentiations, this can be written

oA
curl [E -+ 737] = 0. (15-89)
The vector, E -{- dA/dt, thus has zero curl and can be written as the
gradient of a scalar:

AA.

E- -~ gradg - - (13 90)
quations (15-87) and (15-90) give the elecivie and muagnetic fields in
terms of a vector potential A and a scalar poteutial ¢. Thesé potentials
satisfy wave equations which are very similar to those satisfied by the
fields. The wave equation for A is derived by substituting the expressions
given in (15-87) and (15-90) for B and E into Eq. (15-13), with the result.

1 3 0A .
" curl curl A - € 5 [grad ¢ + _67] = J. (15-91)

Writing grad div V2 for curl curl and multiplying by u gives

2, a%A . do .
—V*°A - €u - - grad div A - epgrad -5 = uJ. (15-92)
at2 at

Utitil now only the curl of A has been specified; the choice of the divergence
of A is still arbitrary. It is clear from lq. (15-92) that hinposing the
Ldrentz condition,

divA + enl2 = 0, (15-93)
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results in a considerable simplification. If this condition is. satisfied, then

A satisfies the wave equation
2

2 °A
VA — él.l.-a—t-z— = ——}I,J‘ (15—94)
Furthermore, using Eq. (15-90) in (15-15) gives
. . GA
—e| div grad ¢ + div S5 = P (15-95)

Interchanging the order of the divergence and the time+derivative operat-
ing on A and using the Lorentz condition (Eq. 15-93) leads to
2
Vo — ep%zgf = — %p. (15-96)
Thus, by imposing the Lorentz condition, both the scalar and vector po-
tentials are forced to satisfy inhomogeneous wave equations of similar
forms. )

The problem of finding the general solution of the inhomogeneous scalar
wave equation is analogous to finding the general solution of Poisson’s
equation. In the latter case, it will be recalled, the general solution con-
sists of a particular solution of the inhomogeneous equation plus a general
solution of the homogeneous equation. The inclusion of the solutions of
‘the homogeneous equation provides the means for satisfying arbitrary
appropriate bouundary conditions, while the particular solution ensures
that the total function satisfies the inhomogeneous equation. Exactly
the same considerations apply to the inhomogeneous wave equation—the
general splution consists of a particular solution plus a general solution
of the homogeneous equation. Methods have already been found for find-
ing certain solutions of the homogeneous equation. These methods may
-be extended and supplemented to yield solutions to almost any solvable
problem. Approximate methods are available for problems which cannot
be solved in terms of known functions. It remains, then, to find the
needed particular solution of the inhomogeneous equation.

The inhomogeneous scalar wave equation . -

2
2,9 _ P
Ve — en g < (15-96)

can be solved most readily by finding the solution for a point charge, and
then later summing over all the charge elements pAv in the appropriate
charge distribution. The most convenient location for the point charge
is at the origin of coordinates. Thus the equation

' L)
2 — —— — o
Ve — €u 3 = 0 (15-97)
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must be satisfied everywhere except at the origin, whereas in a small
volume Av surrounding the origin,

- 92 1
fA o [v% —eu E;f] = —Za® (15-98)

must be satisfied. It is clear from the symmetry of the charge distribution
that the spatial dependence of ¢ must be only on r. With this clue, an
attempt to solve Eq. (15-97) may be made. Since ¢ does not depend on
either the azimuthal angle or the colatitude, Eq. (15-97) becomes

1.0 200 % _ .
G e e = 0. (15-99)

Now, by putting

e(r, b) = 3(—(2’—9, (15-100)
Eq. (15-99) is converted to’
a%x a%x .
5;2— — Eu:’t—z = 0. (10—101)

This equation is the one-dimensional wave equation which is solved by
any function of r — t/A/eu, or r + t/+/eu. To verify this, let

u=r— t/Veu

and let f(x) be any function of u which can be twice differentiated; then

of _ df ow _ df ﬁ d2f ou d%f )
T dudr = du e duror — duz - (157102

and

(15-103)

Substituting the results of Eqs. (15-102) and (15-103) into Eq. (15-101)
verifies that any function of (r — i/+/eu) which is twice differentiable is
a solution of Eq. (15-101). A similar calculation verifies that a function
of (r + t/+/en) is a solution. Thus

X = f(r — t//ew) + g(r + t/\Ven) (15-104)

is a very arbitrary solution of Eq. (15-101). It is found that g(r + t/\/ew)
does not lead to physically interesting solutions of the wave equation. For
this reason it will be dropped, and only the first term of Eq. (15-104) will
be carried, since this procedure simplifies the ensuing equations and
causes no particular omissions.
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A spherically symmetric solution of Eq. (15-97),

¢ = f_(_r:_:/__@ , (15-105)

is now available; furthermore, this solution contains an arbitrary function
which may be chosen so that Eq. (15-98) is also satisfied. The proper
choice is obtained by noting that for a static charge the potential com-
patible with Egs. (15-97) and (15-98) is

= -1 . 106
= e (15-106)

The functions (15-105) and (15—106) may be brought into concert by
choosing

for — t/Vew) = -q—(—t-—z;%‘—/—‘-’ilo (15-107)

The sclution to Egs. (15-97) and (15-98) is then

o(r, 8) = 2(.‘_%5./_@. (15-108)

With this result, we readily find that Eq. (15-96) is satisfied by

olr, £) = —— /VBL’—" = Vewlr —x ”dv’, (15-109)

4me r — r|

which is known as the retarded scalar potential.

The solution of Taq. (15-94) can be constructed in exactly the same
way. The vectors A and J are first decomposed into rectangular compo-
nents. The three resuiting equations are closely analogous to Eq. (15-96),
the x equation, for example, being

824 .
Vz‘/ix — €l {—ié%“ = —pl (15-110)
Fach of these equations may be solved cxactly as was Eq. (15-96), giving,
for example, '

_ | St - VZﬁ r -,
Au(n, 1) = fv =P av'. (15-111)

These components are then combined 1o give

o] o ol o ]
Ar, §) = f‘;r ) It _1{\@:?;&*“[“ A, (15-112)

which is the retarded vector potential.
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The physical interpretation of the retarded potentials is interesting.
Egs. (15-109) and (15-112) indicate that at a given point r and a given
time ¢ the potentials are determined by the charge and current which
existed at other points in space at earlier times. The time appropriate to
each source point is earlier than i by an amount equal to the time required
to travel from source to field point r with velocity 1/v/eu. If, for example,
a point charge ¢ located at. the origin of coordinates were suddenly changed,
then the effect of this change would not be felt at a distance r until a
time r/eu after the change was accomplished. The effect of the change
propagates outward roughly as a spherical wavefront. (The actual situa-
tion is somewhat more complicated because the charge density and the
current density are intimately related through div J -+ dp/dt = 0.)

Having found the scalar and vector potentials, we find the fields by
applying the gradient to ¢, and the time derivative and curl to A. These
operations are in principle straightforward; however, it will be seen that
they are relatively complicated in practice. '

With the development of the retarded potentials the basic work on
radiation is completed. It remains to apply this material to the sclution
of practical problems. This is thé concern of the next two chapters:
Chapter 16 considers boundary-value problems and radiation from pre-
scribed charge and current distributions, while Chapter 17 treats radia-
tion from moving point charges.
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PRrOBLEMS

15-1. ‘A parallel-plate capacitor with plates having the shape of circular
disks has the region between its plates filled with a dielectric of permittivity e.
The dielectric is imperfect, having a ‘conductivity g. The capacitance of the
capacitor is C. The capacitor is charged to a potential difference AU and iso-
lated. (a) Find the charge on the capacitor as a function of time. (b) Find
the displacement current in the dielectric. (c) Find the magnetlc field in the
dielectric.

15-2. The @ of a dielectric medmm is defined as the ratio of displacement
current density to conduction current demsity. For monochromatic wave
propagation, this reduces to @ = we/g. Determine Q for glass and for sulfur,
at the following frequencies: f = 1, 106, 199 cycles/sec.

15-3. Given the one-dimensional wave équation

’E - 9’E
32 T H e’

where F is the magnitude of the electric field vector. Assume that E has a
constant direction, namely, the y-direction. - By introducing the change of

variables
E=t+Veusz
n=1t—Veg,

show that the wave equation assumes a form which is easily integrated. Inte-
grate the equation to obtain

E(zl t) = EI(E) + EZ("I); !

where E; and E2 are arbitrary functions.

15-4. Given a plane monochromatic wave traveling in a linear, isotropic,
homogeneous dielectric. Show that the time-averaged electric and magnetic
energy densities, Wg and Wy, are equal.

15-5. Given the electromagnetic wave

E = iFoe0s (/e z — 1) -+ jEo sin (/e 2 — 1),

where Eo is a constant. Find the corresponding magnetic field B and the
Poynting vector.

15-6. A straight metal wire of conductivity g and cross-sectional area A
carries a steady current I. Determine the direction and magnitude of the
Poynting vector at the surface of the wirc. Integrate the normal component of
the Poynting vector over the surface of the wire for a segment of length L, and
compare your resuly with the Joule heat produced in this segment.

15-7. The earth receives about 1300 watts/m? radiant energy from the sun.
Assuming the energy to be in the form of a plane polarized monochromatic
wave, and assuming normal incidence,.compute the magnitude of the electric
and magnetic field vectors in the sunlight.
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*15-8. Starting with an expression for the forece per unit volume on a region
of free space containing charges and currents:

F, = pE+ JX B,

and using the Maxwell equations and the vector identity of Eq. (14-24), show
that

F = —e g (Ex B +f GEdivE — % ¢o grad (B
+ €(E - grad)E + - B divB — ~— grad (B
o 2u0
+ 1 (B - grad)B.
Ho

(The quantity eE X B is sometimes referred to as the momentum density of
the electromagnetie field.)

15-9.. Given a plane wave characterized by an E., B, propagating in the
positive z-direction,

E = ilgsin 2% (: — ef).
Show that it is posgible to take the scalar potential ¢ = 0, and find a possible
‘vector potential A. Be certain that the Lorentz condition is satisfied.

¥15-10. The quantities (z, 4, 2, jet), (Az, Ay, A, ]<p/c) are four-dimensional
vectors. Show that terms of the form

represent the components of B and (j/¢)E. Show further that

oF;
Z aa:.’ =

and
L _I_aF,,. oF ;.
dr; ' dzx

represent the Maxwell equations in vacuum.

15-11. Show that in free space with p = 0, J = 0, the Maxwell equations
are correctly obtained from a single vector function A satisfying

2
. 2 1 8°A
leA—"‘—O, VA—EEEZZ—=0.

15-12, Given a medium in which p =0, J =0, u = po, but where the
polarization P is a given function of position and time: P = P(z, y, 2, ). Show
that the Maxwell equations are correctly obtained from a single vector function
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Z (the Hertz vector), where Z satisfies the equation
1 6°2 P

2
VZ-Gm =

-
€0
and

E = curlcurl Z — 1 P, B = .12 curl 9z
€0 c at

?

15-13. Given a medium in which p = 0,J = 0, € = ¢, but where the
magnetization M(x, y, z, ) is a given function. Show that the Maxwell equa-
tions are correctly ubtained from a single vector function Y, where Y satisfics
the equation '

and where
B = curlcurl Y, E = ——curl%?-
15-14. Show that Maxwell’s equation for an isotropie, homogeneous, non-
conducting, charge-free medium can be satisfied by taking either

(1) E = real part of curl curl (Fa),

B = real part of eu 6% curl (Fa),
or
(2) B = real part of curl curl (Fa),
E = real part of — 9 curl (Fa),

at

where a is a consthnt unit vector and F satisfies the scalar wave equation.



CHAPTER 16
APPLICATIONS OF MAXWELL’S EQUATIONS

The solutions of Maxwell’s equations found in the preceding chapter
will now be used to solve problems of practical interest. Two general
classes of problems will be considered : boundary-value problems, and radia-
tion from prescribed charge-current distributions. In the first class’ of
problems, solutions of the homogeneous wave equation are so combined
as to satisfy the appropriate boundary conditions. In the second class,
solutions of the inhomogeneous wave equation with specified sources are
required and boundary conditions are largely ignored, except for such
things as insistence on outgoing waves and that the fields fall off as 1/r at
large distances.

A third class of problems might prescribe a charge-current distribution
that would produce a radiation field which must satisfy certain boundary
conditions. However, in spite of its practical importance, this possibility
will not be considered here. Enough difficulty will be encountered in the
simpler problems already mentioned.

16~1 Boundary conditions. 'The boundary conditions which must be
satisfied by the electric and magnetic fields at an interface between two
media are deduced from Maxwell’s equations exactly as in the static case.
The most straightforward and universal boundary condition applies to
the magnetic induction B, which satisfies the Maxwell equation

divB = 0. (16-1)

At any interface between two media a pillbox-like surface may be con-
structed as shown in Fig. 16-1. The divergence theorem may be applied
to, the divergence of B over the volume enclosed by this surface, to obtain

S 1

Fig. 16-1.. A pililbox-shaped surface at the interface between two media
may be used to obtain boundary conditions on the field vectors.

321
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ﬁsB-nda_z /SlB-n,da +fS2B-n2da —I—/SaB-nada = 0. (16-2)

If B is bounded, letting & approach zero causes the last term to vanish and
81 to approach S 2 geometrically. Taking account of the opposite directions
of n; and n,, it is quickly concluded that

B_ln = Bzm ’ (16_3) ’
exactly as in the static case.
The tangential component of the electric field can be treated in an
equally simple way. The basic equation is again one of Maxwell’s equa-
tions,

curl E 4 %]_tg. = 0. (16—4)

Integration of this equation over the surface bounded by a rectangular
loop such as that shown i in Fig. 16-2 yields

/curlE-nd - —</GB 1 da, (16-5)
s ot
and applying Stokeg’ theorem to the left side gives

s — Wy + hBis + haFan — Ml — haBn = — | B naa,

(16-6)

If the loop is now shrunk by letting k; and %, go to zero, the last four terms
on the leit vanish, as does the right-hand side, provided only that aB/at
isbounded. The resultmg equatlon contams lasa common factor; droppmg
‘this gives

Eu = E2t~ (16"7)

Thus the tangential component of E must be continuous across the
interface.

The boundary condition on the normal component of the electric dis-
placement is more complex; however, it too is derived from one of Max-

! ! |

oy

- th A ’ B . _.y\;

F1a. 16-2. The rectangular path shown at the interface between two media
may be used to obtain boundary conditions on the field vectors.
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well’s equations. The appropriate equation in this case is
divD = p. (16-8)

If we construct a pillbox-shaped volume, as shown in Fig. 16-1, and
integrate (16-8) over this volume, we obtain

fvdidev = [Vpdv.

Applying the divergence theorem and letting & go to zero, we find [
(Dln - D2’u)A~ = UA: (16"9)

where o is the surface charge density on the interface. The fact that, in
general, ¢ is not zero introduces some complexity in this boundary condi-
tion; however, noting that charge must be conserved, that is, that

div] = — %’E) : (16-10)
makes possible certain simplifications. If we integrate this equation as we
did Eq. (16-8), -and shrink the pillbox in the same way, we obtain

do

Tin = Jon = — 5

(16-11)
If only monochromatic radiation is considered, the surface charge density
must vary as e7/“!; therefore the right side of Eq. (16-11) can be written
as’jwo. Using the constitutive relations D == €E, J = ¢E puts equations
(16-9) and (16-11) in the form

&b, — €Ey = o, (16-12)
91E1n — g2F32, = juo, (16-13)
Several cases of practical interest may be noted. If o is zero, then
f . &
g1 g2’

which can be true for appropriately chosen materials or; alternatively, if
g1 = g2 = 0, or . The case where both conductivities are infinite is
not of great interest; however, the case where both conductivities vanish is
approximately realized at the boundary between two good dielectrics. If
g is not zero, which is perhaps a more common case, then it may be elimi-
nated from Egs. (16-12) and (16-13). The result of this elimination is

(61 - %) E'}n - (62 — %) Ezn = 0. (16—14)
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Equation (16-14) is useful as it stands in providing a boundary condition;
however, it sometimes appears in the form obtained by multiplying by
wzﬂlﬂg, which is

u2YiEin — #17§E2n = 0. (16-15)

where 7 is the propagation constant given by
Y2 = w?u + jwgn, (16-16)

as in Eq. (15-47). A final interesting case occurs when one con;luctifrity,
say g, is infinite. In this case Es, must vanish and E,, must equal 5/€;
in order for (16-13) and (16-12) to be satisfied.

The final boundary condition is that imposed on the tangential com-
ponent of the magnetic intensity H. This boundary condition is obtained
by integrating the Maxwell equation

curl H = %]t? +3 (16-17)

over the area enclosed by a loop such as that shown in Fig. 16-2. If this
is done and the loop is shrunk as before, the resulting boundary condition is

Hyy — Hgy = Jau, (16-18)

where j,1 is the component of the surface current density perpendicular
to the direction of the H-component which is being matched. The idea of
a surface current density is closely analogous to that of a surface charge
density-—it represents a finite current in an infinitesimal layer. The sur-
face current density is zero unless the conductivity is infinite; hence,
for finite conductivity, ' '

H,, = Hy;. (16-19)

That is, unless one medium has infinite conductivity the tangential com-
ponent of H is continuous. If the conductivity of medium 2 is infinite,
then, as has already been shown, Ez, = 0. A more general result can be:
obtained by cousidering the Maxwell equation (16-17) as applied to
medium 2: ’

aD,

curl Hy — —a‘ = Jz. (16—20)

Using the constitutive relations and assuming that E, varies with time as
e~ yields

1
Ey = ——— url H,. 16-21
2 g2 — Jwéz ¢ ? ( )

If the reasonable assumption that Hj is both bounded and differentiable is
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made, then Eq. (16-21) implies that E, is zero in a medium of infinite con-
ductivity. With the same assumptions as were made above,

1
H; = ——curl E,, 16-22
2 T url B, ( )

and the vanishing of E; also implies the vanishing of H,. If H, vanishes,
then the boundary condition on the tangential component of H at an
interface at which one medium has infinite conductivity is

Hiy = jsu. (16-23)

The boundary conditions needed to solve the problems considered in this
chapter have now been obtained; for convenient reference they are tab-
ulated in Table 16-1 for ¢ = 0, g = o0, and arbitrary g.

16-2 Reflection and refraction at the boundary of two nonconducting
media. Normal incidence. An interesting and instructive application of
the boundary conditions derived in the preceding paragraph is the deriva-
tion of the reflection and transmission coefficients for plane waves normally
incident on a dielectrie interface. The situation is deseribed in Tig. 16-3.

€1y My €9; 142

Fic. 16-3. Reflection and transmission at normal incidence.

In this figure E;, H; describe the incident wave traveling in the plus
z-direction, Es, Hy describe the reflected wave traveling in the minus
z-direction, and Ej, H3 describe the transmitted wave. The interface is
taken as coincident with the zy-plane at 2 = 0, with medium 1 on the
left and medium 2 ou the right. The electric fields, which are polarized
in the z-direction, are described by

El — iEloeJ(nz—-wt}’
E2 = iEzQC*J(‘IZ—H’)“, (16"24)

E; = iE5,62* 7",
where

K1 = wVep  and kg = @V eops (16-25)
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TasLs 16-1

BouNDARY CONDITIONS

’ g ! Dn H, B

? g1 =92 =0 g Ev¢ = E2, Dy, = Dag Hy, = Hay } Byn = Ba,
i192==(’c' 5E2ﬂ=0 DZn':O Hy, = 0 Bo, = 0
l ! ‘El‘t =0 Dln Hy = ja.l. -Bln = )

5 ‘
g1,g28rb. # ol Ey, = Ea, | ( i --——)E'xn Hyy = Hy¢ | Biy = Bza

|
|
! | = (e~ 55) o

{(cf. Egs. ‘15—39), The appropriate magnetic fields are obtaiued from the

Maxwell equation
3B .
cutl E = T (16-26)
For electric fields of the type indicated in (16-24), Eq. (16-26) is equivalent
to :

OE, .
j a' = JopH = jopH,j; (16-27)

hence the magnetic fields to be associated with the electric fields given
above are

H; = jVe/u Eq,06 """,
H; = — jvVe/m Ez.ce'"j("z“‘), (16-28)
By = 3v/& g o, o5
Since the normal components of the fields vanish;, only the tangential
components of the electric and magnetic fields need be considered, and

these according to the zero conductivity line of Table 16~1. Applying
these conditions at z == 0, we find

Eio+ Ezo = E3o and Ver/m (Fro — Eae) = Ve /ug Eso.

(16-29)
Solving these equations for &5 o and Fj o, we obtain
EZ,O \/EI/N‘ — 62/“2 »EY E% [ ‘AE}./E‘/“I ELQ,

Ve ur + Ve s / ”
(1b—-30}
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Equation (16-30) determines the electric fields of the reflected and trans-
- mitted waves in terms of the incident wave and the parameters deseribing
the medium; these amplitudes in turn determine the amplitudes of the
magnetic fields through equations (16-28).

It is interesting to apply the results obtained above to the case of
optically transparent materials. For such materials x4 is very nearly uo,
consequently the index of refraction is essentially given by

=, vV e/ep.

In terms of n, taking p; = p2 = po, Eq. (16-30) becomes

Eso _my—m2,  Ejo__ 21
Eio ni+n’  Eip ni+ng (16-31)

The reflected wave intensity is proportional to the reflected Poynting
vector, and the transmitted intensity is proportional to the transmitted
Poynting vector. . The transmission coefficient 7, and the reflection
coefficient R, are defined by ‘ )

TRV 2
R, = faXHs _ (”’ = "2) : (16-32)
E’X H, ny -+ ng

where the bars over the Poynting vectors mean that the quantity is to be
averaged over many cycles in time. Similarly, -

r - EaXH; _ ﬁg(__}_'.‘.!_...)z (16-33) -
"TExE, m\wmtm |

For a typical air-glass interface, where ny = 1.5and n; = 1, the reflection
and transmission, coefficients are

R, =004 and T, = 0096

Thus, as would be expected, all of the incident energy is either reflected
or transmitted—there is no place to store energy in the interface.

A further interesting fact is obtained by examining Eq. (16-31); namely,
if n, ig greater than n, the first ratio is negative. This is precisely the famil-
iar statement from optics that there is no phase change on reflection from
a “less dense” medium but that there is a phase change of v radians on
reflection from a “more dense” medium.

*16-3 Reflection and refraction at the boundary of two nonconducting
media. Oblique incidence. A more general case than that discussed in
the preceding section is that of reflection of obliquely incident plane
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waves by a plane dielectric interface. Consideration of this case leads to
three well-known o})bical laws: Snell’s law, the law of reflection, and
Brewster’s law governing polarization by reflection.

The general situation is deseribed by Fig. 16-4. To simplify the follow-
ing derivation it has been assumed that the propagation vectors ky, ks,
and k3 are coplanar and lie in the xz-plane. -Furthermore, the electric field
vectors E;, E,, and E3 have also been assumed to lie in this plane.* The
electric fields of the incident, reflected, and transmitted waves are given by

o J(KyT—wE)
E; = Ej,0¢ )

E; = Ej ¢’ ™9, (16-34)
E, = E3_0ej<”3"'”‘),
where '
Ei 0 = E;,o(icos 8 — ksin 8,),
Ez.0 = Es.oicos 62 + ksin 6;), (16-35;
E3z,0 = Ej3,(icos 03 — ksin 63),
and
b
€], M) €9, Ko
E;
\ -
v H;
83\ ..

Fic. 16-4. Reflection and retraction——oblique incidence. The zz-plane is
the plane of incidence. The vectors H; and Hs are directed out of the paper,
and Hs is directed in.

* It can be proved that the propagation vectors are always roplanar. The
most general electric field vector can be resolved into a component in the
zz-plane (plane of incidence) and a component perpendiculur to this plane. The
reflection and transmission of these two components are governed by different
laws. The choice made above is made in order to obtain Brewster’s law. The
derivation for the case where the electric field is perpendicular to the plane of
incidence is left as an exercise.
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x; = wV e (isin 8y -+ kcos 6)),
Ko == OV €101 (i sin 0y — k cos 02), (1630)
K3 = wv/é;; (isin 03 + k cos 83).

The magnetic intensity ol each wave can be obtained, as ir th~ ~ase ot
normal ineidence, from the Maxwell equation

url B = — 00 = 4 jupH (15-37)
The curl appeariug in Eq. (16-37) can be evaluated from the definition
of the curl and the explicit forms.of the clectric fields as given by Eqgs.
{16-34). (16-35), and (16--36). However, the curl of vectors »f th2 general
form of equations (16--34) occurs so frequently that it is convenient to
derive a general expression. If A is an arbitrary vector function, then

curl (Ae™*) = T curl A - grad (¢™*") X A. {16-38)
But )
grad ¢*F = jke’*"; J(16-39)
hence
curl Ae™ " = " curl A + jx X A", (16-40)

Using this identity and Eq. (16-37), and noting that each of the vectors
in (16-35) is constant, we find

K X E N 1)
H1 . LA =10 6'7”‘ T wt),
Wiy

. K3 x EQ,Q (Ko T—wt) 168
H, = &2l =X 0" 1641
2 o , ( )
H; = xs X Eg0 pIkaT—wt)
w2

Having obtained this mathematical description of the waves, we next
turn to the boundary conditions at the z == 0 interface.

As the first boundary condition to be matched, consider the tangential
component (z-component) of the electric field at z == 0. Continuity of this
component of the electric field gives (since Ky == kg).

EI’O cos 616].()(1;0 Sip fy —-wt) 4}_ E:Z,O oS ezej(rqz; 8in 0 —wi)
= By cos a7 "7 5 0D (16.49)

The common factor 677 can be cancelled from all three terms, leaving
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feye win &y ik3x ain 83

s nin ¢ i
Fygcos 8,2’ PN LB cos Oz == KBy o COB Ga€°
(16-43)

Each term in Bq. (16-43) depends on & through an exponential factoc.
The only way in which Eq. (16-43) can be satisfied for all values of z is
if the three exponential factors are all the same, that is, if

KoL 8in #y == Ky sin B9 == Ky 8in O3, (16—44)
This result cun be broken up into two egustions:
sin 8y = gin Oy, iy 8in &y = Kg sin 8. (16--45)

The first of these is clearly equivalent to 8y = 63, which is the Jaw of
reflection. Since & = w~/en and n = K,K,,. the secoud equation can
be written ng sin 8y == n, sin 95, which is Sneli’s law. Thus two important
results have been obtainsd by spplving the boundary condition on the
tangential component of the slectric field, Still more information is con-
tained in this boundary condition, a8 ean be seen by putting Bg. (16-44)
jnto Eq. (16-43) and cancelling common fsctors, to obtain

Ey.0008 8y +-Fqg gooad = Fi 008 ds. (16--46)

Bguation (16-46) represents one equation whick must be satisfied by
Eq.0 Eao, and Bz 5 in addition there are two other conditions, obiained
from continuity of the normal compouent of the cleetric displacerent and
continuity of the tangential component of the magnetic irtensity. Con-
tinuity of the normal componant of the electric displacement gives

€y sin &4 ‘f'?i‘g ~- €y sin 91}”:3 g = g #in 93!5«',3‘0, {”%""47)

while eontinuity of the tangential component of the magnstic intensity
gives

A% \C".t.,""ﬁ; By /. ;;7;» By == "'v/"&/ ﬁi; B (16-48)

These two egquations sre aciuslly identicsd, a8 may be seen by writing
Weg. (16-47) in the form

g e " g e e -, .
—ey/uy Vg sin By g 1V a e v e sin 1B

- g . P .
T "\/ sz/’,‘,? S ol SN 0315:3'0 L]‘)'”ig,‘

Sinme ey, = g/ Egia. Srell’s Jav makes possible the reduction of
Bg (1649} Lo the forn given in Ry, (1648,
Eouations (16-46) and (16-47 must now be suived {or &, 5 and Hay

4
in verms of B; o This is easily rdone, with the result
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Fan 2¢, sin fycos 8; . (16- 50‘)
El,g €9 Sin #5 cos 91 -+ €7 sin 01 o8 03

for the transmitted electric field, and

Ejo _ €1 8infy cos 83 — &g sin 83 cos 6,
ELQ €g sin 03 cos 8y -+ €y sin 8y cos 83

(16-51)

for the field of the reflected wave. For most dislectric materials u = uo
and n? = €/g,. Assuming this to be the case and using Snell’s law, Eg.
{16~51) becomes

By _ sin dz cos fa -~ sin §; cos
e . . . (16-52)
Ey g sin 5 ¢os 83 - sin 85 cos 6y

"The trigonometric identities sin (6, 4- 8a) cos (61 — 63) = sin §; cos b, -+
s §3 ens 0y, and sin (8; ~~ 6z) cos (8 -1~ 83) = sin§, cos §; — sin 5 cos I3,
reduce Bq. (16-52) to

EQ o tal: (@1 b 93} PR
O o BBRAY T 9s) 16-53
Eio tan (0 + 63) (16-53)

if 8, == 83, then tan (8, ~— 83) = 0 and there is vo rsflected wave. Un-
fortusately, this ean ocour only if 7y == ng, that is, if the two media are
ontically indistinguishable. If, on the other hand, 0; -+ 83 = /2, then
tan (8, - 6a) is infinit? and the amplitede of the retlected wave is again
zero. In this ease the media are optically distinguishable. Since it can be
shown that the rther polarization, E perpendicular {n the plane of iorci-
dence, is partially reflected, unpolarized light incident a4 an angle satisfy-
ing #; 4 63 = w/2 will be polarized by reflection. Snel’s law,

ny 8in §y == 3iq 8in fg,

provides o ragans {or detennining the value of 4. Usinyg 83 = 7,2 — 8§
in tuell's law gives

Ny 8N Byp == Ry €08 Fiy,
oy
Ten ; .
tan By == 7 {16--h4)
Ny

The quantity 6, is known ag Brewster's angle; the relationship bebtween
it and the indioes of refraction as given in Eq. (16-64) 13 known as Brew-
ster's Jaw,

Fquations (16-50) and (16-51) are twe equatiors of the sey knnwn ae
the Fresnel equations. whieh in thetr totality deseribe the reflection and
refeaction of electromagnetic waves of the two possitle polarizeticos at
& plane dielectric ingerface. Vrore these equatings iy ig » simple matter 1o
“obtain the reflection and transmission coeffieients for power; they are
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_ E;XH, (61 sin 6; cos 63 -— € sin 83 cos 91>2 (16-55)

T B xH, " \€; sin 6 cos O3 + €2 sin 03 cos 0, "
and

po DX Vala(_dasmbesi ) G050

E, X Hy \/61/#1 €1 8in 61 oS 03 + €; sin 0 cos 6

for a wave polarized as discussed above. If the media are dielectries with
# = o and consequently n2 = €/€, then these equations may be put
in the forms
_tan® (8, — 83) -
R = tan? (6, = By (16-57)
and

o 2 sin f, cos 6y sin® 6, .
T = GE 6, + 09 cost (51 — On) (16-58)

in which form they give the ratios of the transmitted and reflected inten-
sities to the incident intensity. As written, the erfuations do not seem to
involve the indices of refraction; however, it must be remembered that
68, and 04 are related through Snell’s law.

16-4 Reflection from a conducting plane. Normal incidence. The
reflection and transmission of normally incident plane waves at a plane
interface between a conducting material and a nonconducting material
will now be considered. The situation is essentially that described by
Fig. 16-3, with the additional feature that g, the conductivity of medium
2, is not zero. The electric and magnetic fields E;, Hy, Ez, and H, have
the forms given by Eqs. (16-24) and (16-28), namely,

. kyz—wt) . J(kyz—wt)
E; = iE;,0¢/"" 7", H, = jVer/pr E1,0¢™" )

. —J(x124wt) . . . —Jj(eyz4wt)
Ey = iEy e 400, Hy = —jVer/ 1 B oe™ 12100,

The wave in the conducting medium has the form

(16-59)

e TY 1 —t LY E. (79— Ao
E; = iE; """,  H;z = ,%ﬁz'ﬂeﬂ 220D (16-60)

with, however, 72 given by

Yo = ag -+ jB2 = Vwleaus + jwyapz, (16-61)
as in Eq. (15-48). Alpha and beta are given by

o= FoVeu [} F WWIT @) |7 8= SE.(16-62)
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Once again the appropriate boundary conditions are continuity of the
tangential components of E and H. The results are

Eio+Eyp= Eap (16-63)
and

- V3 s
Ve uy (By o — Foo) = —2 E3.0. (16-64)
: Wiz

Since 73 is complex, Ej ¢ and E3 ¢ cannot both be real; this fact indicates
that phase shifts different from zero and m are possible fot the reflected
and transmitted waves. Formally, Eqs. (16-63) and (16-64) may be
solved to give

I

B, L9 B
207 + (72/(0#2)\/;“/':1

and
2

E
1+ (Yo/wpa)Vui/€ ne

The apparent similarity of these results to those obtained in the dielectric
case 1s misleading, for again it must be noted that 7, is a complex number
and thus gives rise to phase shifts.

The special case of infinite conductivity is particularly simple. In this
case Vg is infinite, thus reducing equations (16-65) to

E3.0

Ey o= —E,,, E3 o= 0, (g2 = o) (16-66)

so that all of the incident energy is reflected and no energy penetrates into
the conductor. The general case is rather cumbersome; however, the next
approximation for good conductors is relatively straightforward and has
some utility. For a good conductor,

g2
WEY

> 1.
Tn this case,

oy = Vwgous/2 and 8 = Vwgous/2. (16-67)
The reflected electric field amplitude is then given by

- (Lﬂ) (e T T

2 € 2 o€ .,
FEao = wiz ——1 By = — - «v‘, ,u,m‘u 19,0
1 J wgz#z M1 R VY I
1 I R G S I
+ ( Wity ) 2 & mJ) N 2paew

(16-68}

If along with Eq. (16-68) we have ga/we; > 1, then the radicals in Eq.
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{16-68) are the dominant parts of the numerator and denominator.
Dividing numerator and denominator by (1 -+ j) times the radical gives

1= 3\ [ ewer

L ( - J) .y B9E1
192 @ o (16-69)

(1 - J> 2 Mowéy

HKig2

Recognition of the radical as 4 small quantity leads to the approzimation

By, ==

By y = - {] ) V?ﬁz f;—l] E; .o {16-70)
The reflection coefficient is obfained by corparing the reflected Poynting
vector with the incident Poynting wecicr. Sinee both the incident and
reflected waves are in the same medium, this i equivalent to coraparing
the square of the magnitude of &3z, to the sguare of the magnitude of
E; . Thus

R = _T._mL,.’}. . {(16-71)

. , W éﬁ;&g;][ . 2;12(0&1}
R o= [1 (1 — \/~——--—- 1 -1+ =t e (1672
L ¢ 2 Mifz . ( 7 gz ( )

To the same approximation as used above, we find that

R = 1 - 2V 2{us/p1)(we/gs). (18-73)

Taking go == 5.6 X 107 mhos/m, the value for copper, and assuming
ua = pq and € = €, we find that for f = 10'°sec™! (3-cm wavelength)
R = 0.9997; for lower frequencies the situation iz even closer to the
perfect reflection case. It is only for radiation of very short wavelength
that the deviation of R from unity becomes significant for such good con~-
ductors a8 copper, silver, and aluminum. Since the skin depth for these
materials is small, it is easy to see why thin sheets of good conductors
provide excellent shielding for radiofrequencies. .

16-5 Propagation between paralle! conducting plates. As a preliminary
to the study of waveguides, we now consider the propagation of electro-
magnetic waves in the region between two parallel, perfectly conducting
plates. The region in which wave propagation is to be treated is that
shown in Fig. 16-5. Since the - and z-divections sre physically indis-
tinguishable, no generality is lost by considering only waves with wave
vectors in the yz-plane—in particular, those making an angle § with the.:
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x

Fia. 16-5. Wave propagation betwesn vwo parallel, perfectly conducting plances.

y-axis. Such waver will impinge on the perfectly condueting surface at
y = o and will be reflected as waves whose propagation vectors make the
angle 9 with the minus y-axis. When thess waves are reflected & second

Thus it s seen that the propagation between two parallel conducting
planes can he described ju Lerms of the exponential factors

lbjj {x(y co8 §-4-z 8in 8)~ w?}
and {(16--7-4)
ejya(---y cus8 842 fin B)-—:.-t]‘

For such waves there are two possible polarizations, which may be de-
seribed by saying for one thut E is paraliel to the z-axis, and for the other
that K is parallel to the r-axis. These are known respectively as TE,
transverse electric. and TH, fransverse raagnetic, waves. Only TE waves
will be considered here. The treatment of TM waves will be left to an
exercise.

The electric field in the region betwesn the two conducting planes in

the TE case is given by
.1 7 (% 4~ in &) — ] 05 B i — . o pe
B = ‘{Ele]p(y oy #-4-z 8in &) —wi] + .Ege‘”‘{ g vos G4z sin 8) ut]}‘ (16‘"15)

This electric field must vanish at y == 0, since F; vanishes at the boundary
of a perfect conductor. This condition is clearly satisfied for all z and all ¢
if #g == —E; = E. Then E is given by

. j g 0 ~Jap sos By jicz sin 9. Py \
E = 3E<6}w cas 0 e Jag o8 )enu sin 9--wf) (1‘3“76}

In addition E must vanish at ¥ == ¢ for all z and all . This requirement
Yy G

imposes the condition
Ka cos 8 = nw. (16-77)
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Thus for a given frequeney w, ¥ = «/c and the angle that the waves make
with the y-axis is fixed by FEq. (16-77). With this angle fixed, the apparent
velocity in the z-direction is v, = ¢/sin 6, which is always greater than the
veloeity of light in free space. This apparent contradiction of the special
theory of relativity will be discussed in more detail later.

It is convenient to express the variation of the electric field in the y-
and z-directions in terms of wavelengths. These wavelengths are

w2 e _ 4m _ 2me ;
Ao == ksin & sin @ ('\0 ) ) (16-78)

for the z-direction, and
— ~_2L . ho_ -
e = o5 = wos b (16-79)
for the y-direction. In terms of these wavelengths, the electric field,
Eq. (16-75), is*

E = i’ sin %7‘5-’ oI@merhn et (16 -80)

¢

while Eq. (16-77) takes the form

a n
& ", (16--
= 5 (16--81)
From Eqgs. (16-78) and (16--79) it follows immediately that
1 i 1
5oy = oy {16-%23
TN e

If the value A, = 2¢. corresponding to n'== } in Fq. (16-81), is con-
sidered, then as My increases, that is, as w decreases, a point is reached
where 1/A7 must be negative in order to satisfly Eq. (16-82). In this
case the coeflicient of z in Eq. (16-80) is imaginary, and the exponential,
instead of oscillating in z, becomes a decreasing evponential. To say this
another way: if Xg > 2a the electromagnetic wave wiil be exponentially
damped in z, instead of propagating. If » istaken as2, then\, = 2a/2 = a
and the longest wavelength propagated is a. The reason for the subseript ¢
is now clear; it means “cutoff.” The cutoff wavalength is the longest wave-
length that can be propagated for a given mode (» value).

The velocity v,, which was found earlier, always exceeds the velocity of
light and, in fact, becomes infinite when the wavelength'in free space equals
A¢, that is, when 6 == 0. This velocity is the phase velocily, by which is
meant, the velocity of a point of constant phase on the wave. - Without

* B’ has heen writton for 451
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dwelling on the relativistic aspects of the question, this represents an
apparent contradiction of the postulate that no signal can be propagated
with a velocity greater than the velocity of light. The resolution of this
apparent difficulty is that energy is propagated down the guide with a
smaller velocity than the velodty of light, pamely, with the so-called group
velocity. Signals are transmitted with the group velecity; they are not
transmitted with the phase velocity.

To determine the velocity of energy propagation, we shall calculate the:
energy deusity. This energy density times the group velocity gives the
energy flux, or Poynting vector. Thus by dividing the Poynting vector
by the energy deusity, the velocity of energy propagation can be obtained.

The magnetic induction in the guide is readily obtained from

B . o
curlE == — 5 (16-83)
By using Eq. (16-80) for E, and assuming that B(r, t) = B(r)e ™! we
quickly find

27"'/871("v’/>\q\—w11 . 1-7"1/ 27z g) —al)

o
Blr. t) = ji' =& jiet =T cos Z1Y
wX c Xy R ‘
(16-84)
The energy density is
we=%E-D -+ B-H), (16-85)
while the Poynting vector is
S =8 xH (16-86)

Complex notation has been used {cr E and B, with the tacit assumption
that the real part of each expression is to be taken. In calculating w and
S then, the real parts should be taken and multiplied together. However
since the quantities to be used in ealculating the group velocity are the
time averages of Eq. (16-85) and (16-86), a theorem from comwplex vari-
sbles may be used to eircumvent the taking of real parts.

If f = foe™* and g = goe™*, where fo and go may depend ou other
variables but not on the time, then

RefReg == §Ref*g. (16-87)

The bar indicates time averaging. To prove this relationship, let f, ==
w -+ joand g5 = & -+ 79. Then

RefReg = (vcoswl — vsinwl)(fcoswi — nsinwl), (16-88)
while

Ref*g = ut -+ vn. (16-89)
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The Foltowng integrals are easily verified.

. .r

. : .o

lira / an’ wl df ==
AR T J o

F 1O

S

”
o~

iim ,1 / cos® ot dt = & (Y690
w0 Z’ o0 b

1 !
o g [ sin wi sos wt df == 0.

i) v O

By means of these ntegrals. it s easy to see that the thne aversge of
Fig. (16-88} is
RefReg = &(ui - on). (i6-91;

8

Comparisan of /16 81 with {168} proves the theorem of W Gy (En-8TY).
The time aversge epergy density is

W= }Re(E* D+ B* H| = Reg eo B ¥E" sin® ( "y)

L g 2 g.)-m 7% v_,;f_ " (?—‘.’L"?zf\}. (1509
-+ ME £ sin N } E’*H T ros™{ ) {16-92)

N ¢

Integrating in the y-direction, across the guide, effectively replaces each
sin? (2my/\.) and cos® (2ry/A.) by @/2. Thus

lﬁ 4r? - }
P (G

= F BV E g0, {(16~03)

* i sepps @ -
fowdg == LEE 5l

The time average of the z-component of the Povating vector is

8. = 4 Re B3H,
s o { 20Y si 2mwy '
- A "% “ry y AT Y {Bemi
= 4 Re {11 sm( . ) > E M ( X, )} (16-94)
) Q2 . o f 2wy
P AR AL —iry LA BN
= $F*E e Sin ()\6)

Tategrating this expression from y == ¢ to y == a yields the total aversge
power (per unit length in the munectxon j traveling down the guide:

/ “B.dy = 1EE T g (16-95)
0 itawhg
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Ths velocity of energy propagation is the guotient of He. (16 95) divided
by (16-23). Thus

o 108
Lo e, (16-96)

60;.1(;\:)},“ o

From Eq. (16-78), we note thal A, i greater than Xg, aud heuce wig/2m
. 9 = O g
is greater than ¢, which makes 1t clear that vy is less than ¢,
Our understanding of the difference between the group velocity, v,
and the phase velocity, 2, can be enbanced by noving that from . (16-78)
y g b ” f «
Ry = hg/sin &0 Using this result v ey (16-86), we fod

B, =0 ¢ sin 8, 116-97;

and we have airesdy seen thay
i .
By - 98
" win 4 Ve
It is readily appareut that
e’ (16-99)

Vgllp =

which is generally true for propagation in a waveguide. [Note that Eq.
{16-99) does not necessarily apply to other kinds of wave propagation,
in particular it does not apply to plane waves in nondispersive media where
the phase and group veloeities are wdeutical] Recalling that € is the angle
between the direction of propagation of one of the component waves and
the y-axis makes 1t a simple matter 1o Jdraw Pig. 16-8, which shows 2 see-
tion iu the yz-plane of the region between the conducting planes. The
intersection of a wavefront with the z-axis 1aoves with the velocity v, ==
¢/sin 8; however, the comporent of ¢ along the zaxis is ¢ sin 6 = »,.

'

Thia point voves w
-4 the e-direction with
velooity o, > ¢,

-~ Wave{ronts

D

yz—.[} y o=

Tie, 16-6. Detsiled motion of the wavefronts during wave propagation
between zondueting planes.
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Many of the results obtained for the simple parallel plate waveguide
persist, for more complex cases. In particular, the common rectangular
waveguide has very similar properties. In the next section some general
aspects of other waveguides will be considered, with particular reference to
rectangular guides.

16~6 Waveguides. In Section 15-4 it was shown that E and H both
satisfy the wave equation in free space, that is,
2 2
V'E — eono%{? =0, VH — epo "H _ o, (16-100)

For monochromatic waves, that is, waves of the form E(r, t) = E(r)e™7,
these equations become

VZE + w?€uoE = 0, VZH + wleuE = 0. (16-101)

In addition to these wave equations, Maxwell’s cquations must be satis-
fied. For the transverse electric (TE) case propagating in the z-direction,
i, = 0; furthermore, waves propagating in the z-direction have the re-
maining five field quantities proportional to e’#7**  Maxwell’s url
equations in this case arc

curl E -+ jugwH == 0

5!‘;[; ()EJ: V- e f (¢
W~ e fuatt, 0, ()
B, = - &a%‘yg H,, by S (16-102)
- WA ‘ {a
E, = ﬁ%}?ﬂ H,. (e
curl H — juywE = 0:
0H, 2my .
dy ﬁﬂu — JewkE; = 9, @)
o
aHy de . 4
-—é;-— —_ —?0—1;"' = 0. (C)

It is clear thai (a) of Eq. (16-103) and (b) of Eq. (16-102) imply

OH. _ (2?"11' 'f_f"."ffl‘*’z%> . ;N
dy 3y, T or 1, (16-104)

and therefore that H, can be found if H, is known. Similarly, from (c¢) of
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(16-102) and (b) of (16-103), H, can be found from H,. TFinally, E, and
E, ave simply related to H, and H, by (b) and (¢) of (16-102). Thusif H,
is found, all the other field quantities may be found by differentiation.
H, itself must satisfy Eq. (16-100); therefore. taking cognizance of the
¢’2*%M z.dependence, we write

. 5 4%
+ 5o+ \@feomo — 5 ) Ha = 0. {16-105)
o g

It remains only to determine the boundary conditions to be imposed on
the solutions of Eq. (16-105).

If a general cylindrical guide with perfectly condueting walls, such as
that shown in Fig. 16-7, is under consideration, then the appropriate
boundary conditions are that the tangential component of E and the
normal component of B should vanish on S. The tangential component of
H and the normal component of D are arbitrary. Imposing these condi-
tions gives rise to a relationship counecting A\, w, and the dimensions of
the guide, exactly as Eq. (16-82) does for the parallel plane case.

To better understand the procedure, consider the rectangular waveguide
shown in Fig. 16-8. Equation (16-105) can be separated by the usual
method of separation of variables. The general solution consists of a sum
of terms of the form

H.(x, 4, 2) = (A coS &,2 cOS kY -+ B €08 K52 $in Ky
-+ €' sin Kz €08 k0 ~+ D sin k2 sin xy)e ¥ (16-106)
with
2 2 2 2 2\ T
—(Kkz - Kky) + (@ €ouo -+ (Ar7/AP] = 0. (16-107)

From this H,, we obtain F,:

\\
|
i
|
N

H
Il
i
N N
;
|
i
=

S s
| /’/
L—
e ek
Fi6, 16-7. Wave propagation inside Fra. 18-8. Avrectangular waveguide,

a conducting cylinder.
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] . (-'n,ugw:%h(, IH 5 . .
e ,_2;;-) ....... (16-10R)

The partiat differentiation chauges every osKyy 6 a sin &y, and con-
versely, XMowever, siuee I, must vanish st oy == 0 and ol y = b, ouly
verras nvolving #in K,y ma y survive in f,, and these terms must have
N, = onr/h Thius oidy cos e teriny survive in Bq. (16-1007. A similer
argument shows that ounly cos s ts'frms may fsuw‘im, and thsl these
ranst have o, == wm"/lz The aliowed solutions foe H,, that is, those which
give vatishing fangenitd compuients of B at the bouudary, heve the form

B vieiarn P
H, == A ¢on f; e T, (16-199)

Baech possible pair of vadues of m oand 2 35 referrad 40 a3 5 mode. The
notabivt 'L h,,,.,,l 18 u2ed for modes of the 3' s (181000, TE means rans-
verse eleciric, 1. and mocomps the umber of baliowaves in the narrower {(n)
and wider w‘. dimennons.

Revivning vow to R (16-107) and wang x, «= mr/oe and ky = on /B,
we obiain o . ' ,
iy, N gy
(w\ { o ) , (16-110)

Ny

which cleatly indicates that for fixed A¢ the gude wavaiength, and con-
sequently the guide velocity s, == €az/ /Ay, »'ir’»-pf,nd on the mode We also
see that there are maximum waveleogthe {nr the propagalion of vavious
modes.  Cleatly, H Mg is sofciendy large (2w /Ag)? will be sinalier than
(nar /Y2 4 (o /my®. Lo thie case, the vight side of Bg. (18-110) becomes
negative and conseguently the value of A, ix tmaginary. This leads to
attenuation rathor than propagation.

Rectangular waveguider are oxiensivelty used for the transmission of
microwsve power, [ is usual §o choose a waveguide size such th w,t only the
TE o wode at the desired fiequency propagates in the guide. A corsmon
gize of wavegnide g 0.4 in. X 0.0 in., inside dhmensions. The maxinnin’
wavelength that will propagate o the TE 10 i od«x 18 found by patiing
moe= 3, 0 o= 0, a = U8 e 228 cva aad, b = 04 in, = [ 01 cin inte
Big. (16 -110). The resull: hpmax = 457 o iv obtaived by piiting
Ay = G; wavelengths longer than this will not propsgate, bubl shorter
wavelengihs will.  The mode with the next hm‘tx@r cutofl wavelength h
TH iy or TEy,, depending va the dimensdre 3 the gide. IF b < 0/43,
the TEyy cutol wavelength 1o greater f’}m e TEy,. Caleulntion of the
Ty wavelength 8 very shople; b s just ons '»”- if the .P.um culoff wave-
length, or 2.28 cm. Iz,'prrr“’ sehicts in wwu‘vfa\.nued wavepidas and Fégh
Josses close to the T, wuteff wavelength make it uecessary to restuici
the TE;o bund ~f ~ommercial wavegnides 1o the practical limits of 2.42

o4 ,(;5 oI
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1A= Cavity resomators.  Anéther type of deviee olusely related to
waveguides and of considerable practical importance is the cavity res-
onabor. Cawvity resonators display }0 properties typical of resonant vir-
curts in that they can store energy in cseiliating electric and meguetie
Belds; furthermore, prasiical cavity resonators dissipate a fraction of the
strved energy in each eyele of oscillation. 1w this Jatter vespect, however,
esvity resonators are usually superior to couventional I~ circuits by a
frctor of about twenty, thet is, the fraction of the stored energy dissipaied
per evele in a cavity resonstor is abous i /20 the {raction dissipaled per
sycle in on I~ civewit, An additional advansage is that navity tesonsiors
of praciicsl size have resopant frequencies which range upward from a few
hundred megseycles--just the region where it is almost impossible to
construct ardinary L-C circuits.

The simplest cavity resonator ig a rectangular parallelepiped with
perfectly conducting walls, For such a esvity, the appropiate boundary
conditions ure the vanishing of the tangential compunent of E and the
norohal componewt of B at the boundary. The tangential soraponent of H
and the vormal component of I are arbisrury. The electric and magnetic
fields muat satisfy the wave eguations (16-100); thus ¥, muss satisly

P 2y % 2
&4p, . Ak,  a'E. ' . .
4y e 4% } T I E_r o O'J. f“}}l_’;)

32 ay? dzd 1 ex

1f the cavity cunsists of tho regions hounded by the six planes & = 0,
T gy == Uy = biz= 0,8 f” then K, must have the form

—jwi ur
B, = B Sz sin iy sin wze”7CF {16-112;

with w, == wn /b and &, = wryd. moorder that EL vanish at ¢ = 0, 8t
2= 1) ab y == 5, and al 2 == d. Furthermors, & alone eannor be @ sohu-
tion wrdess 0] & / oonsh div B uaust vanish to saviefv one of
Muxwell's equations. For ]_473,. aud &, the sitvabion is similar, and the solu-

toms take the forms

B, = Eqsin s folo) ein xgz e,
(16-11%)
7, = A5 Sl 6% sin kY fa{zie ™,

with 1, and x, as in Bg (6-112) and &, = In/e. T the divergence of E
13

iz te vanish, then the equation
;/ 1 e

Lo Sio & sin wg b By sin e 7:’{ St K2

&

. i dfs N i s
- Ba 2l ez min kU l“f) e = 0 (16-113)
) 4
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must be satisfied. This is accomplished if f; = cos k7, fo = cosk,y,
f3 = cos k,z, and
KxEl —+- KyEz - KgEs = 0, (16'115)

which is just the condition that x be perpendicular to E. Returning to the
wave equation, it is apparent that the resonant frequencies of the cavity
are given by

2

K24+ k2 H-kE - ‘—;—2 = 0, (16-116)
or
2 m? n® 4f2
IO T e A § tn_117
a2 } b2 “* e P 0. (l() ]]I)

A uypical cavity constructed from a waveguide 0.4 in. X 0 © in. in size is
characterized by [ = 1, m = 0, n == 2 (a so-called TE ¢, cavity). The
resonant frequency of such a cavity is clearly determined by the z-dimen-
sion, d. Many other aspects of the rectangulay cavity resonator problem
can be treated in detail; some of these are left as excrcises.

Other forms of cavity resonators may be constructed; however, only
the right eircular cylinder and the rectangular parallelepiped are easily
fabricated and amenable to an exact mathematical treatinent. The treat-
ment of the right circular eylinder involves functions which are more com-
plicated than the sines and cosines, specifically the Bessel functious. Satis-
fying the boundary conditions requires finding the zeros of these functinas
in the same way the zeros of the sines entered the rectangular problem.
Rather than enter into the elaborate discussion which results, we refer the
interested reader to Montgomery, Technique of Microwave Measurements
(MeGraw-Hill, New York, 1947), p. 297 ff., where a brief but very useful
treatment of the cylindrical eavity resonator is given.

16~-8 Radiation from an oscillating dipole. A simple example of radia-
tion from a prescribed time-dependent charge-current distribution is
provided hy ealeulation of the radiation from an oscillating electric dipole.

The dipole will be assumed to consist 2

of spheres located at z = x£I/2 con-

nected by a wire of negligible capaci- 99

tance, as shown in Fig. 16-9. The 1/2

charge on the upper sphere is ¢. and IR
that on the lower sphere is —¢. Con- Ve ]7,0 !
servation of charge requires that the ‘/'“

current in the connecting wire be given ,,./ —q& !

by Fra. 16-9. An oscillating electric

= g, (16-118)  dipole.
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where I is positive in the plus z-direction. Tt must be noted that the
condition of negligible capacitance of the wire and its coucomitant uni-
form current can be satisfied only if the length [ of the dipole is small
compared with the wavelength of the radiation (see the discussion at the
hegimning of Chapter 13).
The vector potential due to the current distribution specified by
Eq. (16-118) is
-1 -~
qp = 2 [ I Ve k)
A 4 12 ;I‘ - Z;kl

(16-119)

This rather cumbersome expression can be quickly simplified if we examine
the cuantity |r — k2’|. 1t is clear that

It — ko'l = (% — 22k v 4 252 (16-120)

1t 1is small compared with r, that is, i1 we consider the fleld only at large
distances from the dipole, the right side of (16--119) can be expanded in
the form

r -kl = r — 2 cos 0, (16-121)

where 4 is the angle between r and the z-axis. The quautity in (16--121)

is involved twice in the expression for A. Yo the denominator, 2/ cos # can

simply be neglected if r is large enough. In the retardation term, however,
" eos @ can be neglected only if 27 cos 8\ eu is negligible compared with the

tum: during which the eurrent changes siguificently, e.g., corapared with

the period for harmonically varving currents. Since (eu) V2 = p, the

vclomtv of clectromagnetic waves, and 2 cos 8§ £ 1/2, this means that
" cos 8/v can be neglected in the retmdduon term only if

&P = A (16-122)

O~

Thus, if the dipole 13 sivall compared with cne wavelength, and the ob-
servation point is far, cormpared with . from the dipole, then A is given hy

4,00, = 2L —zz t — ) (16-123)
12

The sealar potential ¢ can be found either by applying the Lorentz
condition or by asing the appropriate expression for the retarded potenrial.
Both methods give the same final result; however, beecause the electric
potential due (o o dipols o the difference between two large terms, great
care must be used in approxinating the retarded potential. Since this
difficulty is eivcumnvented in the Lorentz eondition caleulation, the scalar
potential will be chrained by solving
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div A 4 q,c az == ], (16-124)

with A as given by Eq. (6-123). Thus

6p- 1 3 1.~ P
a ~  4me dz r I (.z 1!)
e L TE Ty B RAY (1640851
B R G U R I 1§ (16-525)
where I’ represents the derivative of 7 with vespect to its argument. This
equation is readily integrated by noting that § == ¢’ and thus that
Lozt HE e ) N
olr, ) = 4rre r2{ r e | (16-126)

Having obtained the sealar and vector potentials, we now need only to
differentiate them to obtain the slectromagnetic field, Tefore doing this,
it is convenient to specialize the charge-surrent distribusion to cne which
varies harmonically with the time. The pagticudar chinie

' N ,\
g (t - ’--) Gg CO8 @ (t g

. r . ' >
I==Iysinw (t - 1_1) == gy SR {é - ;;)

v

(16-127)

will be made. Resolving A into spherical componants, we obfain

v gl . 1 T
A, = £ 2% o geinw (5‘ Y
dm ¢ ./
.l . ;
Moodadb . . 7 T
Ap =n i 8 G s {"f K (16-128)
. A¢ = 0,

and it becomes obvious that only the ¢-coraporent of B s differest frowm
zero. This eomponent is

B, = =~ —{pd
¢ v g (rdeo
4 P <A ; %o, 3 Y . P
= A ey 61 e s { I TR hES (16120
4x X ) v s N v/

soEoTnewhet SROTe eopley, sinee
"t‘ of performing vhe differentia-

The corcputation of the elechie €
not only 4 but also ¢ is Involved. The r
tionus is




16--8} RADIATION FROM AN OSCILLATING DIPOLE 347

By v e o0 e SO

deo GA 201, cos 9{91(* it — r/v;  cosw{l — r/v)qi
) |

ar “at 4re 72 wr3
P Lae 84,
" r o8 3t

. igsing w‘) ( r) 1 ( r“‘
== e KW"“" o, cosw ! v, e s11t W \t 0/ >

e i 3<P - (’44 ‘fl s __ )
g = 7o 0 d¢ | ot G. (16-130)

Tt i8 interesting to compute the rate at which the dipole radiates energy.
This is dunk by integrating the normal compenent of the Poyuting veclor
over a sphere of radiug B, Thus
'f‘R

?’S'nd’a -t 2 f
W

Equations (16-128) and (16~130) make it possible to evaluate completely
the iutegral which appears in Bq. (J6-131}; however, it is perhaps more
instructive to evaluate only the portion which does not vanish as & - .
This is done by seiecting the term proportionsl to 1/ in Ky and &, The
result is

Fof3 2 sin & 46, (16-131)
o

( % 5 i A .
# . - e OO & B {16139
8 -nda Gre o3 SUsT W (\zﬂ v), {16 13,")

This is the iustanianeous radiated power; the average radiated power
(since the average of cos® is one-half) is

%

12 2
5 tw I TS
P (16-13%)

A more conventional form of Eq. (16-133) 1s obtained by introducing
M = 2mwv/e and v = 1/4/¢eg. The result is

o faft *Ig, 34

A resistance E carrying a corrent Jyp cos wi dissipates energy af an average
vate P == RIZ/2. Conoparing this with Foq. (16-134), we see tusé it is
sensible to define the radiction resisiance of a dipole by

o f;;(z)ﬁ ,
R NAGE (16-185)

In free space, g = po, € = € and



348 APPLICATIONS OF MAXWELL'S EQUATIONS [cHAP. 16

R, = 787 (;) ohms, {free space).

Cne might be tempied to use Eq. (16-135) to describe the radiation
feom a radio antenna.  Unfortunately, several defects prevent obtaining
good results iv this way. The priacipal defects are (1) the effect of the
proximity of the earth s neglected, { 2) ordinarily antennas are not capac-
itively loaded at the ends, and (3) antennus are very seldom short com-
pared with the wavelength they radiate. Removsl of the last two defects
will be discussed in the next section; however, discussion of the perturbing
effect of the earth is beyond the scope of this text.

169 Radiation from a half-waveé antenna. The restriction to lengths
small compared with one wavelength can be removed In some cases by
relatively simple means. In particular, a wire which is just one-half wave-
length in length can be broken into infinitesimal elements, to each of which
the method of the preceding section can be applied. Let the wire lie
along the z-axis from —A/4 to +)/4 and carry a current

.o . e’ o
I(2', ) == 15 sin f cos -~ ) (16--136)
An clement dz’ at ¢’ contributes
. \ \
sin 8 Rw 2nd e
dEe = 1o+ 5w ees (@b — --- ) cos A - dde’ (06137
qmelly n )

to E, Here R is the distance from d2’ to the point of observation, ansd
terms of order 1/R? have been neglected. In the same way,

A .
dB, == L 1‘{9 sin 0 cos w (t — E) cos (5—@-) dz'.  (16-138)
4r Ry v

The probler in caleslating £ and By 15 reduced to evaluating

T/2 . .
R A R a e
W= | —senswil -— — }eosudu, (i6- 139)
Sl 2 R &
where 1 = 2wz /A, As before, R = r —- 2’ cos 6, and hence by choosing r

e

eufficiently large 2/ cos @ can be made negligible. In the argument of the
cosine, honwever, more care is required, and K Is written as

T2
. t / r
AN = - ¢08 [w \t -— —) = ueos 6] cos u du.
w2

rJ- b,

The aosine ean be expanded to give



16-9] 'RADIATION FROM ‘A HALF-WAVE ANTENNA ‘34’9
1. r\ [*/?
= —-sinw (t — —) / cos (u cos 6) cos u du
r v -2

1 ™ (2
— = COSw (t — —) f sin (u cos 6) cos u du.
r v/ Jexj2

The second integral vanishes, and the first can be evaluated by expressing
the cosines as exponentials or by using standard tables. The result is

R )[@lr_ﬂ “(16-140).

Having evaluated K, we find that

E,

I

_l o cos [(m/2) cos 6]
4rery Sm @ (t ) sin 8
(16-141)
B, = wlo . sin w (t _ 3'_) cos [(7/2) cos 6]
¢~ ar v sin 6

The integrated average Poynting vector is

P — T%ﬁ\/é 2 f cos® [(m/2) cos O] 1 0 49 (16-142)

sin2 @

The remaining integral can be evaluated only as an mﬁmte geries, but we
simply note that for a half-wave antenna the result is

2

P = 71 ohms !2-9- (16-143)

This method can be applied to more complicated problems; however, the
technical details become rather formidable.



350 APPLICATIONS OF MAXWELL'S EQUATIONS [cuar. 16

ProBLEMS

16-1. A beam of monochromatic light (frequeney w) in vacuum is incident
normally on & dielectric film of refractive index n = v/e/eg. The thickness of
the film is d. Calculate the reflection coefficient for the reflected wave as a
function of d and n. {Hint: Assume two waves traveling in opposite directions -
inside the film.}

16-2. Find the surface charge density and the current per unit width on the
surface of a perfect conductor on which plane electromagnetic waves are in-
cident, when the electric vector is (1) perpendicular to the plane of incidencs,
and (2) parallel to the plane of incidence.

16-3. A plane wave is incident obliquely on the interface between two non-
conducting, dielectric media (1, 2). The electric field vectors Ey, Ez, and E3 are
all perpendicular to the plane of incidence. Apply the boundary conditions,
and show that two independent equations are obtained in addition to Snell’s
law and the law of reflection.

16-4. Obtain the Fresnel equations [analogous to Egs. (16-50) and (16--51)]
for the case deseribed in the preceding problem. A

16-5. (a) Assuming m1 = uz = ug, and using Snell’s law, rewrite Egs.
(16—50) and (16-51) in terms of the indices of refraction and functions of 6;
only; in other words, eliminate 83 from the equations. (b) Use the results of
part (a) to discuss reflection and transmission at the interface between two
dielectrics for the case where #g < ny and sin §; = ng/m

16-6. Show that for a vacuum-conductor interface the reflcction cocflicient B
may be written as

n 6
R 1 i 4 wo xo y
where 8 is the skin depth.
' 16-7. Determine E and B for TM waves propagating in the yz-plane between
two parallel, perfectly conducting plates, aty =.0 and aty = a. ’

16-8. Write down the E and H fields for the TE 01 mode of a cubic cavity of °
sidc @. Sketch the naturc of the field distributions throughout the cube.?

16-9." Determine the limiting values of the width a of a waveguide of squarc
cross section which will transmit a wave of length A in the TE;0 maode but not
in the TE;; or TMy; modes.

16-10. (a) Determine, as a function of the angles 8 and ¢, the average power
density radiated into vacuum by an oscillating dipole. (b) Calculate the total
power radiated by a dipole of length 10 ft at a frequency of 500 ke/sec if the
curront in the dipole is 2 amp (effective value). (c) What is the radiation
resistance of the dipole osciliator in part (b)?

" 16-11. A circular loop of wire carrying the current I = Io cos wi constitutes
an oscillating magnetzc dipole. Determine the radiation fields E and B for this
oscillator, and the total power radiated.

16-12. As sources of clectromagnetic radiation, determine the relative effi-
cicney of an electric dipole of length 2'm compared with a magnetic dipole of
the same diameter at a frequency of 1 Mc/sec.



CHAPTER 17
ELECTRODYNAMICS*

The retarded potentials calculated in Chapter 15 can be used to in-
vestigate the fields produced by moving charges. There are, however,
certain difficulties involved here which do not appear in the “prescribed-
charge, current distribution” type of problem considered in Chapter 16.
_ These new difficulties are related to the retardation, and reflect the fact
_ that the present charge distribution (in space) must be extrapolated back
‘to the appropriate retarded time. This procedure would be essentially
trivial except that different portions of the charge distribution require
different retarded times. Although one might expect this effect to dis-
appear for point charges, it actually does not. The appropriate scalar
and vector, potentials for a moving point charge are the Lienard-Wiechert
potentials, which will now be derived.

17-1 The Lienard-Wiechert potentials. The Lienard-Wiechert poten-
tials are, as noted above, the scalar and vector potentials produced by a
moving point charge. One might think that q/4we R, with R the appro-
priate retarded radius, would give the scalar potential due to a moving
point charge. This, however, is not the case, as can be shown in several
ways. One of the most instructive procedures is to consider a moving
volume carrying with it a fixed charged distribution, for example a uni-
formly charged spherical volume, moving through space along a pre-
scribed trajectory. The field due to a point charge is the properly taken
limit of the field due to such a distribution.

The scalar potential due to a moving charge distribution, at point §
and -time ¢, is given by the retarded potentialt

1 e ), .
o(§ ) = ;ﬁ:;;/ = x_,!dt . | (17-1)
The crux of the difficulty is now apparent; namely, ¢’ is not fixed and hence
the volume of integration, i.e., the volume in which p is different from:
zero, cannot be readily specified. To obvidte the difficulty some fixed time
t; may be chosen and the integration over r’ changed to an integration
over r;. The most convenient choice for ¢, is the retarded time for some
point in the interior of the charge distribution. If at time ¢; the charged

* This chapter provides a brief introduction to the .electromagnetic fields
and radiation from moving charges.
t Throughout this chapter only free-space is considered.
351
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volume is moving with a velocity v({;) then the important relationships
are

(@, ¥) = plry, ty), (17-2)
=1 — V) — ) — RO — )P, (17-9)

where V is the time derivative of v. It is important to understand that ¢’
in Eq. (17-3) is not constant, but depends on r’. The remaining problem
is that of relating dv’ to dvy, which is, of course, accomplished through
the Jacobian determinant. The relationship is

9@, y,2) ,, -
dv; = 3@ o, 2) av’, (17-4)

where the Jacobian, d(xy, yi, 21)/9(x’, ¥/, #’), is given by

8xy dr 9z
o’ dy 9
0(x1, ¥1,21) _ |9y1 Y1 Oy,

o(, ', ) |8’ dy o (17-5)
ar’ oy 92
The derivatives are
dx ot . at’
il v UV PR
and (17-6)
ox ot . at’
G = gy B =t g

where v} is v,.(¢'), the z-component of the velocity at the retarded time ¢'.
The retarded time ¢’ is related to the retarded position simply by

vt — Ii__c—:_i_l; A7-7)
hence
a . ﬁé‘ .
= o’ (17-8)

where n’ is a unit vector in the direction r' — & A straightforward,
though tedious, expansion of the Jacobian, using Egs. (17-6) and (17-8),
gives
xy, y1,21) v.n V-a'(t —¢t)
ax,y,2) 1+ c + ¢

+oee (17-9)

where the higher terms involve the second and higher derivatives of v’.
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Equation (17-9) can be used in Eq. (17-1) to obtain the scalar poten-
tial. However, since the principal interest is in small charged volumes
(point charges), it is appropriate to note that if

’
‘-’~-—~— ¢ — ) = 5‘3 & 1,

where d measures the size of the charge distribution, then this term can
certainly be neglected in the limiting point charge case. Similar criteria
exist for the terms involving higher derivatives; however, we need not
consider these. Finally, then,

1 p(ry, t1) dvy )
dmeo /) |§ — | 1+ v -n'/c

Again, if d < |§ — r'|, then |[§ — 1’| can be replaced by E,,, the distance
from the interior point (chosen earlier) to the observation point at time
t;. Thus*

(1) = (17-10)

1 1 . .
e(§ 8 = Ire Bi ¥ V- n,/)/p(rl, ty) dvy (17-11)

or, since the integral is now over a well-defined volume,

=1 q .
D = e Rl 7w/ (17-12)

which is the scalar Lienard-Wiechart potential. The vector potential
is found to be

qvl
Ag ) = “ Ball +vV o 7 (17-13)

These expressions are often written as

1
o(& 1) = 47re ‘ RO (v-n/c)]}m’
and (17-14)

- E__q SN A—
Alg ) =22 {R[l I (v-n/C)]}m’

which simply means that the quantities in braces must be evaluated
at our {;.

17-2 The field of a uniformly moving point éharge. The most direct
application of the Lienard-Wiechert potentials is to the caleulation of the
field of a point charge moving in a straight line with constant velocity.

* Note that v/ - n’ = v(¢£1) - n(t1) to the approximation involved in Eq. (17-11).
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Py

.
n"/ 2’ z Zp
t t &
Fia. 17-1. Diagram for caleulating the electric field of a moving point charge. -
The geometry of such a situation is shown in Fig. 17-1. The field at point

P is to be calculated at time ¢, at which time the charge is at . The
retarded position 2’ and the retarded time ¢’ are determined by

R? = c (1t — )" = (20 -- 2)° + % (17-15) -
The scalar potential is given by
1,

- g . -
¢(P’ t) - 47rEo R’{l + (v, N n,/c)] (17 16) )
From the diagram it is clear that
!;jj, ¥ To — 2 v(zg — &) _
R’ p —R P p (17 17),’

Even after Eq. (17-17) is substituted in Eq. (17-16), a multitude of

variables appear in the expression for_¢. In calculating the electric field

by taking the gradient of ¢, etc., these variables would have to be differ-

entiated very carefully and would cause the calculation to be quite cumber-

some. Rather than follow this ptocedure it is preferable to eliminate the

undesirable variables in ¢ and obtain an expression which involves only -
the coordinates of P, the present time ¢, and parameters which describe-

the path of the charged particle.

“Since the charge moves from 2’ to o in time {; — ¥, it is clear that

A — ) = v2(ts — )%+ b’ (17-18)
If this equation is solved for ¢’ the result is

2 — 2 — ’ —
St — vt ‘/"22:({"_ 3 O+ O (17-19)

tl

The minus sign must be used in this equation to ensure that ¢’ is retarded
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with respect to t. To verify this, it is only necessary to observe that at
t =ty = 0,t = £vb*c2 — v2)/(c? — v?) and hence only the negative
sign gives an earlier time. Having found t, we find zg — «’ from

rg — 2= U(to - t’)

- v(to(c’ — %) — Pt 4 vty + Vo2l — )2 + bc? — v*)) 3

2 — p2

(17-20)
while R’ is shown to be

B o= (t(c2 — o) — *t + v¥tg + VoRA(t — D)2 + b2(cE — v2))

c2 — p2
(17-21)

Equations (17-20) and (17-21) may be used to evaluate the denominator
which appears in Eq. (17-16). This denominator becomes

R* = R — 'i(f—‘!—f—-ﬁ (17-22)

through the use of Eq. (17-17), and subsequently, it becomes

R* = (2 — 00! [oPelte — 1) + o/l — DT F B — )

2¢ : .
— vie(ty — 8y — % Vv2c2(ty — )3 + b2(c? — v2)]

= Vvi(ly — )2 + b2(1 — v3/c?) (17-23)
through Egs. (17-21) and (17-22). The scalar potential is
' 1
P, 1) = L : , 17-24
(P, 0 ameo \/32(1, — £)2 + b2(1 — v2/cP) ( )
while the vector potentiai is
AP, 1) = Lot Y (17-25)

4T 2ty — 02 4 b2(1 — v2/c?) .

It is important to realize that Egs. (17-24) and (17-25) contain only the
position and time of the observation point, and the parameters (v, o)
“which describe the path of the charged particle.

"To make this statement more concrete and to put the potentials in a
form more suitable for calculating the fields, the coordinate system must
be fixed more carefully. Since the charge moves along the z-axis, and
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since this is an axis of symmetry for the problem, it is only necessary to
specify the origin on the z-axis. This is conveniently accomplished by
taking x = 0 to be the position of the charge at £ = 0. Then = = vt
and, in particular, zq = vt,.

If the point P is specified by the cartesian coordmatca 5, 7, ¢, then

= xyg=12ly and 72 -+ ¢2 = b2 (17-26)
Using these results in Eq. (17-25) and letting & = (&, 9, ¢), we obtain

o(E 1) = L
= g VE= W2+ (2 F A — 02/c?
and (17-27)

A, 1) = 2ot v
0= Temwrr et 0 — v2/eh)

It must be remembered that these equations apply only if v is along the '
z-axis; other directions require modification of the formulas.

The important thing about equations (17-27) is that they are in a form
ideally suited for the calculation of the fields. Thus

' dA
E(g ) = — s grad; ¢
—  Hog [ v(E — vl)
: 47:' R*3
1
g ol = 0 (L = /6N £ — v/,

(17-28)

Noting that v = vi, €qug = 1/¢% ond § — vt = o — = makes it pos-
sible to rewrite Eqy. (17-28) in the form

E(§ 1) = - R*3 (1 — v%/¢%), (17-29)

where R is a vector from the position of the charge at time ¢ to the point P.
The magnetic induction can be found by simply evaluating B = curl A;
however, a much simpler procedure is to note that :

A= MHo€oVe (17“30)
.and hence that

B = poeg curl (vo) = — uc€ov X grad ¢ (17-31)

Since v is along tiie r-axis, only the y- and z-components of grad ¢ are
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‘important in the cross product. These components are just the negatives
of the y- and z-components of E. In this way we find

B = pgéev X E, (17-32)

which completes the computation of the fields.

It is interesting to note that although the radiation source is the re-
tarded position, lines of E are directed away from the instantaueous posi-
tion of the charge. The lines of B are circles with centers on the charge
path. The field is not spherically symmetric as it is in the static case, but
is stronger in the direction perpendicular to the velocity.

Having obtained the field vectors, we are in a position to calculate
other electromagnetic quantities; however, rather than pursue these possi-
bilities, we refer the reader to more advanced texts* that deal at length
with such problems.

17-3 Radiation from an accelerated point charge. If an accelerated
point charge is to be considered, certain simplifications which appear in
the constant velocity case are no longer possible, The major difficulty
here is a direct result of the fact that the Iienard-Wiechert potentials
can no longer be expressed in terms of the present position of the charge;
instead, the retarded position and time appear explicitly. The potentials

- b
= reol RO + v-0/¢) Jret
and : (17-33)
A=-2 [_._m_}'./ﬁi.__]
dre| R(1 + v-n/c) fret
are. still correct; however, in differentiating them to obtain the fields it
must be noted that derivatives with respect to the position of the field
point must be taken at constant observation time, and derivatives with
“respect to the observation time at fixed field points. Since the retarded
time appears explicitly in the potentials, care must be used to obtain
the correct derivatives.
To clarify the differentiation problem, we note that the potentials are
functions of the field point £, the observation time ¢, the retarded position
r’ of the charge, and the retarded time ¢’. The trajectory of the particle is

specified by giving r’ as a function of ¢, so that the dependence on r’ can
be removed. Furthermore, the retardation condition

=P+ =9+ -2 =ct—1 (17-39)

* For exsmple: Panofsky and Phillips, Classical Electricity and Alagnetism,
Addison-Wesley, 1955.
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provides a single relationship among the remaining variables. Thus it is
clear that although the potentials depend superficially on eight variables,
only four of these are really independent. In computing the fields E and
B it is necessary to differentiate the potentials with respeet to each of §,
n, ¢, and ¢, holding the other three fixed; for example, A must be differen-
tiated w1th respect to ¢ holding & %, and ¢ constant. Since it is ¢ that
appears explicitly in the potentials, the calculation of these derivatives
causes some difficulty,

To keep track of the variables which are being “held eonsta.nt” during
various differentiations, the following notation will be adopted: A partial
derivative in which all other variables, dependent or independent, are
“held constant” will be designated by the usual partial derivative symbol.
If not all other variables are held constant, then those that are will be
indicated by subscripts. Thus the derivative of A which is needed in
computing E is (8A4/dt)¢, while those of ¢ are (8¢/d8)y 1.1, ete. To trans-
form (9.4/8t); into a derivatiVe with respect to ¢, we.write

-GG
(:‘:) (at') ( )( )e (17f?6)

The retardation condxtlon, Eq. (17-34), together with the equation speci-
fying the trajectory, X' = x'(¥'), is equivalent to an equation of the form
f(g, t,¥) = 0. This relationship implies that (8t/3t"); = 1 /(at’/at)g,
Whlch when combined with Eqgs. (17-35) and (17-36), gives

).~ 2. a7

In calculating the time derivatives of the potentials, this equation is
just what is required to get the electric and magnetic fields. The othef
derivatives are all of the form (6¢/0%);. Such derivatives are readily
evaluated by noting that

") d¢ at :
at). = \ot)ue (at' ee(as ,’ (17-38)
in which all of the subscripts have been included to avoid any péssiiaility}
of confusion.

From Egs. (17-37) and (17-38) it is clear that the calculation of E
requires that the derivatives (8¢//8t)¢ and (8¢'/3¢); must be evaluated.
Each of these may be easily evaluated by differentiating the square root
of Eq. (17-34),

and
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[ — 22+ (n — )2+ (f — DV = ot — ¥), (17-39)

in the appropriate way. If the derivative with respect to ¢ (holding £
constant) is taken, the equation

@D -@] e

results. In this equation, r' = iz’ 4+ jy’ + k2’ and R’ = § — r’. Since
r’ depends explicitly only on ¢/, the derivative on the left is easily changed,
to give
_ Lg. (Qt_ - [ ,_(éi)]
=R v 5 ) = c|1 ikl (17-41)

'.wheré v/ = 91r'/at’ is the velocity of the charge at the retarded time #'.
Solving this for (at'/at)g leads to

o R R
(‘a"t)s =BT oR Ve B (17-42)

A similar caleulation in which Eq. (17-39) is differentiated with respect
to £ at constant (», {, f) gives

LAY (¢ — =) .
(5? e (B —R-v/oe 143

Computing the other two componen'ts and writing the result as a vector
equation, we obtain
R/ R’
e t) = — e = — R (AT

. With these derivatives at hand, the electric field due to an accelerated
point charge is readily computed from the Lienard-Wiechert potentials.
Thus

E(t, 1) = —(gradg o) — ("—f.;“‘%)g
= —(gradg @) — (az' (gradg t'), — (%% g(%% e (17—4%)

The derivatives of the potentials which appear in this equation are easily
found to be

.4 R/R' — v'/c
(gradg (P)u = Ireg (R, T ,/0)2 (17-46)

a) _ g [R-v_ o2 R"*’] 1
(at' /e 41reo[ + r (14D




360 ELECTRODYNAMICS | [caar. 17

oA _ ¢ [ ¥ v 1 (R.v v R-¥\]1
&), = 5 — ) w

'/): Ameg R¥c? ' ¢2 R*2\ R’ re
(17-48)
Using these results in Eq. (17-45), we find
E(§ () =
4 , R’»"( oy ( , R ’)v’ R "r’R_"].f
= e, [R*-" (R ¢ ‘ c2? AR R*3cz = R*22|-
(17-49)
A similar calculation gives
B(g 1) =
_ __5&( __) 1R [ : (r ,__@'_v;] )]}
- 4#5002{ R*3 ' 1 c? + R*3¢ R’ X R X l_R Pl Bet v
(17-50)

These results may be used to explain many such important phenomena
as radiation damping and the classical Bremsstrahlung. Most of these cal-
culations are readily available in various texts on electrodynamies and
except for one example will be omitted here in the interest of brevity.

17—4 Radiation fields for small velocities. If the velocity of the charge
is small compared with the velocity of light, that is, if v'/c < 1, then the
approximations

Iyp!
R — %!. ~ R/ (17-51)
and
-
R A (17-52)

may be made in Eqs. (17-49) and (17-50). If, in addition, only the so-
called radiation field, i.e., the part of the field proportional to 1/R’, is
considered, then Eqs. (17-49) and (17-50) become

g R(¥-R)—¥R?® ¢ R'XRXYV)

E 0 = 4meq R3¢ T dweg R'3c2 (17-53)
and
g R X[R X®R Xv)] g ¥ XR .
B 1) = 4regc? R'4c = dmeqct  R'%c 2(17'04)

From these field vectors the Poynting vector is found to be

q’ 1
=EXH= 16m2e2uoc? R'5c3

R X (R" X ¥)] X [V X R’], (17-55)
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which, through the use of vector identities, reduces to

S — ¢ RExV)?
T 16m2¢qc3 R'5

(17-56)

The total radiated power is obtained by integrating this Poynting vector
over a closed surface surrounding the charge. A convenient choice for
such a surface is a sphere centered at the retarded position of the charge.
If, furthermore, the z-axis is chosen in the direction of ¥, then

aw
Pp=— 5= fss-nda
2 12292 o302 7 .
- 167rq2ecc3,/ £ va:m GR"% R'? sin 6 do d¢, (17-57)

from which one readily obtains the well-known result

. dw _ ¢* 27
Pr=— =3 a (17-58)
for the power radiated from a slowly moving, accelerated charge.

This completes our brief survey of radiation from moving charges. The
basic ideas have been presented and some elementary applications have
been given in detail. For the details of other calculations reference should
be made to various published works, and particularly to:

PanorFsky and Puivnies, Classical Electricity and A agnetism, Addison-
Wesley, 19535.

BECKER, Theorie der Elektrizitit, Vol. II, Teuber (Leipzig), 1933.

Lanpavu and Lirsurrz, The Classical Theory of Fields, Addison-Wesley, 1951.

SoMMERFELD, Electrodynamics, Academic Press, 1952.
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PROBLEMS

17-1. Determine the Poynting vector for the uniformly moving point charge
of Section 17-2, and show that the total power radiated is zero.

17-2. When an electromagnetic wave travels through matter containing free
electrons (or in which the eleetrons are nearly “free”), the electrons are forced
to oscillate with the fréquency of the electromagnetic wave. Using the expres-
sions for small velocity in Section 174, show that the total power radiated by
an electron in the field of an electromagnetic wave

E = Epsinw(t — z/¢)

1 e‘Eﬁ

" 12re¢g m2¢3

1s

Pg

17-3. An unpolarized x-ray beam of intensity Io is incident on matter contain-
ing Iree electrons. Considering one electron only and using the expressions for
small velocity, show that the intensity of the scattered beam is given by

e4

1 2
Lo =5 1o grrgmacts 1 T o8 B,

where #8 is the angle between OP and the original z-ray beam. Point O is the
position of the electron, and P is the point where the scattered beam is to be
measured.
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APPENDIX I
LOGICAL DEFINITION OF MKS UNITS
. The appearance of the numbers €y and ug in the formulation of Coulomb’s

law and the Biot law, respectively, causes an unexpected difficulty. The
difficulty is simply that Coulomb’s law,

_ 1 ;g2
F2 = drey 13, ' -1

cannot be used to define the coulomb unless € is known. By the same
token, it cannot be used to define € unless the coulomb is previously
defined.” A technical point is that since €, is basically an experimentally
determined number, using (I-1) to define the coulomb would result in a
coulomb which would change every time €, was redetermined. Thus it is
clear that (I-1) should be used to define ¢, with the coulomb otherwise
defined.

A corresponding difficulty does not arise in the magnetic case because
po = 41 X 1077 weber/amp-m, by definition. As a result, the expression

£ ko L1 (1-2)

for the force per unit length between two parallel, current-carrying wires
can be used to define the ampere, viz.: '

One ampere is that steady current which, when present in each of two long
parallel conductors separaled by a distance of one meter, results in a force per
meler of length between them numerically equal to @ X 10™7 newton/meter.

Of course, any other geometry could be used and would result in an equally
unambiguous (and, in fact, numerically identical) definition of the ampere.

Having thus defined the ampere, the coulomb is defined as the charge
transported by a steady current of one ampere flowing for one second.
This in turn makes it feasible to use (I-1) to define ¢;. There is thus no
real problem, but only an artificial one arising from a desire to treat the
mathematically simpler case of electrostatics before discussing the mag-
netic interaction of currents.

It is sometimes thought that this problem does not arise if the gaussian
system of units is used. This is true only in the sense that the coefficient
in Coulomb’s law is chosen to be 1 dyne em?/esu?, which places the burden
of agreeing with experiment on the magnetic interactions. This means
that the velocity of light appears either in the definition of the unit-of

’ 365



APPENDIX II
OTHER SYSTEMS OF -UNITS

In this book the charge-rationalized mks system of units has been used.
This system has a host of virtues, not the least of which is to include the
practical electrical units of potential difference (volt), current (ampere),
resistance (chm), etc. As a result of these advantages, the system rapidly
gained favor with electrical engineers and is now rapidly becoming standa.
even with physicists for the study of electromagnetic phenomiena. In other
areas, notably atomic and nuclear physics, another system, known as the
gaussian system, has remained popular. Most other systems have faded
from use, and hence only the gaussian system will be discussed here at
length.

The gaussian system is a combination of two earlier systems: the elec-
trostatic system, esu, and the electromagnetic system, emu. The electro-
static system results from writing Coulomb’s law in the form

F, = Dz, (I1-1)

12
and defining the esu of charge as that charge which when placed .one
centimeter from an exactly similar charge experiences a force of one dyne.
It is obvious that the esu of charge is much smaller than the coulomb (in
fact 1 coulomb = 3 X 10° esu). The electromagnetic system results from
writing the Biot law in the form

sz = IIIB d12 X (f;l X 1'12) (11_2)

12
and defining the abampere as the current which, when present in a long
straight wire, results in a force of 1 dyne/cm when the wire is placed 1 ecm
from & parallel conductor carrying the same current. From |uo/d1| = 10~7
‘and 1 newton = 10® dynes, it is found that 1 abamp = 10 amp.

. Either of the two starting points noted above can be used to initiate the
development of a complete system of units. Historically, however, esu
have been used primarily for electrostatic problems and emu for electro-
magnetic problems. This being the case, it was natural that a hybrid
system using esu for electrical quantities and emu for magnetic quantities
should develop. The system that has evolved in this wey is kncwn ss the
gaussian system. The principal point of contact of esu and emu in the
gaussian system is in the current density, where

Jemu = J—:f‘—' : (I1-3)
367
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- . . .
There is no way of making a clear-cut choice between Jemu atd Jesu; we
will arbitrarily use Jesu and explicitly exhibit the velocity of light.

In gaussian uuits, Maxwell’s equations are

cud £ + %% ~ 0,
div D = 47p,

cunl i — 292 4ry - (I1-4)
¢ at C
divB = 0.

The fields are derived from scalar and vecter potentials by means of

B = curlA and E = —grad ¢ — —i— %‘;‘ ) (I1-5)
and the Lorentz force 1s
v .
F=g (E 42X B) : (11-6)
D and B are related to E and H by
D=E+ 4P and = B = H + 47M, II1-7)

where P is the electric dipole moment (p = ¢l) per unit voluine, and M is
the magnetic dipole moment {m = [.A4n/c) per unit volume. These equa-
tions are substantially sufficient to define the gaussian system of units.
For corvenience, however, Table 1I-1 gives the numerical relationships
of gaussian units to roks units.

Tasue 11-1

: %}«.nan‘tibj ! Gaussian uoits mks units
i;’:,:."f‘::.'_‘f', UTITTTIIIINIIIIITIT sty - = - -

i Cherge 3 % 109 esu = 1 coul

I Current 3 X 109 con/zee = 1074 abamp | = 1 amp

v Flectrie field 3 X 107 dyne/esu = 1 volt/m

¢ Potential 1/300 erg/ssu {statvolt) = 1 volt

| Magnetie induction 101 gouss = 1 weber/m?
i Magnetic intensity 47 X 1073 oersted . = 1 amp-turns/m
| Eicetrie displacement | 12 X 105 een = 1 coul/m?2

| Capaatance 9 X 10t em = 1 farad

| inductance 109 emu = 1 henry

| Magnetic flux 108 maxwells = 1 weber

.




APPENDIX III
PROOF THAT DIV B = 0 AND CURL B = y,J

In this appendix we shall prove by rigorcus raathematical manipulations
that
B(r) = £° / J(ry) -2-_‘-- s vy (1I1-1)
2
implies
divB = 0, (II1-2)

and that (IIT-1) together with div J = 0 implies

curl B = u,J. (111-3)
To accomplish the first of these, we tuke the divergence of (ITI-1).
Using div (A X B) = —A -curl B + B - curl A gives
. - I3 .
leg B(fg) = / J(r,) curly , _’:.—, “I:;I—g db[. (111—4)

However, (r; — 1;)/lr; — 1;|® is the gradient of —1/|ry — 1] with re-
spect to ra. Since the curl of any gradient is zero, it follows that

dive B(rs) = 0.

The second statement poses more difficulties. Expanding the cross
product gives

Ja) X (r2 — 1p) = ilJy(r1)(z2 — 21) — Jo(r1)(y2 — y1)l
+ i)z — 1) — Jo(r1)(z2 — 21)]
+ k@0 @e — yi) — Jyrd(aee — @] (111-5)

From this, the z-component of curl B is explicitly

. a JAr e - oy — ) (e — xyp)
teusts Blra)l, = 4”" / <6Jz {w it jarz

g = ;)% + (Y2 — y1)? + (g — 24} 7]/
_ g{ J10) (e = 2y) = Jalry)(es — zo 1) oo
oy — 21)2 + (y2 — y1)? + (22 )213i2 v

6‘:’,2

369
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Since
Y2 Y B
[a — 207 F W2 — 4007 T (s = #0712

2 . ‘ .
= = gl = )T b - w)? (e 2T
& ., V8 ) 7 217
=l = e = 50 e )
(TI1-8) can be writlen as
ko f ; ‘
urly, Biry)], = — N IR IO e ~>
[C 2 =4\ .2”1 ‘?r'l.“.fvg AN ((‘ H 335
X Hza - 7 + s — p)* b (g - 2TV
g Y
J re) oo e T (e
(\ u( .'}0"92 Axg) 32
T2 o %y }
X = N : - dvy.
[z — 202 & (ga — ¥1)7 T (eg — 2882 71

Adding

o
o

Fo N i . NG 7 a2 ; "
“"'lrz‘arl) (‘)’;} [('U:! - 5‘1) ‘11“ Y2 Ho -1 ‘/1:, =z}
5

— 050 G e oy
Sl ’

to the integrand gives

fcurl; B(ry)l, =

IU'O] J 5 2 i
e e J W 8 )V ey - ; g e, e -
4 V{ AUV T T (s — w0 T (og — 2n2he

J
: [J,@,_) 2

M e =
[N

In the second term, each partial derivative with respect t9 an £y varisbie
can be changed to the nogaiive of the ‘,(‘nmp ding derivalive wiby re-
spect, to un xy varinble, and the resultoag ferm bitegraced by pa;m The
integration by patts yields one terin proportioal to v § whieh hiss been

assumed to vanish, and ancther which is o surace wnn.  for hounded
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current distributions the surface can always be chosen sufficiently remote
so that the surface integral vanishes. The first term of (III-7) gives

= - P (
fourly B(ra)le = %2 [ V(1)

1
(e — 21)2 4 (y2 — y1)2 + (22 — 21)2]1/2

The Laplacian gives zeto except at 15 == ry; hence J.(r,) can be replaced
by J.(rz) and removed from under the integral. The remaining integral is
easily evaluated by using the divergence theorem:

X V3

dvl.

1
v S
fv zwe — 207 F e — yOF + (22 — 20) 9172 1 A,
from which
[curly; B(ra)l, = /(1) (T11-8)
and
curl B = y,J,

which is the desired result.
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ANSWERS TO ODLD-NUMBERED PROBLEMS

Crarren 1

-0 (& -~ B) ¥ (C— D) =0, 13
1*-3.A-E=-0,A'§>B=1C .
. The angle between R and R — A, which is 90°, may be inscribed in a
qemlcucle with A as dizmeter. As R varies, the various semicircles describe
the surface of a gphere.

oy 4
111 Avy e Cppy g L 8 4 OF,
roagr »

Cuaevven 2
2~1. tan?® 6,/(1 -+ tan? 8) = ¢2/16wecn mg I®

2-3. E = 2296 volis/« {siong diagonal)
-5, (a) K i’a/h\;)(l ~ z2/A22 - B2

b) & = ‘/3/25\0;" { - Vljj’ 1{2\

+ R log (;}c Y-
7. & = V3a/ V2 — 1), saddiepoint '

2-9. U = (p/dec)| (z - 30){(z + 3L)* + R*}'® — 2L
— (& — }L){(z — 3L)*+ R*}"*
4 R log {z+ LAV F 302 F Rz}]
z - AL +(z — $L)2 + R2

]

2~1 L. 800,000 volis
2-13 L1 1R eovlombsm?, positive.
2158, {a) T = (A/e){B — %) for r < R

U = AR/ 2%wr for r> R

(by U (p._./2eg)\R2 — 3% for » < R

U = R¥o/3eor for r > R

2-17. Treai dipole as two equal but oppositely charged point charges sepa-
rated by a small distance.

i

CHAPTYER 3

Ty - T /.
3-1. Between: U = 200 7 Tale ¥ (Ue U;,)n,m,r

P — Tg
forr > rp: U = Jary/7
37 U = ~—(i — a3/ Ene cos 6 + ©/dmeor
39, o = e /2rt'? on upper surface.

3-11. The nirror image of the » charge distribusion with p replaced by ~-p.
318 M = (so/a) + A {zo/@)2 — 1, image at 2{M2 — 1)/(M2 4 1).
3-17. 2p*, ’341”@ d*, attraction.

375
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CHAPTER 4

4-1. pp = —2axr; Qp (on ends) = A(al? -+ b), —b4
P [ 3L — 2 YA

1-3. E. =

e | e e e e
p 5 ! 73 ; 5 T pe
2e0[\(3T — )2+ k2 /(3L 22 - R

4=5. F = (1/eo, P cos?Y
Y s T K
4-9. ¢ = [(e1 — e2)/(e1 + ex)lg; 4" = 2e2q/(e1 + e2)
4-11. D = Keo AU/[Kd -— (K — 1)t).
4-13. E Q2w {ey + e2)r?
4-15. Inside: E = —P/3eo0
9R3
outside: F, = TIL%D cos 8
3eor
. _RP
Ly = 3‘6“0‘;3‘ sin: 8

it

CHAPTER 5

~1. a = 0.7 X 107* coul-m?/volt; Ry = 0.96 X 10719 m
26X 10776 m
. 2.94 X 10730 conl-m

o
[ IS

CHartTER 6
6-1. 18.75 em
6-3. 41rR5p§/15€u

T
6-5. kK. Do
BT epeg/ (e o - o«

5-9 8 vl
8-15. &) ALMO w4 (K = 1]
() (B - UGS el - (K — 1z]2

G145, M4 mg Sreqt K 2

bl

A
- i

Caapranr 7

Tt la, = 053007 mysee

”») o BV 1Y U g0

SN

-5, 20 ohins
7=1. I = 2wg AU/ In {ra/ry)
Voodl, T o= wys A0 7 cosh™ (h/2a)
=13, (a) T o= (SeRy+ &R/ (RR A4 RoE - RiRo)
X

(LY Ryk2/(Ry-i- Ru)



9-5.

4-7.
9-9.
9-11.
9-13.

10-1.

Ju = M X n;j

10-3.
10-5.

10-7.
10-9.

10-11.

. (d) B

~1
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. (a) 4R/5  (b) (1i/20)R
. (2) (ReRs — R3Re)&1/[D 4 Ry(R3 + Re)(R5 -~ Ro)l,

where D = R3R4Rs -+ R4R5R6 -+ RsReRy -+ RsRsR4

. One part in 4 X 108

CHAPTER 8

3. {(u) 0.0048 cm

(b} 1.64 X 1077 scc

. B = 3uol/2nd
. poIN/4a
. I.LuIV[

| 9B, _ 0B,

- (@ 9z or

.curlcurl B = gocurl J = 0.

. B = uoNI/2xr, b/a = 4,3

. A, = (uol/27) In (r/d) between the conductors

i

3r2 3
(uol/2a) | cos 6 — i3 (5cos” 8 -~ 3cens @) 4 - - -

B,

It

2
(ol /2a) [—— sin 8 -1- %22 6 cos” 8 — 1) sin § -+ - - J

CHAPTER Y

(a) From b to o

(b) From b to a

(e¢) From a to d
$B%a?r3ugt

(oL 2w In (Ra/ Ry)
wora?b?/4r3

M = (uoh/2x)In (3 + d/r)

CuaprTER 10
Ja = curlM = 0.
= [ on cylindrieal surfaces, jir = 0 on sides.
‘b) (4/3)wR*Mo
oar = Mox/[x® - (b4/e?)(y® + A2
par = 0.

_ 1 -
® B, = -!zuoﬂ[ B 1 e ST L o
VGL =97+ R2 V(L + 22 + R

(a) 0.25 w,/m?
b) 0.95 w/m?
(¢) 1.52 w/m?
0.002 henry
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10-13. (a) Sintercd oxide 0.4 w/m?
35%, Co steel 0.22 w/m?
(b} Sintered oxide 0.53 w/m?
359, Co steel 0.96 w/ra?
10-15. 0.64 w/m?
10-17. B; = 2(u/po)Bo/(1 + u/u0)

CHA-PTER 1l
11-3. 3.69 X 10—+

T 11-5. Y = 976
Cuaprer 12
12-3. W = ;—;ﬁ—é LP1Y7 + 2MBIP1P + 11877
212, 2
12-5. LA
u2l 4+ d)?

12-7. () F = BoXmA/Zuo(l -+ X,
(b) 1.76 X 10 ~*newton
12-11. Commercisl iron: 0.018 watt/cm?
Tungsten steel:  0.395 watt/cm3
12-13. —d(m - B)

CHAPTER 13
13-1. (a) I = 0.605 amp,
dI/dt = 1.59 amp,/sec
(b) I = 1.295 amp,
dl/dt = 0.558 amp,’sec
(¢) T = 1.683 amp,
al/dt = 0.0082 amp/sec
13-3. @ = C8pll — eHEC]
Ro — wCR(wL — 1/wC) + jlwCR® + (@l -~ 1/wCal
a2+ w2C2R? - ’
where ¢ = 1 + & 'L — e
13-7. (8) 3.2 X 10~2 deg
(b} zero to 1.8 megacycles/sec
13-9. (2) f = L.78 X 107 e¢ycles/sec
(b) f = 1.78 X 103 cycles/sec
(c¢) f = 0.796 X 102 cycles/sec
13-11. (&) L/C = 2R?
() L = V2 R/w.; C = 1/72 Ru,
13-13. 0.0713 — 0.0034j milliamp
13-15. 1/v/3LC
13-17. Vi = —100 — 7007 volts
Vo = 150 — 7507 volts

13-5. Z =




15-1.

15-5. B

15-7.
15-9.

16-1.
16-3.

16-5.

16-7.

16-9.

16-11.
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CuarTER 15

@) Q@ = ClAU)e 0¥/
(b) —(g/e)C(AUIe oY
(¢) Zero

= —iEqV g sin w(V euz — 8) + jEBo\ en cos w(\ €epz — ©)

s=k\fiE3
“®

E = 686 v/m; B = 2.29 X 107% w/m?, rms.
A = —i(\Eo/2mc) cos [2m(z — ct)/A]

]

Craerer 16

R o 2l cos Quud/c)) w—1F
1+ 72 + 2r cos (2wnd/c) | n- 1]
(1) Ei10+ E20 = Ez0
(2) Ver/u1 cos 01(Er0 — Eg,0) = Ve2/u2 E3,0 cos 3
@ Ezo _ V(ng/m)? — &in28; — (n2/n1)” cos 6
- »
Ei0  /(ng/n1)2 — sin? 81 + (n2/n1)Z% cos 6
Ezo _ . 2(n2/n1) cos 6;

Eio  /(nz/n)2 — sin® 0; + (n2/n1)2 cos 8
(b) Total internal reflection

B, = Bi cos (xy cos 6)eitxs sin 8—ovd)
E, = —cBj sin 8 cos (ky cos @)¢its: #in #=wd)
E, = jcBj cos 6 sin (ky cos f)ei(x #in #=ub)
A < a<L -k'
2 V2
molo W . 2
By = —'Z;r‘- A E,b;-rsmOcosw t — c
IvA w ) . .

E, = sy —~smecos w t.~~-~r- » where A is the area of the

¢ 4rep C3r ¢/

circular loop.

P g_:IA—~cosw(—~—)

CHAPTER L7

2 2\ 2
- g -z 2y — (v
.8 = W%OR*G(: c2) [R* — (v-R)R|
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INDEX

Activn eireuit element, 135
Admittance, 204

Afvén waves, 28F

Allernating current, 251-265
Ampere, 123

Ampere’s cireuital law, 159, 192
Ampere’s law, 159, 192, 204, 296
Anisofropic materisls, 193, 207
Antifercomagnet. 228

Atomic currents, 182

Average power, 254

Bessel function, 311

Bessel’'s equation, 317

Bohr magneton, 223

Bounr charge, 72

Boeundary conditions, 82, 138, 19%,
321

Roundary conditions, teble, 320

Roundary-value problems, 51-63, 84—
&9, 210, 325-344

Branch peint, 141

Brewster’s law, 328

Crpacitive reactance, 252

Capacitors, 118

Cartesian, :

Cascading. 125

Cavity resonators, 343

Charge, 22

Cheinical forces, L33

Circults, d-c, 140

&-u, 261--285

Clausins-Mosschtl equation, 98, 98, 104

Couxizl cable, 160

Coefficient of capacilance, 112

{oeflicient of induction, 113

Coefficients of potenvial, 63, 64, 110,
i1l

Covrcivity, 147

Collisign time, 142

Condueting media, 123, 127, 136, 142,
4l

Conduction, 123
Conduction currents, 128
Conductivity, 127

table, 129
Ceonductors, 30
Conservation of charge, 115
Convection currents, 125
Coordinate system, 2
Coulemb’s law, 21, 266
Counter voltage, 246
Curie potni, ferroelectric, 102
Curie temperature, 225
Cuzi, 14
Current density, 125
Current generators, 263
Cutoff waveleugth, 336
Cylindrical harmonics, 52, 53

Debye shielding distance, 272
efor rmation polarizability, 101
Demagnetization {actor, 213
Demagnetizing effect, 210
Devolarizing fiéld, 102
Dismagnetic, 193
Diamagnetism, origin, 219
Dielectrie constant, 79;
table,.80

Dielectric media, 68
Dielectric sphere, 85
Dielectric strength, 80
Dielectrics, microscopic theory, 93
Differential form of Gauss’ law, 34
Diffusion forees, 133
Dipole feld, 37
Dirole potentfial, 38
Directiona! derivative, 5
Displacement corrent, 294
Displacement, eiectric, 77, 78
Divergence, 11
hvergence theoremn, 13
Domain wall, 227
Lrrift motion, 125

Yriving point impedaoce, 265

333
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Effective electric field, 133
Effective values, 255
Electric charge, 21
Electric current, 123
Electric dipole, 36, 344
Electric dipole moment, 68
Electric displacement, 77, 78
Electric field, 25
Electric field, total macroscopic, 76
Electric field inside a diclectric, 74
Elcetric susceptibility, 78, 79
Klectrodynamics, 351
LElectrolvte, 30, 124
lectrolytic tank, 137
Electromagnetic energy, 297
Llectromagnetie induction, 170
Electromagnetic waves, 299-317
Electromotive foree, 133
Elecirostatic energy, 105
Electrostatic energy, thermodynamic
‘ interpretation, 119
Electrostatic energy density, 109
Electrostatic equilibrium, 139
Flectrostatic field, 25, 68

of two point charges, 26
Electrostatic images, 56
Elcctrostatic potential, 27
Emf, 133
Energy density, 110, 235
Energy methods, 115, 235
Eqnation of continuity, 125, 127
Equilibrium theory, 270
Fuler equation, 279

Faraday's law, 133, 170, 220, 266
Ferrites, 228
Ferroelectric, 102
Ferroelectricity, 101
Ferromagnetic domains, 226
Ferromagnetics, 194
Ferromoagnetisi, theory, 223
Ficld of a uniforraly moving point
charge, 353

First law of thermodynamice, 120
Flux, electrie, 33

ruagnetic, 166 .
Force on o charge distribution, 118

INDEX

Forces, 23, 87, 115, 149, 235, 27
Fresnel equations, 331

Gas discharge, 124

Gauss’ law, 31-36, 78, 296
Gradient, 5, 7

Group velocity, 337

Helmholtz coil, 156

Helmholtz free energy, 120

Heury, 174 ‘
Hydromagnetic formulation, 270, 278
Hysteresis, 103, 193, 197

Hysteresis loop, 103, 197

Hysteresis loss, 238

Ideal current generator, 263
Ideal transformer, 260
Ideal voltage generators, 263
Image charge, 58
Tmpedance, 252
Impedance, polar form, 252
[mpedances in parallel, 252
Impedances in series, 252
Imperfections, 143
Impurities, 143
Incremental inductance, 173
Incremental permeability, 187
Index of refraction, 304
Induced dipoles, 97
Inductances in paralle}, 177
Inductances in series, 177
Tnduction, 148, 170
Inductive reactance, 252
Inductively coupled circuits, 174, 231
Insulators, 30

resistivity of, 129

See also, Dielectrics
Intrinsic magnetic moment, 221
Isolated magnetic poles, 154

Joule heating, 498
Kirchhoff's laws, 140, 246

Langevin-Debye {ormula, 98, 101
Langevin formula, 100, 222



INDEX

Laplace’s equation, 43, 85, 136, 210

Laplace’s equation in spherical coordi-
nates, 48

laplacian, 45

Larmor {requency, 220

Larmoy radius, 273

Law of Biot and Savart, 152

Leakage flux, 207 '

Legendre polynomials, 50, 310

Legendre’s equation, 49

Lenz’s law, 171, 219

Lienard-Wieehert potentials, 351

Line charges, 61

Line images, 61

Liue integral, 9

Linear diclectrics, 79

Lines of displacement, 84

Lines of force, 27

Lines of induction, 200

Local field, 218

Loop, 141

Lorentz, condition, 313

Magnetic circuits, 205
Magnetic dipole field, 165
Magnetic dipole momeut, 165
Magnetic encrgy, 231
Magnetic energy density, 235
Magnetie ficld lines, 200
Magnetic field of a distant circuit, 163
Magnetic field of steady currents, 148
Magnetic flux, 149, 166
Magnetic force, 133, 235
Magnetic induction, 148
Magnetic intensity, 180
Magnetic mirrors, 277
Magnetic moment, 152, 164, 273
Magnetic pole density, 189
Magnetic pressure, 279
Magnetic properties of matter, 182
tables, 194-195
Magnetic scalar potential, 165, 189
Magnetic susceptibility, 193
table, 194
Magnetic torque, 235, 236
Magnetic vector potential, 161, 185,
313

e
e
N

Magnctite, 148, 220
Magnetization, 182
Magnetization current, 183
Magnetization curve, 196
Magnetomotive force, 206
Mass susceptibility, 193
table, 194
Maxwell-Boltzmann distribution, 270
Maxwell’s equations, 296
Mean collision time, 134
Mechanical forces, 134
Mesh analysis, 261
Metallic conduction, 142
Meter-kilogram-second system, 23, 365
Microscopic field, 217
Microscopic theory of magnetic proper-
ties, 217
Mobility, 142
Molecular field, 93, 218
Monochromatic waves, 301
Motional emf, 172
Multipole expansion, 39
Mutual inductance, 174
Mutual inductances in a-¢ circuits, 257

Needle-shaped cavity, 74
Neumann formula, 176
Neumann function, 311
Nodal analysis, 261
Nonconducting media, 301
Nonperiodic behavior, 245
Nonpolar molecule, 96

Ohm’s taw, 127
Orbit theory, 270, 272
Oricentational polavizability, 101

Paralle]l connection of capacitors, 113

Parallel connection of resistors, 131

Parallel-plate capacitor, 114

Paramagnetic, 193

Paramagnetic susceptibility, 223

Paramaguetism, origin, 221

Particle motion in eleetric and mag-
netic fields, 272

Passive circuit element, 135

Periodic behavior, 245
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Permanent-magnet circuits, 208

Permeahility, 193

Permittivity, 79

Phase velocity, 303

Pinch effect, 278, 281

Plane wave, 30!

Plasma, 269

Plasma drift velocity, 274

Plasma dynamics, 269

Plasma-cleetron oscillations, 284

Plagma-sheath equation, 291

Point charges, 22

Poisson’s equation, 44, 45, 64

for a plasma, 271, 290

Polar molecule, 96, 98

Polarizability, 96, 101

Polarization, 68, 69

Polarization charge, 72

Poles of a magnet, 190

Potential, 27, 161, 165, 189, 313

Power, 254

Power factors, 254

Poynting vector, 299, 337

Probes, 287

Propagation between parallel conduct-
ing plates, 334

Propagation vector, 303

Q-factor, 256, 266
of a medium, 318
Quadrupole moment tensor, 41

Radiating magnetic dipole, 312, 350

Radiation fields for small velocities, 360

Radiation from a half-wave antenna,
348

Radiation from an accelerated point
charge, 357

Radiation from an oscillating dipole,
344

Radiation resistance, 347

Reaclance, 252

Reflection and refraction, 325

Relative permeability, 194

Relaxation time, 140

Reluctance, 266-209

Remanecnce, 197

INDEX

Resistivity, 128
table, 129
Resistor, 130
Resonance, 255
Resonant frequency, parallel circuit,
257
Retarded scalar potential, 316
Retarded vector potential, 316

Saturation magnetization, 196
Secalar, |1
Scalar field, 1

* Secalar Helmholtz equation, 306

Scalar potential, 313

magnetic scalar potential, 165, 189
Scalar product, 3
Seat of emf, 135
Self-energies, 108
Self-inductance, 172
Semiconductors, 30
Series circuits, 140, 205, 2486, 251
Series connection of capacitors, 115
Series connection of resistors, 130
Sheaths, 269
Skin depth, 305
Slowly varying currents, 244
Snell’s law, 330
Solenoid, 158
Spherical Bessel functions, 311
Spherical waves, 306, 315
Spiu, 221
Spiuel structure, 229
Spontanecus magnetization, 225
Steady currents, 136
Steady-state behavior, 245, 251
Stokes' theorem, 16
Superposition theorem, 46
Surface charge density, 24
Surface currents, 185, 200, 324
Surface integral, 10
Surface stress, 88
Susceptibility, electrie, 78, 7%

magnetic, (93

Tempersiure coefficient of resistauce,
143
© table, 129



Thermally-induced imperfections,
143

Time constant, 140, 248

Torque, 115, 150, 235

Transfer impedance, 265

Transformer, 260

Transient behavior, 245, 247

Transmission coeflicient, 327

Transverse electric waves, 308

Transverse magnetic waves, 308

Triple scalar product. 4

Triple vector product, 5

Uuiformly magnetized material, 210
Uuniformly magnetized sphere, 212
Uniqueness theorem, 47

Unit imaginary number, 55

Units, 22, 367

Veetor, 1

INDEX 387

Vector division, 4

Vector field, 1

Vector identities, table, 18
Vector potential, 161, 185, 313
Veetor product, 3

Veetor sum, 2

Voltage generators, 263
Volume charge density, 24
Volume integrals, 11

Wave equation, 209-317

Wave equation with sources, 313

Wavegnides, 340

Wave velocity, phase, 303, 336
group, 339

Weber, 149

Weber/square meter, 149

Weiss molecular field, 224

Zonal harmonics, 50



