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Preface

When I think of analysis, I tend to imagine a solitary scholar stooped over a table,
perhaps with a telescope and a microscope nearby to explore a very minute or distant
object, which cannot be reached, only approached by zooming. Algebra, on the other
hand, I think of as a discipline dealing with day-to-day objects. The problem is, daily
life quickly gets messy and complex, so there is a need to clean up and structure
matters. This difference in attitude is reflected in the layout and style encountered
when one opens a book in algebra as opposed to one in analysis.

Arguably, themost flexible and important notions in algebra are rings andmodules.
Rings are generalizations of numbers, where elements can be added and multiplied,
while modules are generalizations of vector spaces with scalars replaced by ring
elements. Rings and modules occur frequently at all levels in mathematics and are
often constructed from numbers. Fields are special cases of rings, and modules over
fields are actually considered as vector spaces with a ground field more general
than just the fields of rational Q, real R, or complex numbers C. Extensions like
Q ⊂ R ⊂ C can be studied with greater sensitivity in the context of fields, and
this turns out to be very fruitful. At the heart of this study, you find Galois theory, a
powerful tool to study algebraic equations.

Another important notion in algebra is that of a group, which from the outset
seems a bit unrelated to numbers, though most examples of groups are constructed
as matrix groups with numbers as entries. Further, every group leads to an important
ring, namely the group ring. Groups act on vector spaces via representations, turning
the vector spaces into modules over the corresponding group rings. Yet another way
of producing rings is to consider certain classes of number-valued functions on any
set, then with pointwise addition and multiplication of functions. Modules over such
function rings occur in geometry (including topology) as sections of vector bundles,
rendering algebraic tools available to these disciplines. The interplay between geom-
etry and algebra became strong already when coordinate systems were introduced to
represent points in space, thus creating then an external bridge between our ability
to visualize space and to manipulate symbols. The interplay between algebra and
geometry is as strong today as it ever was.
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viii Preface

A crucial strategy in algebra is to decompose more complicated objects into
simpler ones, and then to try to understand these objects, perhaps even classify them.
This principle runs as a thread through this book. The decomposition of natural
numbers into primes uses arguments that pass on to decomposing polynomials into
irreducible ones, and themethod generalizes to Euclidean domains and PIDs. This, in
turn, provides Jordan decomposition of matrices, decomposition of representations
into irreducible ones, andofmodules into simple ones. In group theory decomposition
of groups via descending, or ascending, series into simple groups is important, a
concept that reoccurs when we talk of Noetherian and Artinian modules.

Strictly speaking, no mathematical background is required to read this book.
However, I have included a preliminary section with some basic notions from set
theory. Exceptions to this are the introductions to each chapter, where prior math-
ematical knowledge is an asset, though it does no harm to try to understand them.
One of my senior collaborators, John Roberts, who was a former Ph.D. student of the
famous Paul Dirac, once said that when writing an article, you start with the intro-
duction, only to find yourself rewriting the introduction when finishing the article.
The same thing can be said about reading the introductions to the chapters in this
book. You are probably served reading them once more when you have finished the
chapters, or for those of you who are in for the long haul, when you have read the
entire book. In this sense, the introductions are not entirely self-contained at a first
reading, but could perhaps clarify thoughts youmight have after reading the chapters.
The introductions are also quite personal. I single out some material and ideas in the
chapters that I find worth commenting on more informally. I should also say that the
last section in the chapter on groups is not fully self-contained. I have included it
based on the suggestion of the referee to provide more examples of groups coming
from geometry and combinatorics. For this advice and otherwise useful comments,
I am grateful.

Of course, any book will necessarily be subjective, especially when it comes to
what one chooses to include as there is no end of material available. I have never-
theless tried to stick to mainstream topics that mathematical students are expected
to have learned by the time they graduate. The first few chapters can be used for
teaching at the first-year bachelor level, the middle section could serve for courses at
a medium level, while the last chapters are probably best suited for master courses.
It all depends on the appetite of the reader.

I have adapted the convention of naming amathematical result or defining a notion
whenever words or phrases are emphasized in the text.

Oslo, Norway
December 2023

Lars Tuset



Set-Theoretic Preliminaries

We recall a few things from naive set theory.
A set X is given in terms of its members, and we write x ∈ X to indicate that x is

a member or an element of X . Two sets are equal if their members are the same.
Sets can be indicated by listing their members in brackets, like {x, y, z}. We write

{x | P} for the set of all elements x with property P. Attention should be made to
avoid self-referring statements, like the set of all sets, which is meaningless, and the
set that is not a member of itself; a notorious statement known as Russel’s paradox.

We are allowed to form various sets from other ones. The union ∪iXi and inter-
section ∩iXi of any collection of sets consists of those elements that belong to at least
one of the sets, respectively, to each one of them. A subset Y ⊂ X of a set X is a set
Y with members only from X , and its complement X \Y consists of those elements
in X that do not belong to Y .

The useful de Morgan’s laws are the easily proved statements that

∩i(X \Xi) = X \∪iXi and ∪i(X \Xi) = X \∩iXi

for subsets Xi of a set X .
The (Cartesian) product X × Y of two sets X and Y consists of all ordered pairs

(x, y) with x ∈ X and y ∈ Y . By construction (x, y) is the subset {{x}, {x, y}} of
X ∪ Y . Two ordered pairs coincide (x, y) = (x′, y′) if and only if x = x′ and y = y′.
To see this, suppose {{x}, {x, y}} = {{x′}, {x′, y′}}. Either {x} = {x, y} = {x′}, and
then all elements are equal, or {x} = {x′} and {x, y} = {x′, y′}, and then x = x′ and
y = y′, or there are two other similar alternatives, and in these cases also x = x′ and
y = y′.

By a relation on a set X , we mean any subset R of X × X , and we write x ∼ y
for (x, y) ∈ R.

A function or a map f : X → Y from X to Y is a relation X × Z on X ∪ Y with
Z ⊂ Y such that there is exactly one element (x, y) ∈ X × Z for each x ∈ X , and we
then write y = f (x). If there is only one such x ∈ X to each y ∈ Z , then we say that
f is injective, and f is surjective if Z = Y , and if it is both injective and surjective,
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then it is bijective. The relation X × Z is also called the graph of f with domain X
and image Z .

The composition of f : X → Y and g : Y → Z is the function g◦f : X → Z given
by g ◦ f (x) = g(f (x)). We sometimes write gf for g ◦ f . Note that h(gf ) = (hg)f
for h : Z → W , so we often skip parentheses and write hgf for (hg)f .

If Z = X and gf equals the identity map ι : X → X , then clearly g is surjective
and f is injective, so if also fg = ι, now with ι the identity map on Y , then both f and
g are bijective. Also, one map is uniquely determined by the other because if also
g′f = ι and fg′ = ι, then

g′ = g′ι = g′(fg) = (g′)fg = ιg = g

and vice versa. We say that g is the inverse map of f and write f −1 for g. Thus
(f −1)−1 = f . In this uniqueness argument, we only used fg = ι and g′f = ι.

If f is bijective, then it has an inverse, namely the map g given by g(f (x)) = x.
This definition makes sense firstly because any element of Y is of the form f (x) for
some x ∈ X as f is surjective, and secondly because if f (x) = f (y) then x = y
by injectivity of f , and thus g(f (x)) = g(f (y)). Hence gf = ι, and g is obviously
bijective, so by the same argument with the roles of f and g swopped, we also get
gf = ι. So f is invertible with inverse g.

A map on a finite set is injective if and only if it is surjective. Indeed, let f be
a map on a finite set, and assume f is injective. To hit an element x, apply f to x
repeatedly till repetitions f m(x) = f n(x) occur. Then peal off f ’s till x = f (f k(x)) for
some k. Conversely, if f is not injective, then its image will contain too few elements
for it to be surjective.

A binary operation on a set X is a map X × X → X , and one often writes xy
or x · y or x + y, etc., for the image of (x, y) depending on context and what further
properties the binary operation might have.

If a bijective map f : X → Y preserves binary operations on X and Y , say
f (x + y) = f (x) · f (y), then so will its inverse because

f −1(f (x) · f (y)) = f −1f (x + y) = x + y = f −1(f (x)) + f −1(f (y)).

Anybijectivemap that preserves all the relevant operations on the collection of sets
under consideration is called an isomorphism. Often one specifies with an adjective
under what operations the map is an isomorphism. Maps that preserve the operations
without being necessary bijective are often called morphisms or homomorphisms.

The product
∏

i∈I Xi of sets {Xi} over any (index) set I consists of all functions
f : I → ∪Xi with f (i) ∈ Xi for all i ∈ I . We write X I for

∏
i∈I Xi when all Xi = X .

When I = {1, . . . , n}, we write X n for X I , so X n consists of all n-tuples (x1, . . . , xn)

with xi ∈ X .
We denote the set {1, 2, 3, . . . } of natural numbers by N.
A sequence {xn} of elements xn ∈ X is a function f : N → X with xn = f (n), or

in other words, we have {xn} = f ∈ ∏
n∈NXn with Xn = X for all n.
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Say we have a function f : X → Y and subsets A ⊂ X and B ⊂ Y . Then the
image f (A) of A and the inverse image f −1(B) of B are defined as

f (A) = f (x)|x ∈ A and f −1(B) = x ∈ X |f (x) ∈ B

.
The power set P(X ) of X is the set of all subsets of X . The characteristic function

of Y ⊂ X is the function χY : X → {0, 1} such that χY (x) = 1 if x ∈ Y and
χY (x) = 0 if x /∈ Y .

Note that the map which sends a subset of X to its characteristic function is a
bijection from P(X ) to {0, 1}X . So the number of elements in P({1, . . . , n}) equals
2n, hence the terminology ‘power set’.

A relation ∼ on a set X is called an equivalence relation if it is reflexive, x ∼ x,
symmetric, x ∼ y ⇐⇒ y ∼ x, and transitive, (x ∼ y) ∧ (y ∼ z) ⇒ x ∼ z. One
can then form the quotient set X / ∼ of equivalence classes, and the equivalence
class of y ∈ X is the subset {x ∈ X | x ∼ y}. Because ∼ is an equivalence relation,
the quotient set is a partition of X , meaning that X is a disjoint (e.g. pairwise non-
intersecting) union of equivalence classes.

To explain why every element of X belongs to exactly one equivalence class, first
notice that due to reflexivity, any x ∈ X belongs to its own equivalence class. And if
x belongs to another equivalence class, say to that of an element y, then x ∼ y, and
any element z in the equivalence class of x, will because of transitivity, also belong
to the equivalence class of y, so the equivalence class of x will be contained in the
one of y. But by symmetry, we see that we also have inclusion the other way, so x
belongs to only one class.

In fact, it is easy to see that to any partition of a setX , there is a unique equivalence
relation ∼ having X / ∼ as the partition; just define ∼ by x ∼ y if x and y belong to
the same block of the partition.

By an order > on a set X we mean any relation that is transitive and such that for
any x, y ∈ X exactly one of the statements x > y, x = y, y > x holds. Then x ≥ y,
meaning x > y or x = y, defines a partial order ≥ on X , that is, a relation which
is transitive, reflexive, and antisymmetric, (x ≥ y) ∧ (y ≥ x) ⇒ x = y. Conversely,
any partial order where all elements are pairwise comparable, i.e. either x ≥ y or
y ≥ x, defines an order > with x > y if x ≥ y and x �= y.

A chain in a partially ordered set is any subset of pairwise comparable elements.
This is a notion that plays an important role in Zorn’s lemma:

Axiom 2.1 If every chain in a partially ordered non-empty set S has an upper
bound, then S has a maximal element, i.e. with no elements superseding it.

This axiom is equivalent to the axiom of choice:

Axiom 2.2 To every collection of non-empty sets, there is a function that chooses
exactly one element from each set.

Or equivalently, the product of any collection of non-empty sets is non-empty,
containing at least one choice function.
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The axiom of choice is again equivalent to Cantor’s well-ordering principle:

Axiom 2.3 Every non-empty set can be endowed with a partial order for which it
is well-ordered.

Clearly, a choice function would then be one that picks out the minimal element
in each non-empty set. The converse direction is much harder to prove and normally
goes via Zorn’s lemma.

Despite the controversy around the axiom of choice, due to, e.g. the not very
intuitive requirement that the set R of real numbers (to be introduced carefully later)
can be well-ordered, we accept it as a set-theoretic axiom along with the others, and
these ones are commonly agreed upon to be those formulated by Zermelo-Frankel.
The axiom of choice is independent of the ZF-axioms provided these are consistent,
so neither the claim nor its negation can be proved from potentially consistent ZF-
axioms.
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Chapter 1
Number Theory

Number theory deals with natural numbers and their properties. Prime numbers play
a crucial role here. They are numbers that cannot be written as a product of two
numbers, if we rule out the number one. Any number other than one, is a product of
prime numbers, and this decomposition is unique up to reordering of factors. This
theorem is a corner stone in number theory, and can be proved rigorously from the
well-ordering principle, stating that any non-empty subset of the natural numbers
has a least element. While the existence of a decomposition follows easily from this
principle, the uniqueness part of the theorem is more subtle. This part of the proof
resorts to the property of relative primeness; two numbers are relatively prime if
they both cannot be divided by a common number other than one. They behave thus
with respect to each other as if they are prime numbers without necessarily being
so. When two natural numbers are not relatively prime, a pertinent notion to study
is that of their greatest common divisor, which is then obviously larger than one.

Having now a decomposition result at our disposal, it seems natural to find all
the prime numbers, so that we know what our building blocks under multiplication
are. However, this turns out to be extremely difficult, to say the least. Starting to list
them, say by sieving away the composite numbers as one proceeds, it becomes clear
that they occur very irregularly, escaping any possible general formula. Moreover,
one cannot hope to exhaust the list, as there happens to be infinitely many of them, a
fact that can easily be established using the decomposition result above. Having no
clue how to find all the prime numbers, it seems remarkable that one can prove that
there are infinitely many of them. We can’t even find samples of arbitrary large ones.
As a matter of fact, some of the largest known prime numbers are national secrets,
used in code theory.

One can nevertheless say something about the distribution of prime numbers. In
doing so, one applies techniques from complex function theory, a branch nowadays
called analytic function theory. One result in this direction is the prime number

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
L. Tuset, Abstract Algebra via Numbers,
https://doi.org/10.1007/978-3-031-74623-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74623-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-74623-9_1


2 1 Number Theory

theorem, which gives an estimate of how many prime numbers less than any given
number there are. Another result is the infinity of prime numbers along any arithmetic
progression, that is, numbers with a fixed distance to consecutive members in the
progression, or sequence.And then there is the notoriousRiemannHypothesis, which
relates the distribution of primes to an analytic function, known as the zeta-function,
a relation discovered already in the eighteenth century by Euler. Related to this are
the Bernoulli numbers. We leave the bulk of this discussion to the appendix, and
reduce our study in the main text to a few short sections, just to give an idea of the
fascinating mystery of the occurrence of prime numbers.

More relevant for us are some of the basic techniques used to study prime numbers.
Many of these notions and results might seem a bit ad hoc in the context of numbers,
but are better understood in the more general context of groups, which we will study
in a later chapter. For our purposes it makes sense to anticipate events. So let us
just recall that a group is a set with a binary associative operation, which has a unit,
and for which each element has an inverse element. Now fix a natural number n.
We say that two integers are congruent modulo n if their difference is an integer
multiple of n. This is an equivalence relation, and looking at its equivalence classes
(see our preliminaries from set theory), we obtain a set consisting of n elements.
By adding, subtracting and multiplying representatives from these so called residue
classes, we get well-defined corresponding operations on this finite set Zn , turning
it into what we later on call a commutative ring. If we consider the representatives
0, 1, 2, . . . , n − 1 from each of the n classes, written [0], [1], [2], . . . , [n − 1], it
turns out that the classes with representatives that are relatively prime to n form a
group under multiplication. The number of elements in this group is by definition
Euler’s phi-function of n, or φ(n). For a prime number p, clearly φ(p) = p − 1,
saying that all the classes in Zp, except the one containing 0, have inverse elements.
In this case the ring is what we later call a field, bearing much the same properties as
we have for the rational, real or complex numbers, only that it is finite. For general
n, the multiplicative group in Zn does not fill out almost the whole ring. But in nice
cases the group will have a generator, that is, a class whose powers exhaust the whole
group, and we say then that the group is cyclic. A representative for such a class is
called a primitive root. We provide a theorem telling us exactly for which n this
happens. As soon as n has a primitive root, there will be φ(φ(n)) of them; you get
the other ones from a primitive root, by taking the powers of it with the exponents
that are relatively prime to φ(n), hence the formula with two φ’s. It is clear that if
you take a generator of the group, then the φ(n)th power of it is the first power that
reproduces the unit, otherwise you get either too many or too few elements in the
group. The phenomena of recovering the unit happens in the cyclic case if you take
the φ(n)th power of any element. In fact, the same holds also in the non-cyclic case,
because if you haven’t recovered the element before, you get too many elements in
the group. And if you get it before, the power m you have reached must divide φ(n)

as you partition the group into so called cosets, all having m elements. As a result
you get Euler’s theorem, which states that the φ(n)th power of any class gives you
the class back, or aφ(n) ≡ 1 (mod n), using the congruence relation for any number
a relatively prime to n.
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For the sake of concreteness, let’s consider some simple examples. In Z10 the
multiplicative group consist of the four classes [1], [3], [7], [9] since 1, 3, 7, 9 are
relatively prime to 10, and there are only φ(10) = 4 of them. Euler’s φ-function is an
example of an arithmetic function that is multiplicative on any two numbers that are
relatively prime. So using prime number decomposition, we can quickly calculate its
values. For example, in the above case φ(2 · 5) = φ(2)φ(5) = 1 · 4 = 4. The four
classes listed above form indeed a group. For instance, we have [3] · [7] = [3 · 7] =
[21] = [1], which is the unit in the group, and this incidentally also shows that [3]
and [7] are inverses of each other. They are also the φ(4) = 2 generators of the group,
since [3]2 = [9] and [7]2 = [49] = [9] and 3 does not divide 4. So we have a cyclic
group here with two primitive roots 3, 7 of 10. They can be gotten from each other
by taking cubes, as 1 and 3 are the numbers less than four that are relatively prime
to 4. Indeed, we have [3]3 = [27] = [7] and [7]3 = [9] · [7] = [63] = [3]. Note also
that [2], which does not belong to the group, has order 5, as 25 = 32, and not order
4, as 24 = 16, whereas in Z8, we have [2]3 = [0]. In fact, the multiplicative group
in the latter ring consists of the residue classes [1], [3], [5], [7], and all these have
square [1], so 8 has no primitive root, and the multiplicative group is not cyclic here.

One might also want to solve certain equations working within the ring Zn . For
instance, there is the question of whether square roots of any ring element exist. For
example, in Z8 we saw that [1] had 4 square roots, namely [1], [3], [5], [7], and [4]
and [0] have the square roots [2], [6] and [0], [4], respectively, while [2] and [6]
have none. In general, say we have two distinct prime numbers p, q both different
from 2. Thanks to a deep reciprocity result by Gauss, the question whether [q] has
a square root in Zp, is equivalent to knowing whether [p] has a square root in Zq .
Indeed, if at least one of (p − 1)/2 or (q − 1)/2 is even, then the answers are both
the same, otherwise, the two questions have always opposite answers. Together with
some easier results, this allows one to check effectively if a square root of an element
inZn exists or not. A simple illustration of this is furnished by the following example.
We wonder if [3] has a square root in Z101. Naively, it seems we must check if any
of the 101 classes has square [3], and this is pretty cumbersome. Now 3, 101 are
prime numbers and (101 − 1)/2 is even, so we can equivalently ask if [101] has
a square root in Z3. But in the latter ring [101] = [2], which is not a square, as
[0]2 = [0], [1]2 = [1] and [2]2 = [1].

Along the same lines cubic roots and so forth can be studied. We include a section
on integer solutions of polynomial equations, with polynomials in several variables.
We discuss the most famous of these, namely Fermat’s theorem, from a purely ele-
mentary point of view. The fairly recent proof of this theorem by Wiles uses a great
deal of general mathematics beyond the scope of this volume.

For cultural and historical reasons we also devote a section to certain classes of
numbers, and in a separate section we scrutinize the Fibonacci numbers. We study
another peculiar number theoretical problem, namely towhat extend a natural number
can be written as sums of squares.

For further reading, we suggest the references [9, 16].
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1.1 Decomposition of Natural Numbers

The natural numbers 1, 2, 3, . . . with their hideous and awinspiring complexity
present themselves to us through counting. They come with two operations: addition
and multiplication. The number 1 is the building block for addition in that every
natural number can be obtained by adding 1 to itself sufficiently many times, e.g.
3 = 1 + 1 + 1.

Now what are the fundamental building blocks for multiplication? The number
1 certainly won’t do. Neither does 2 and 3 since we cannot obtain 5 as a product of
2’s and 3’s. We would have to add 5 to the list, and then 7, and 11, and so on. Being
fundamental building blocks they cannot be divided further, that is, they cannot be
decomposed into products of smaller natural numbers. We call them prime numbers.

Definition 1.1.1 A prime number is a natural number that can only be divided by
itself or by 1, and we won’t consider 1 as a prime number.

The prime numbers are therefore 2, 3, 5, 7, 11, 13, 17, ....
A composite number is any natural number larger than 1 that is not prime. So the

composite numbers are 4, 6, 8, 9, 10, 12, ....
Any number except 1 can be decomposed into a product of prime numbers. Keep

dividing into smaller natural numbers till you cannot divide any more. Then all
the factors are prime numbers. Moreover, modulo rearrangements of factors such a
decomposition is unique.

Example 1.1.2 To wit 120 = 2 · 60 = 2 · 2 · 30 = 2 · 2 · 2 · 15 = 2 · 2 · 2 · 3 · 5.
We could also have decomposed like this 120 = 5 · 24 = 5 · 8 · 3 = 5 · 4 · 2 · 3 =
5 · 2 · 2 · 2 · 3. The two final decompositions into smallest components are the same
in the sense that 5 appears once, the number 3 appears once, and 2 appears thrice,
whereas 7 and 11 etc. appear zero times. So apart from factors been written in
different orders, the decomposition is unique.

Since any number is unaltered under multiplication by any power of 1, we could
say that 1 appears zero times or once or e.g. 13 times in the decomposition of 120,
violating uniqueness. That is why 1, although it is only divisible by itself and 1, is
not considered a prime number. ♦

Let us record our result on the decomposition of a natural number as a theorem.
It is known as the fundamental theorem of arithmetic:

Theorem 1.1.3 Any whole number larger than 1 can be written as a product of
primes. Such a decomposition is unique if we e.g. write the prime factors with
increasing magnitude towards the right.

In this sense 23 · 3 · 5 is the unique decomposition of 120. Why is in general such
a decomposition unique? We can convince ourselves of this by checking various
cases. For instance, 21 = 3 · 7, and there is no other way of writing 21 as a product
of primes. To check that 22 · 5 · 7 is the unique decomposition of 140 requires more
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work, but it can be done. However, we can’t keep checking case by case. After
finitely many cases, we might have infinitely many left to do, so even the aid of a
very powerful computer is futile. It seems we need something out of this world.What
we need is a mathematical proof.

So imagine that we have two prime number decompositions of the same number.
If the same primes occur as factors in both decompositions, then we can mutually
cancel them out. At the end of this finite procedure we are left with an equality
p1 · · · pn = q1 · · · qm , where none of the primes on the left hand side equals any of
those on the right hand side. Now p1 does divide the left hand side, since it sits there
as the first factor, and therefore it must also divide the right hand side. But this is only
possible if p1 equals one of the primes q1, . . . , qm , which should not happen, since it
then ought to have been canceled. We have reached a contradiction. Since we cannot
accept any result that contradicts established results, the original decompositionmust
be unique.

All this seems fine, except that we have used the fact that if p1 divides q1 · · · gn ,
then it must simply be one of these q’s. Is this an established truth? A skeptical
mind might even question the argument that allowed us to decompose a number
into its smallest constituents. We need to agree upon what should be regarded as
obvious truths. Over the next two sections we will do so, and then we will prove the
fundamental theorem of arithmetic from this common basis.

1.2 Mathematical Induction

Some of you have perhaps encountered the principle of induction. If we believe in this
principle, can we then deduce what we need? Let us first refresh what this principle
says.

Say S is a subset of the set N of natural numbers with the property that if n
belongs to S, so does its successor n + 1. If in addition S contains the number 1,
then S must contain 2 = 1 + 1, and 3 = 2 + 1, and 4 = 3 + 1, and so forth. We see
that S eventually absorbs all natural numbers, and this is what the first principle of
induction says.

Axiom 1.2.1 If S is any subset of N with 1 ∈ S and such that n + 1 ∈ S whenever
n ∈ S, then S = N.

Example 1.2.2 Suppose we arrived at the formula

1 + · · · + n = n(n + 1)

2

as something which ought to be true for all natural numbers n, although we might
have checked it only in a few special cases. To deduce it from the principle of
induction, let S be the set of natural numbers n for which the formula holds. Since
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n = 1 satisfies the formula, as 1 = 1(1+1)
2 , the number 1 belongs to S. Next suppose

that n is a member of S. This means that

1 + · · · + n = n(n + 1)

2
.

We must show that n + 1 is a member of S, or in other words, that

1 + · · · + (n + 1) = (n + 1)((n + 1) + 1)

2
.

But this latter expression can be gotten by adding n + 1 to both sides of the previous
formula, and then use the identity

n(n + 1)

2
+ (n + 1) = (n + 1)(n + 2)

2
.

By the principle of induction the set S therefore consists of all natural numbers, so
the initially stated formula holds for all natural numbers n. ♦

Here is a related version of this principle, known as the second principle of
induction.

Axiom 1.2.3 Suppose S is a set of natural numbers with the property that n ∈ S
whenever k ∈ S for all k < n. Then S = N.

Since there are no natural numbers less than 1, we are assuming that 1 ∈ S.
We can now show that any natural number, say n, decomposes into prime factors.

Proof of the existence part of the fundamental theoremof arithmetic: Let S be the
set of natural numbers that have a prime number decomposition. Clearly 2 belongs
to S; here our induction starts at 2 rather than 1. Suppose n is a natural number such
that any number less than it and larger than 1 belongs to S. Now either n is already a
prime number, and we are done, or it can be written as a product of two other natural
numbers smaller than n. Since these two numbers belong to S by the property of
n, and every number in S has a prime number decomposition, each of these two
numbers can be decomposed into prime factors. But then also n, being the product
of these two numbers, is itself a product of prime numbers, and belongs to S. By
the second induction principle, we therefore conclude that S = {2, 3, 4, . . . }, or in
other words, that any natural number larger than 1 can be decomposed into factors
of primes.

We are here taking the second principle of induction as something obvious, and
we shall presently see that both induction principles follow from an even more
fundamental statement.
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1.3 The Well-Ordering Principle

According to the standards of rigor in contemporary mathematics, number theorists
accept as valid any result that can be deduced from the well-ordering principle:

Axiom 1.3.1 Any non-void subset T of non-negative integers has a least member,
that is, a number n ∈ T such that n ≤ m for all other m ∈ T .

Experience with numbers favors this principle. For instance, the set T =
{5, 8, 3, 11} has 3 as its least element, and 2 is the least element in the set of even
positive numbers. It is a deceptively obvious principle because in many cases it is
not clear what the least number actually is.

Example 1.3.2 Consider the set E of all primes larger than 100000000000. What
is its smallest element? Using computers one can show that the set E is indeed
nonempty. In Sect. 1.7 we shall even prove that this is so by a very short argument.
We shall in fact prove something much more, namely that there exist infinitely many
prime numbers. However, this proof relies on the well-ordering principle, so to say
that E has a least element, we have then used this principle at least twice; once to
show that there are infinitely many primes, so that E is nonempty, and then once
more to conclude that E has a least element. ♦

We just want to stress that the well-ordering principle is an existence result, it does
not tell us how to find least elements. We shall nevertheless regard this seemingly
naive principle as true. A more pedantic approach to natural numbers is to start with
Peano’s axioms, an approach we will discuss later in Section 2.1.

To demonstrate the power of the well-ordering principle let us show that the
second induction principle holds; the first principle of induction can be proved in a
similar fashion.

Proof of the second principle of induction: Suppose S has the required properties
for the second induction principle to kick into action, and that S �= N. Then its com-
plement is non-void, and by the well-ordering principle, it must have a least element
n. Since any number less than n belongs to S, so must n, which is a contradiction.
Hence S = N.

The idea of the proof was simple enough. Once a step-by-step inductive pro-
gression has started, a collision with the least element in any complement of S is
unavoidable.

Every mathematical statement requires a proof, which in the case of integers
means a logical deduction from the well-ordering principle. That is the rule of the
game. Even a self evident statement like the Archimedean property requires a proof.

Proposition 1.3.3 For any two natural numbers a and b, there exists another n such
that na ≥ b.
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Proof Assume to the contrary that na < b for all natural numbers n, and let T consist
of the numbers b − na. By the well-ordering principle it possesses a least element,
say b − ma, which is absurd since b − (m + 1)a is smaller and certainly of a form
qualifying for membership in T . �

Returning to the fundamental theorem of arithmetic, we have now shown (by
induction and thus by the well-ordering principle) that any natural number admits a
prime number decomposition. We would also like to prove that this decomposition
is unique as explained. We needed then to show that whenever p1 divides q1 · · · gn ,
it must be one of the q’s. This would follow if we could prove that whenever a prime
number p is a factor of ab, then it must divide either of the natural numbers a and
b. For suppose this is true, then p1 either divides q1, and we are done since the only
way a prime number can divide another is that they are equal, or p1 divides q2 · · · qn .
In this second case we can repeat the argument, if necessary all the way till p1 either
divides qn−1 or qn , and then again it simply has to be one of these two.

Suppose therefore that p is a factor of ab that does not divide a. We want to show
that it then has to divide b. That p does not divide ameans that these two numbers are
relatively prime, a notion we shall elaborate on in the following section; enough to
complete the proof of the uniqueness part of the fundamental theorem of arithmetic.

1.4 Relative Primeness and Greatest Common Divisors

Definition 1.4.1 Two integers are said to be relatively prime if ±1 are their only
common integer factors.

So −8 and 9 are relatively prime without any of them being prime. Relative
primeness is a relative notion. Although −8 and 9 are relatively prime, none of them
are relatively prime to 6 as −8 and 6 have 2 as a common factor, while 9 and 6 are
both divisible by −3.

Definition 1.4.2 The largest natural number that divides two integers a and b, not
both zero, is called their greatest common divisor, and is denoted by gcd(a, b).

So a and b are relatively prime exactly when gcd(a, b) = 1. Note also that
gcd(6,−8) = 2 and gcd(6, 9) = 3, and gcd(45, 60) = 15; fifteen being the largest
common divisor among −15,−5,−3,−1, 1, 3, 5, 15.

As we shall see shortly, we would have the fundamental theorem of arithmetic
under the belt if we could prove Euclid’s lemma:

Lemma 1.4.3 If a and b are relatively prime, and a is a factor of bc, then a must
divide c.

The standard way of proving this lemma is to use the division algorithm:

Theorem 1.4.4 Let a be an integer and b a natural number. Then a = bq + r for
unique integers q and 0 ≤ r < b.
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The idea behind this theorem is clear; if you divide the dotted line of integers in
equal lengths b, you will find a in exactly one of the slots, and r will tell, namely
slot number |q| + 1 away from the origin 0, and r will tell you where in the slot a is
located. Let us anyway furnish a proof.

Proof Let T be the non-negative integers of the form a − bx , where x runs over
the integers. Then T is not empty as a − b(−|a|) ≥ 0, so it has a least element,
say r = a − bq for some integer q. Then r < b. Otherwise a − b(q + 1) = r − b
is non-negative and hence of the required form to belong to T , and it is clearly also
less than r which is the least element of T ; a contradiction.

As for uniqueness, ifq ′ and r ′ is another prescribed pair fora andb. Thenbq + r =
bq ′ + r ′, or b(q − q ′) = r − r ′, and as |r − r ′| < b, we get q − q ′ = 0, and then in
turn r − r ′ = 0. �

Before we prove Euclid’s lemma, we need another result worth recording.

Proposition 1.4.5 Let a and b be integers. Then gcd not both zero. Then gcd(a, b) =
1 if and only if 1 = ax + by for some integers x and y.

Proof Any positive common divisor of a and b will also divide ax + by, and if this
latter number is 1, this divisor has also to be 1, so a and b are relatively prime.

Conversely, suppose that gcd(a, b) = 1. Let d be the least number in the non-
void set T consisting of all natural numbers of the form au + bv, where u and v vary
over the integers. Write d = ax + by for integers x and y. By the division algorithm
there exist integers q and 0 ≤ r < d such that a = dq + r . But then r = a − dq =
a(1 − xq) + b(−yq) is smaller than the least number of T , and for r not to belong
to T , it must be zero. Hence a = dq, or in other words, d divides a. Similarly one
shows that d divides b. Since a and b are relatively prime, this is only possible if
d = 1. �

Euclid’s lemma follows almost immediately from this proposition. Since the great-
est common divisor of a and b is 1, there are integers x and y such that ax + by = 1.
By assumption a divides cb, and hence also cax + cby = c.

Let us also record its corollary, which is the last brick in the proof of the
fundamental theorem of arithmetic:

Corollary 1.4.6 If a prime number p divides the product ab of two natural numbers,
then p divides either a or b.

Proof Just to be convinced, if p does not divide a, then gcd(a, p) = 1 and hence by
Euclid’s lemma, it has to divide b. �

Another useful result, and a corollary to the proposition above, is the following:

Corollary 1.4.7 Suppose a, b are relatively prime and that both divide c. Then ab
divides c.

Proof Write c = an = bm and ax + by = 1. Then c = ab(mx + ny). �
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Adapting the proof of the above proposition slightly, we get the following result:

Proposition 1.4.8 If a, b are integers, not both zero, there are integers x, y such
that ax + by = gcd(a, b).

Incidentally this gives the precise condition for the existence of solutions of the
linear Diophantine equation.

Corollary 1.4.9 Given integers a, b and c with ab non-zero, then the equation ax +
by = c has an integer solution (x, y) if and only if gcd(a, b) divides c, and then all the
integer solutions are given by (x + bn/gcd(a, b), y − an/gcd(a, b)) for any integer
n.

Proof The first assertion is clear from the proposition. Moreover, the proposed inte-
ger candidates for solutions will evidently satisfy the equation, so we only need
to show that any integer solution (x0, y0) is among these candidates. Certainly
a(x0 − x) = b(y − y0), and writing a = k gcd(a, b) and b = l gcd(a, b) for rela-
tively prime integers k and l, we get k(x0 − x) = l(y − y0). By Euclid’s lemma, we
get y − y0 = kn for some integer n, which in turn gives x0 − x = nl. �

1.5 The Euclidean Algorithm

For large numbers a, b it is cumbersome to work out what gcd(a, b) is. It is even
less obvious how to produce concrete solutions x and y to the equation ax + by =
gcd(a, b). The division algorithmoffers amethod, knownas theEuclideanalgorithm,
for solving these problems. We illustrate by an example.

Example 1.5.1 Let us find gcd(12378, 3054). Applying the division algorithm
repeatedly, we get the equations:

12378 = 4 · 3054 + 162

3054 = 18 · 162 + 138

162 = 1 · 138 + 24

138 = 5 · 24 + 18

24 = 1 · 18 + 6

18 = 3 · 6 + 0.

The last nonzero remainder 6, in the second last equation, is then the sought for
greatest common divisor. ♦

The argument for this hinges on repeated application of the following lemma:

Lemma 1.5.2 If a = qb + r , then gcd(a, b) = gcd(b, r).
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Proof Since r = a − qb, any common divisor of a and b will also divide r , so
gcd(a, b) must divide r , and of course also b. We argue that gcd(a, b) is the largest
such divisor. Suppose c is another common divisor of r and b. Then it also divides
a = r + qb, so c cannot be greater than gcd(a, b). �

Example 1.5.3 In our previous example we get

gcd(12378, 3054) = gcd(3054, 162) = gcd(162, 138)

= gcd(138, 24) = gcd(24, 18) = gcd(18, 6) = gcd(6, 0) = 6.

To represent the greatest common divisor 6 as a linear combination of the numbers
12378 and 3054, we start with the next-to-last equation in the previous example and
successively eliminate the reminders:

6 = 24 − 18

= 24 − (138 − 5 · 24)
= 6 · 24 − 138

= 6(162 − 138) − 138

= 6 · 162 − 7 · 138
= 6 · 162 − 7(3054 − 18 · 162)
= 132 · 162 − 7 · 3054
= 132(12378 − 4 · 3054) − 7 · 3054
= 132 · 12378 + (−535)3054.

♦
The procedure in the general case should now be clear.

1.6 Newton’s Binomial Formula

We are well acquainted with the formulas

(a + b) = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
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with coefficients providing a configuration known as Pascal’s triangle

1 1

1 2 1

1 3 3 1

1 4 6 4 1

· · ·

boarded by 1’s and with the remaining numbers being sums of the two numbers
nearest in the row above.

The general pattern is captured in Newton’s binomial formula:

Theorem 1.6.1 Given two commuting symbols x and y, we have the following
expansion formula

(x + y)n =
n∑

m=0

(
n
m

)
xn−m ym,

where the bracketed symbols are the binomial coefficients

(
n
m

)
≡ n!

m!(n − m)!
with the convention 0! = 1 and inductive definition n! = n(n − 1)! for n-factorial.

A proof of this expansion formula would typically go by induction, and is left to
the reader. In the induction step one would perhaps want to use Pascal’s rule:

Lemma 1.6.2 (
n
k

)
+

(
n

k − 1

)
=

(
n + 1
k

)

for 1 ≤ k ≤ n.

Proof The lemma follows readily by multiplying the identity

1

k
+ 1

n − k + 1
= n + 1

k(n − k + 1)

with
n!

(k − 1)!(n − k)! .

�
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Example 1.6.3 Here is a numerical example:

25 = (1 + 1)5 =
5∑

m=0

(
5
m

)
=

(
5
0

)
+

(
5
1

)
+

(
5
2

)
+

(
5
3

)
+

(
5
4

)
+

(
5
5

)

= 1 + 5 + 5 · 4
2

+ 5 · 4
2

+ 5 + 1 = 32.

1.7 Infinity of Primes

Since prime numbers are the fundamental building blocks for the natural numbers
under multiplication, it is tempting to contain them or conquer them in some way or
other. However, this is easier said than done; prime numbers are mysterious.

One of the reasons for this is that we know of no concrete way of producing them,
that is, we have no practical formula or algorithm that spits out only primes and a
significant part of them, if not all.

Example 1.7.1 In the middle ages it was widely believed that the formula

f (n) = n2 + n + 41

assumed only primes. For n < 40 it does, but then f (40) = 412 and
f (41) = 41 · 43. ♦
This failure is no coincidence.

Proposition 1.7.2 No non-constant polynomial with integral coefficients can pro-
duce only primes.

Proof Suppose f was such a polynomial. Let p = f (1). Then f (1 + np) will be
divisible by p, hence equals p for all natural numbers n, and this is not possible for
a non-constant polynomial. �

Amindbogglingly result says that the set of all primes is the positive range of the
following polynomial

(k + 2)(1 − (wz + h + j − q)2 − ((gk + 2g + k + 1)(h + j) + h − z)2 −
(16(k + 1)3(k + 2)(n + 1)2 + 1 − f 2)2 − (2n + p + q + z − e)2 −
(e3(e + 2)(a + 1)2 + 1 − o2)2 − ((a2 − 1)y2 + 1 − x2)2 −
(16r2y4(a2 − 1) + 1 − u2)2 − (n + l + v − y)2 −
((a2 − 1)l2 + 1 − m2)2 − (ai + k + 1 − l − i)2 −
(((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1 − (x + cu)2)2 −
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(p + l(a − n − 1) + b(2an + 2a − n2 − 2n − 2) − m)2 −
(q + y(a − p − 1) + s(2ap + 2a − p2 − 2p − 2) − x)2 −
(z + pl(a − p) + t (2ap − p2 − 1) − pm)2)

as the 26 variables a, . . . , z vary over the non-negative integers.
Another way of generating primes goes as follows. Set a1 = 7 and define an recur-

sively by an+1 = an + gcd(n + 1, an). Then the sequence an+1 − an as n runs over
the natural numbers, consists only of ones and primes: 1, 1, 1, 5, 3, 1, 1, 1, 1, . . . .

However, the number of elementary operations needed to factorize a natural num-
ber n into primes grows exponentially with the size of n. So it is computationally
challenging to decide whether a large number is a prime or not. The advent of quan-
tum computers might improve this because as promised by a celebrated algorithm
of Shore, such computers should be able to factorize numbers in polynomial time.

At any rate large primes are very difficult to single out, and for this reason large
prime numbers play a role in cryptography. As of February 2013 the largest publicly
known prime number is

257885161 − 1

having 17425170 digits. It is aMersenne prime, that is, a prime number of the form
2p − 1 for a prime number p, and it is easier to check whether such numbers can be
factorized or not, see Sect. 1.14.

It is perhaps surprising therefore that there are infinitely many primes, and that
people figured out this more than 2000years ago by appealing to a remarkably short
argument.

First a few words about the concept of infinity. That there are infinitely many
elements of something, means for a mathematician that there are not finitely many.
This sounds like a tautology, but philosophically there is a profound distinction. We
don’t try to comprehend something we cannot grasp, rather we acknowledge the
incomprehensible as something that cannot be grasped.

So how do we see that something is not finite? We assume that it is finite and
produce an absurdity. We have already used the well-ordering principle to a similar
effect. To see that a collection is finite, try to list the members and then exhibit a
member that cannot be on the list. This idea, that goes back to the Greeks, was used
a century ago in Cantor’s diagonal argument. From this he proved the existence of a
whole hierarchy of infinitely large sets. We will return to this in Sect. 2.12.

Example 1.7.3 Let us first apply the simple idea of exhibiting a member not on a
supposedly complete list to the collection of all natural numbers. Suppose there are
finitely many of them. The successor of the largest element on the list cannot be on
that list, so there are infinitely many natural numbers. ♦

Now to the result on primes, where we in the proof shall use the fundamental
theorem of arithmetic.

Theorem 1.7.4 There are infinitely many primes.
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Proof Suppose there are only finitely many of them, listed as p1, . . . , pn . Any prime
factor in the decomposition of p1 · · · pn + 1 cannot be on that list since it would have
to divide 1. �

Another way of looking at it is to say that if p1, . . . , pn are the first n primes (in
increasing order), any prime factor of p1 · · · pn + 1 has to be larger than pn .

For instance 2 · 3 + 1 = 7. In fact p1 · · · pn + 1 are all prime numbers for n less
than 6, but then 2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509. Are there nevertheless infinitely
many primes of the form p1 · · · pn + 1? Like so many simple questions about prime
numbers, the answer to this is unknown.

Knowing that there are infinitely many primes, how frequently do they occur?
Since any prime factor of p1 · · · pn + 1 has to be greater than pn , surely the prime
number pn+1 next to pn has to be less than or equal to p1 · · · pn + 1. This gives us
the estimate pn+1 ≤ p1 · · · pn + 1 < pnn + 1. So for instance 5 ≤ 2 · 3 + 1 < 32 + 1
and 7 < 53 + 1 = 126; not a very sharp estimate.

A better estimate is the following.

Proposition 1.7.5 pn ≤ 22
n−1

.

Proof Clearly this estimate holds for n = 1. Assuming that it holds for all natural
numbers up to n, we get

pn+1 ≤ p1 · · · pn + 1 ≤ 2 · · · 22n−1 + 1 = 21+···+2n−1 + 1

= 22
n−1 + 1 ≤ 22

n−1 + 22
n−1 = 22

(n+1)−1

and the result follows by the second principle of induction. �

Primes tend to come as twins, i.e. prime numbers differing only by two. Examples
are 3, 5 and 41, 43.Are there infinitelymany twins?Wedon’t know.A result byViggo
Brun says that the sum of their reciprocals is finite, and is conjectured to be 2, as
opposed to the sum of the reciprocals of all primes which is infinite. We also have
the following result by Chen:

Theorem 1.7.6 There are infinitely many primes p, where p + 2 is either a prime
or a product of two primes.

For any natural number n, one of the numbers n, n + 2, n + 4 is divisible by 3,
so the only triplet of primes we have is (3, 5, 7).

One has also shown that there are infinitely many pairs of primes with some fixed
interval between them that does not exceed 246, an estimate that has shrunk from
some initial 70 million, and is actively sharpened.

In the other direction, there are arbitrary large gaps between primes. Here is a list
of n consecutive composites:

(n + 1)! + 2, (n + 1)! + 3, . . . , (n + 1)! + (n + 1).

We have the following startling result by Wells.
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Theorem 1.7.7 There exists a positive real number r such that f (n) = [r3n ] takes
only primes.

Here the square brackets picks out the greatest integer not exceeding r3
n
. This is

by no means a concrete formula since basically nothing is known about r , so it rather
tells us how poorly we understand the real numbers. We shall study real numbers in
Section 2.5.

Here is another striking result, which we also do not prove.

Theorem 1.7.8 The last digits 1, 3, 7, 9 of large primes occurwith equal probability.

1.8 Primes in Arithmetic Progression

A natural question is how many primes you will hit if you jump with fixed lengths
along the dotted line of integers. You then follow an arithmetic progression a, a +
b, a + 2b, a + 3b, . . . . Dirichlet’s theorem says that if a and b are relatively prime,
you will hit infinitely many. Put more succinctly:

Theorem 1.8.1 If gcd(a, b) = 1, the set {a + bn |n ∈ N} contains infinitely many
primes.

We won’t prove this result, and will limit ourselves to the particular and almost
trivial case when a = 3 and b = 4.

Proposition 1.8.2 There are infinitely many primes of the form 3 + 4n.

Proof Supposewe have only finitelymany such, say p1, . . . , pm . Consider the prime
number decomposition q1 · · · qk of N = 4p1 · · · pm − 1. By the division algorithm
the q’s are either of the form 4s + 3 or 4s + 1. They cannot all be of the latter
form since then their product would also be of that form as (4s + 1)(4t + 1) =
4(4st + s + t) + 1, and N = 4(p1 · · · pm − 1) + 3 is not of that form. Hence at least
one of the q’s has to be of the form 4s + 3, and thus will belong to the list of the p’s.
But such a number must divide 1, which is impossible. �

Already the case a = 1 and b = 4 is much harder to prove, and will have to await
more machinery.

Proposition 1.8.3 No arithmetic progression consists solely of prime numbers.

Proof Any number that appears in a progression will reoccur as a factor in infinitely
many composites because

a + b(n + m(a + bn)) = (a + bn)(1 + bm)

for any n and m. �
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Let us also quote the following result by Green-Tao.

Theorem 1.8.4 There exist arbitrary long sequences of consecutive primes in arith-
metic progression. More precisely, for any integer n and natural number m, there
are integers a and b such that an + b is a prime for n = 0, . . . ,m − 1.

It is clear from what we have said about recurrences, that no infinitely long such
sequence exists.

Example 1.8.5 Sequences of consecutive primes in arithmetic progression are 2, 3
and 3, 5, 7 and 5, 11, 17, 23, 29. Although we have an existence result, it is very
hard to come up with long sequences. One such sequence, of length 26, and found
in 2010, is

43142746595714191 + n · 23681770 · 23

for n = 0, 1, . . . , 25. ♦
It is conjectured that any sequence {an} of positive integers with divergent series∑
1/an contains arbitrary long arithmetic progressions.

Of the various ways of unraveling the distribution of primes via addition, you find
the Goldbach conjecture, which says that every even number larger than 2 can be
written as a sum of two primes.

For example 4 = 2 + 2, 8 = 5 + 3 and 28 = 11 + 17 = 5 + 23. The Goldbach
conjecture, still being a famous conjecture is almost true, awaits a proof. It is, however,
almost true in the following precise sense.

Theorem 1.8.6 If A(n) is the number of cases less than n that fail to split into a
sum of two primes, then

lim
n→∞

A(n)

n
= 0.

This result, due to Vinigradov, does not, of course, prevent infinitely many
exceptions for which the conjecture is false.

1.9 The Function π(x)

Let us consider the primes among the first one hundred natural numbers. To single
out these, it is easiest to remove the composites. We can always write a composite as
n = ab with 1 < a ≤ b. So a ≤ √

n, which means that any composite has a prime
factor less than or equal to

√
n.



18 1 Number Theory

Example 1.9.1 All composites less than 100 must therefore have prime factors not
exceeding

√
100 = 10.Hence, removing all numberswith 2, 3, 5, 7 as proper factors,

we are left with the prime numbers less than 100. These are the 25 numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

♦
In practice, in finding these numbers you typically list the first one hundred natural

numbers, and then cross out every second (but keep the first one, i.e. 2), every third
(but keep 3), every fifth (after 5) and then every seventh number after 7. The remaining
unmarked numbers are the primes. This method of singling out primes is known as
the sieve of Eratosthenes.

One way to understand the distribution of primes is to introduce functions of
real or complex variables associated to prime numbers and study these functions.
Especially important is the following one.

Definition 1.9.2 The function π(x) counts the primes not exceeding x .

For instance, we see that π(10) = 4 as the primes not exceeding 10 are the four
numbers 2, 3, 5, 7. Or π(

√
2) = 0.

The estimate pn ≤ 22
n−1

we found for the nth prime number immediately gives
the lower bound π(22

n−1
) ≥ n.

With the sieve of Eratosthenes in mind Legendre extracted an exact formula for
π(x).

Theorem 1.9.3 For any real number x

π(x) = [x] − 1 + π(x1/2) +
π(x1/2)∑

n=1

∑

m∈Pn

(−1)n
[ x

m

]
,

where Pn is the set of products of n distinct primes each not greater than
√
x.

Before we prove this theorem, let us illustrate how the formula works in a concrete
case.

Example 1.9.4 If x = 25, then the primes not greater than
√
x are 2, 3, 5, so

π(25) = 25 − 1 + 3 −
[
25

2

]
−

[
25

3

]
−

[
25

5

]
+

[
25

2 · 3
]

+
[

25

2 · 5
]

+
[

25

3 · 5
]

−
[

25

2 · 3 · 5
]

= 9.

♦
Proof To see how to obtain this formula remember that we get the primes not exceed-
ing x by taking all numbers [x], subtract 1, which is not a prime, and then all the
composites. As we know these have to be divisible by some of the primes p1, . . . , pu



1.10 Congruence 19

not greater than
√
x . So you start deleting all numbers divisible by these, making

for a total of
∑

i

[
x
pi

]
deletions, except that the primes themselves are not com-

posites, so you better add π(x1/2) first. However, this way you will have removed
too much because those integers divisible by two distinct primes have been deleted

twice, so you remove
∑

i �= j

[
x

pi p j

]
deletions. But now you have removed too many

deletions since those integers divisible by three distinct primes have been removed

twice, so you better add
∑

i �= j �=k

[
x

pi p j pk

]
, and so forth, accounting for the alternating

series. �

This inclusion-exclusion argument, although intuitive, is half-baked as it is not
entirely clear at the end whether every element which should be removed is deleted
exactly once. In Sect. 1.11 we will provide another proof.

1.10 Congruence

Gauss introduced the following powerful concept.

Definition 1.10.1 Two integers a and b are said to be congruent modulo a natural
number n, in symbols a ≡ b (mod n), if n divides a − b.

So 3 ≡ 24 (mod 7) and 25 �≡ 12 (mod 7).
It is easily checked that a ≡ b (mod n) is an equivalence relation on the set of

integers, and the equivalence classes are called the congruence (or residue) classes
modulo n. They form a partition of the integers, with the odd and even integers being
the congruence classes modulo 2. Using the fact that every integer is either even
or odd, one quickly rules out any integer solution to for instance the Diophantine
equation x2 + 11x − 39 = 0. Congruence classes are in general parametrized by
the remainders in the division algorithm, and there can’t be more of them than the
number one mods out with.

The following straightforward result shows that congruence respectmultiplication
and addition.

Proposition 1.10.2 If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n) and
a + c ≡ b + d (mod n).

Let us demonstrate the usefulness of this result.

Example 1.10.3 To say that 41 divides 220 − 1, means 220 ≡ 1 (mod 41), and this
is true as

220 ≡ (25 (mod 41))4 ≡ ((−9)2 (mod 41))2 ≡ (−1 (mod 41))2 ≡ (−1)2 (mod 41).

♦
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Whether an integer can be divided by 9 or 11 is easily checked:

Corollary 1.10.4 A natural number is divisible by 9 or 11 if and only if the sum,
respectively, the alternating sum, of its digits is.

Proof Let n = am10m + · · · + a0 and k = a0 + · · · + am for a non-negative integer
m and ai ∈ {0, . . . , 9}. Then n ≡ k (mod 9) by the proposition.

Similarly we get n ≡ l (mod 11) with l = a0 − a1 + · · · + (−1)mam . �

So 8001 is divisible by 9, whereas 7214 is not.
According to Euclid’s lemma, we also have cancellation, at least partly.

Proposition 1.10.5 If ca ≡ cb (mod n) for relatively prime c and n, then a ≡
b (mod n).

We can also consider equations modulo natural numbers.

Proposition 1.10.6 The linear congruence ax ≡ b (mod n) has an integer solution
x if and only if gcd(a, n) divides b, and then we have gcd(a, n) pairwise incongruent
integer solutions x + mn/gcd(a, n) for m ∈ {1, . . . , gcd(a, n)}.
Proof Combine Corollary 1.4.9 with the division algorithm and the proposition
above. �

If a and n in this proposition are relatively prime, then ax ≡ b (mod n) has exactly
one solution modulo n.

The following result is known as Fermat’s little theorem.

Theorem 1.10.7 If p is a prime number that does not divide an integer a, then
a p−1 ≡ 1 (mod p).

Proof The p − 1 numbers a, 2a, . . . , (p − 1)a are obviously pairwise incongruent,
so they must be pairwise incongruent to the possible remainders 1, . . . , p − 1 under
division by p. Hence by Proposition 1.10.2, the products of each family coincide
modulo p, so a p−1(1 − p)! ≡ (1 − p)! (mod p). We can cancel (p − 1)! by Euclid’s
lemma since p cannot divide (p − 1)! by the fundamental theorem of arithmetic. �

We conclude that a p ≡ a (mod p) for any integer a and prime p.
Fermat’s little theorem is clearly efficient in reducing large numbers in congruence

calculations. It can also be used to check whether a natural number is composite. For
instance, the number 117 is composite since 2117 �≡ 2 (mod 117).

Here is another consequence.

Corollary 1.10.8 If a p ≡ a (mod q) and aq ≡ a (mod p) for distinct primes p and
q, then a pq ≡ a (mod pq).

Proof By the theorem we have (aq)p ≡ aq (mod p) ≡ a (mod p), and similarly
(a p)q ≡ a (mod q), so p and q are factors of a pq − a, and the result is clear from
the fundamental theorem of arithmetic. �
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Wilson’s theorem is proved along the same lines as Fermat’s little theorem.

Theorem 1.10.9 The identity (p − 1)! ≡ −1 (mod p) holds if and only if p is a
prime.

Proof If p is not a prime, it has a divisor a ∈ {2, . . . , p − 1}. So if the identity holds,
then a will divide both p and (p − 1)!, and thus also 1, which is a contradiction.

Conversely, if p is a prime, say larger than 3, then ax ≡ 1 (mod p) for a ∈
{1, . . . , p − 1} has a unique solution x in the same set by Proposition 1.10.6. Now
x = a if and only if (a − 1)(a + 1) is divisible by p if and only if a = 1 or a = p − 1.
The remaining incongruent numbers 2, . . . , p − 2 can be paired in distinct a and
x with ax ≡ 1 (mod p). Multiplying these congruences together and rearranging
factors, gives

2 · · · (p − 2) ≡ 1 (mod p)

which upon multiplying with p − 1 gives the desired result. �

We can use this theorem to solve a quadratic congruence.

Proposition 1.10.10 Let p beanoddprime. Then x2 + 1 ≡ 0 (mod p)hasa solution
if and only if p ≡ 1 (mod 4).

Proof If we have a solution x , then by Fermat’s little theorem, we have

1 ≡ x p−1 (mod p) ≡ (x2)(p−1)/2 (mod p) ≡ (−1)(p−1)/2 (mod p).

This gives the absurdity 1 (mod p) ≡ −1 (mod p) if p = 4n + 3 for some integer n.
Conversely, say p is of the form p = 4n + 1. Then by Wilson’s theorem we get

−1 ≡ 1 · 2 · · · p − 1

2
· p + 1

2
· · · (p − 2)(p − 1) (mod p)

≡ 1 · (−1) · 2 · (−2) · · · p − 1

2
· (− p − 1

2
) (mod p) ≡ (

p − 1

2
!)2 (mod p)

as there are (p − 1)/2 = 2n signs. �

The proof tells us that a solution of the quadratic congruence is x = ((p − 1)/2)!.
The next crucial result, known as the Chinese remainder theorem, deals with a

system of linear congruences.

Theorem 1.10.11 Let n1, . . . , nm be pairwise relatively prime natural numbers.
Then the congruences x ≡ ai (mod ni ) for integers ai have a simultaneous solution
x which is unique modulo n1 · · · nm.
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Proof Let Ni be the product of the (n j )
′s with ni omitted. By Proposition 1.10.6

there is an integer xi such that Ni xi ≡ 1 (mod ni ), and then

x = a1N1x1 + · · · + amNmxm

is easily checked to be a solution of the desired congruences.
If x0 is another solution of these congruences, then nk must divide x − x0, and by

Corollary 1.4.7 we get x0 ≡ x (mod n1 · · · nm). �

Note that the proof provides a formula for the solution provided some individual
linear congruences are solved.

1.11 Arithmetic Functions

An arithmetic function is a function defined on the natural numbers. We study here
a few basic ones that are particularly useful.

Let
∑

d|a f (d) and
∏

d|a f (d) denote the sum and product, respectively, of f (d)

over the positive divisors d of a natural number a.

Definition 1.11.1 An arithmetic function f is multiplicative if f (ab) = f (a) f (b)
whenever gcd(a, b) = 1.

Proposition 1.11.2 Given an arithmetic function f , and define another by g(a) =∑
d|a f (d). Then g is multiplicative if f is multiplicative.

Proof Every divisor of ab is of the form cd for unique divisors c of a and
d of b with gcd(c, d) = 1. Hence g(ab) = ∑

c|a
∑

d|b f (cd) = g(a)g(b) if f is
multiplicative. �

The number of positive divisors of a natural number a is τ(a) = ∑
d|a 1 and

their sum is σ(a) = ∑
d|a d. By the proposition this defines multiplicative arithmetic

functions τ and σ . In fact, if a = pn11 · · · pnmm for prime numbers pi , then obviously

τ(a) =
∏

i

(ni + 1) and σ(a) =
∏

i

(1 + pi + · · · + pnii ) =
∏

i

pni+1
i − 1

pi − 1
.

Here is another arithmetic function, which is also evidently multiplicative.

Definition 1.11.3 TheMöbius functionμ(m) is defined to be 1 ifm = 1, and (−1)n

if m is a product of n distinct primes, and otherwise set to be zero.

Lemma 1.11.4 We have
∑

d|a μ(d) = δa1.

Proof This is clear from the proposition above and the fact that the sum vanishes
when a is a positive power of a prime by definition of μ. �
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The following result is known as theMöbius inversion formula.

Proposition 1.11.5 If f and g are arithmetic functions related by g(a) =∑
d|a f (d), then f (a) = ∑

d|a μ(d)g(a/d) = ∑
d|a μ(a/d)g(d).

Proof The last identity is obvious. To prove the first one, we calculate

∑

d|a
μ(d)g(a/d) =

∑

d|a

∑

c|(a/d)

μ(d) f (c) =
∑

c|a

∑

d|(a/c)

μ(d) f (c)

as d divides a and c divides a/d if and only if c divides a and d divides a/c. At this
stage the lemma gives the desired result. �

In particular, we get 1 = ∑
d|a μ(a/d)τ (d) and a = ∑

d|a μ(a/d)σ (d).
The converse of Proposition 1.11.2 is also true. Indeed, using once more the

observation made in the first line of that proof, we get by the inversion formula
above that

f (ab) =
∑

c|a

∑

e|b
μ(ce)g(ab/ce) =

∑

c|a

∑

e|b
μ(c)μ(e)g(a/c)g(b/e) = f (a) f (b)

for relatively prime natural numbers a and b.
Recall that the greatest integer function [x] of any real number x is the greatest

integer not exceeding x .

Theorem 1.11.6 Given a natural number a and a prime number p. Then the
exponent of the highest power of p that divides a! is ∑∞

i=1[a/pi ].
The sum is actually finite.

Proof The members among 1, . . . , a divisible by p are p, 2p, . . . , [a/p]p, and
those divisible by p2 are p2, 2p2, . . . , [a/p2]p2, and so forth. �

This givesLegendre’s formulaa! = ∏
p

∑∞
i=1[a/pi ],whereweare taking the product

over all primes p ≤ a.
ByNewton’s binomial formula, we know that the binomial coefficients are natural

numbers, so the product of a consecutive integers is divisible by a!.
Proposition 1.11.7 If g(a) = ∑

d|a f (d) for arithmetic functions f and g, then∑n
i=1 g(i) = ∑n

i=1 f (i)[n/ i] for any natural number n. In particular, we have∑n
i=1(τ (i) − [n/ i]) = 0 and

∑n
i=1(σ (i) − i[n/ i]) = 0.

Proof Thefirst assertionholds since i, 2i, . . . , [n/ i]i are the integers among1, . . . , n
that are divisible by i . �

We introduce now the all important Euler’s phi-function.

Definition 1.11.8 Let φ(n) denote the number of members among 1, . . . , n that are
relatively prime to n.
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So π(6) = 2 and φ(p) = p − 1 for any prime number p.
The following result is straightforward.

Lemma 1.11.9 For any integers a, b, c we have that gcd(a, bc) = 1 if and only if
gcd(a, b) = 1 = gcd(a, c).

Theorem 1.11.10 The arithmetic function φ is multiplicative.

Proof Say a and b are natural numbers that are relatively prime. Write the integers
from 1 to ab as ia + j for i ∈ {0, . . . , b − 1} and j ∈ {1, . . . , a}. By the lemma we
know that φ(ab) equals the number of members that are relatively prime to both a
and b. By Lemma 1.5.2 there are φ(a) numbers j with gcd(ia + j, a) = 1 for all i .
For fixed such j , there are φ(b) numbers ia + j that are relatively prime to b because
the b numbers j, a + j, · · · , (b − 1)a + j are pairwise incongruent modulo b, and
are thus incongruent to 0, . . . , b − 1. �

Corollary 1.11.11 We have

φ(pn11 · · · pnmm ) = pn11 · · · pnmm (1 − 1/p1) · · · (1 − 1/pm)

for pairwise distinct prime numbers pi and non-negative integers ni .

Proof By the theorem it suffices to show φ(pn) = pn − pn−1 for a prime num-
ber p and a natural number n. The integers between 1 and pn divisible by p are
p, 2p, . . . , pn−1 p, so there are pn − pn−1 that are not divisible by p, and they are
the ones that are relatively prime to pn . �

From this corollary it is clear that φ(a) is even for a larger than 2.
We have the following result by Gauss.

Corollary 1.11.12 For every natural number a we have a = ∑
d|a φ(d).

Proof By the theorem, the right hand side is a multiplicative arithmetic function, so
we need only check the identity for a a positive power of a prime number, and in this
case it is straightforward. �

Proposition 1.11.13 The sum of the integers between 1 and the natural number a
that are relatively prime to a is aφ(a)/2.

Proof Let b1, . . . , bφ(a) be the integers between 1 and a that are relatively
prime to a. As gcd(bi , a) = 1 if and only if gcd(a − bi , a) = 1, we get∑

bi = ∑
(a − bi ). �

Proposition 1.11.14 For any natural number a we have φ(a) = a
∑

d|a μ(d)/d.

Proof Apply the inversion formula to the formula in the last corollary above. �

Since φ(p) = p − 1 for a prime number, the following result by Euler generalizes
Fermat’s little theorem.
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Theorem 1.11.15 If an integer a and a natural number n are relatively prime, then
aφ(n) ≡ 1 (mod n).

Proof Say b1, . . . , bφ(n) are the integers between 1 and n that are relatively prime to
n. Then ab1, . . . , abφ(n) are pairwise incongruent modulo n, and by the lemma above
they are relatively prime to n, so modulo n they correspond to the first sequence.
Hence

(ab1) · · · (abφ(n)) ≡ b1 · · · bφ(n) (mod n)

and by Proposition 1.10.5 we can cancel b1 · · · bφ(n) on both sides. �

The former result by Legendre can now be formulated more succinctly.

Proposition 1.11.16 Let n be the product of all primes not grater than x1/2. Then

π(x) = π(x1/2) +
∑

d|n
μ(d)[x/d] − 1.

Proof For any real number x and natural number n, let φ(x, n) denote the num-
ber of natural numbers a ≤ x with gcd(a, n) = 1. By Lemma 1.11.4 we see that∑

d|a,d|n μ(d) is one if gcd(a, n) = 1, and is otherwise zero. Hence as
∑

d|a,a≤x 1 =
[x/d], we get

φ(x, n) =
∑

a≤x

∑

d|a,d|n
μ(d) =

∑

d|n,d≤x

μ(d)
∑

d|a,a≤x

1 =
∑

d|n
μ(d)[x/d].

In this formula let n be the product of all primes not greater than x1/2, and observe
that a natural number a ≤ x satisfies gcd(a, n) = 1 if and only if a = 1 or a is a
prime and x1/2 < a ≤ x . �

1.12 Primitive Roots

Definition 1.12.1 Let a and b be relatively prime integers with b ≥ 2. The order of
a modulo b is the least natural number n such that an ≡ 1 (mod b).

It follows easily from the division algorithm that if ak ≡ 1 (mod b) for an integer
k, then n divides k. The converse statement is even easier. In particular, the order of
a modulo b must divide φ(b) by Euler’s theorem.

Also note that if a has order n modulo b, then ai ≡ a j (mod b) if and only if
i ≡ j (mod n), so the n integers a, . . . , an are pairwise incongruent modulo b.

The following result is also straightforward.

Proposition 1.12.2 If a has order n modulo b, then ak for a natural number k has
order n/gcd(n, k)modulo b. In particular, the numbers a and ak have the same order
modulo b if n and k are relatively prime.
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The condition for maximal order is important.

Definition 1.12.3 If the order of a modulo b is φ(b), we say that a is a primitive
root of b.

Not every integer has a primitive root. Our aim in this section is to classify those
that do.

Note that if a is a primitive root of b, then a, . . . , aφ(b) are congruent modulo b to
the integers between 1 and b that are relatively prime to b. Since any primitive root
of a must be found among these powers, and since the powers an with order φ(b)
correspond to those n that are relatively prime to φ(b), we get the following result.

Proposition 1.12.4 An integer b has φ(φ(b)) primitive roots provided it has any at
all.

Returning to existence, let us consider primes first, starting with some preliminary
results.

Lemma 1.12.5 Any nth degree integer coefficient equation modulo a prime number
p that does not divide the coefficient of the highest power, has at most n pairwise
incongruent solutions modulo p.

Proof The case n = 1 is a linear congruence, which has at most one solution by
Proposition 1.10.6. Assuming the lemma holds for n, we show that it holds for
n + 1. Say f (x) ≡ 0 (mod p) has degree n + 1, and say it has at least one solution
a. By high-school polynomial division we may write f (x) = (x − a)q(x) + r , and
r ≡ 0 (mod p) as f (a) ≡ 0 (mod p). If bwas another solution incongruent to a, then
(b − a)q(b) ≡ 0 (mod p) so q(b) ≡ 0 (mod p), and there can be only n such b′s by
our induction hypothesis. �

We will be more precise about polynomials and their properties in later chapters.

Corollary 1.12.6 If n is a divisor of p − 1 for a prime number p, then xn − 1 ≡
0 (mod p) has exactly n pairwise incongruent solutions.

Proof Write p − 1 = nk for some k. Then x p−1 − 1 = (xn − 1) f (x) with f (x) =
xn(k−1) + xn(k−2) + · · · + xn + 1. By Fermat’s little theorem the natural numbers
less than p are pairwise incongruent solutions of x p−1 − 1 ≡ 0 (mod p), and by the
lemma at most n(k − 1) = p − 1 − n of these solve f (x) ≡ 0 (mod p). So there has
to be at least p − 1 − (p − 1 − n) = n solutions of xn − 1 ≡ 0 (mod p). Again by
the lemma, there cannot be more than this. �

Proposition 1.12.7 If n is a divisor of p − 1 for a prime number p, there are φ(n)

pairwise incongruent integers with order n modulo p. In particular, there are φ(p −
1) pairwise incongruent primitive roots of p.
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Proof Let ψ(n) be the number of natural numbers less than p with order n modulo
p. By Fermat’s little theorem every natural number less than p has order n for some
divisor of p − 1, so p − 1 = ∑

n|p−1 ψ(n). By Corollary 1.11.12 it suffices to show
that ψ(n) ≤ φ(n). Since we are only proving an inequality, we can assume that
ψ(n) ≥ 1. If an integer a has order n modulo p, then by the corollary above, any
integer with order n modulo p must be congruent to one of the pairwise incongruent
numbers a, . . . , an . Among these only φ(n) have order n, so ψ(n) = φ(n). �

Example 1.12.8 By the proposition above there are φ(6) = 2 pairwise incongruent
integers that have order 6 modulo the prime number 31. We aim to find these.

The same proposition tells us that there are φ(31 − 1) = 8 primitive roots of 31.
We find them by trial and error among the integers 2, . . . , 30. Now 25 ≡ 1 (mod31)
rules out 2, but 315 �≡ 1 (mod 31), so 3 is a primitive root.

Thus any integer relatively prime to 31 is congruent to 3n for some integer n
between 1 and 30. By Proposition 1.12.2 the order of 3n is 30/gcd(30, n), and this is
6 if and only if gcd(n, 30) = 5. Hence n = 5 or n = 25. But 35 ≡ 26 (mod 31) and
325 ≡ 6 (mod 31), so 6 and 26 are the only integers having order 6 modulo 31. ♦

Next we exclude integers that do not have primitive roots.

Proposition 1.12.9 None of the integers 2n for n ≥ 3 has primitive roots.

Proof The integers that are relatively prime to 2n are the odd numbers, and if x
is odd, then xφ(2n)/2 ≡ x2

n−2 ≡ 1 (mod 2n), where we prove the latter equality by
induction: It holds for n = 3 as 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 2n), and assuming it
holds for n, so x2

n−2 = 1 + b2n for an integer b, we get

x2
n−1 = (1 + b2n)2 = 1 + 2n+1(b + b22n−1) ≡ 1 (mod 2n+1).

�

Proposition 1.12.10 If n and m are relatively prime integers greater than two, then
mn has no primitive roots.

Proof Since φ is multiplicative and is even on integers greater than two, we see that
the natural number b = φ(m)φ(n)/gcd(φ(m), φ(n)) is not greater than φ(mn)/2.
Any integer a relatively prime tomn is relatively prime to bothm and n, so by Euler’s
theorem, we get ab ≡ 1 (modm) and ab ≡ 1 (mod n). Hence ab ≡ 1 (modmn). In
otherwords, the order of any integer relatively prime tomn does not exceedφ(mn)/2,
so we have no primitive roots of mn. �

The previous two propositions limit the search for integers greater than one with
primitive roots to 2, 4, pn and 2pn for odd primes p and natural numbers n. We will
show that all these numbers indeed have primitive roots. Obviously 2 and 4 have the
primitive roots 1 and 3, respectively. The two remaining cases are more involved.

Lemma 1.12.11 Any odd prime p has a primitive root x with x p−1 �≡ 1 (mod p2).
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Proof By Proposition 1.12.7 we may pick a primitive root x of p. If it does not have
the required property, replace it by the primitive root x + p. The binomial formula
then gives

(x + p)p−1 ≡ x p−1 + (p − 1)px p−2 (mod p2) ≡ 1 − px p−2 (mod p2) �≡ 1 (mod p2)

as gcd(x, p) = 1 so p does not divide x p−2. �

Lemma 1.12.12 Let x be as in the previous lemma. Then

x pn−2(p−1) �≡ 1 (mod pn)

for every integer n greater than one.

Proof The lemma holds for n = 2.Assuming it holds for n, we proceed by induction.
By Euler’s theorem we may write

x pn−2(p−1) = xφ(pn−1) = 1 + bpn−1

for an integer b not divisible by p. By the binomial formula we then get

x pn−1(p−1) = (1 + bpn−1)p ≡ 1 + bpn (mod pn+1) �≡ 1 (mod pn+1),

which completes the induction step. �

Theorem 1.12.13 The integers greater than one that have primitive roots are
2, 4, pn and 2pn for any odd prime p and integer n greater than one.

Proof It remains to show that the last two type of numbers have primitive roots,
starting with pn .

By the lemmas there is a primitive root x of p with x pn−2(p−1) �≡ 1 (mod pn). We
show that x will also be a primitive root of pn . The order k of x modulo pn must
certainly divide φ(pn) = pn−1(p − 1), and evidently xk ≡ 1 (mod p), so p − 1 =
φ(p)must divide k, and wemay write k = pm(p − 1) for some non-negative integer
m ≤ n − 1. If m was less than n − 1, then pn−2(p − 1) would be divisible by k, and
we get the absurdity x pn−2(p−1) ≡ 1 (mod pn).

As for the second case 2pn , let y be a primitive root of pn . Replacing y by y + pn

if necessary, we may assume that y is odd, so gcd(y, 2pn) = 1. The order l of y
modulo 2pn must divide φ(2pn) = φ(pn). On the other hand, we evidently have
yl ≡ 1 (mod pn), and as y is a primitive root of pn , the number l is also divisible by
φ(pn), so l = φ(2pn). �

Definition 1.12.14 Say a and n are relatively prime integers. Then the index of a
relative to a primitive root b of n is the least natural number m ∈ {1, . . . , φ(n)}
such that a ≡ bm (mod n). We denote m by indb a, or simply ind a when the root is
understood.
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The index is the same for all elements congruent to amodulo n. Note that indb 1 ≡
0 (mod φ(n)) and that indb b ≡ 1 (mod φ(n))with notation as in the definition above.
We also have the following result.

Proposition 1.12.15 If b is a primitive root of n, and a and c are relatively prime
to n, then indb (ac) ≡ indb a + indb c (mod φ(n)).

Proof This is clear as bind a+ind c ≡ ac ≡ bind (ac) (mod n). �

Wemay thus convert the congruence axn ≡ b (mod n), where gcd(a, n) = 1 and
n has a primitive root, to the linear one ind a + n ind x ≡ ind b (mod φ(n)) in the
unknown ind x .

Example 1.12.16 Consider the prime number 13.Modulo 13 the powers 21, . . . , 212

of 2 are the 13 − 1 pairwise incongruent numbers

2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1

listed in corresponding order. So 2 is one of the φ(φ(13)) = 4 primitive roots of 13.
The remaining three are 2n with n ≥ 2 such that gcd(φ(13), n) = 1, so n = 5, 7, 11,
giving 6, 11 and 7 modulo 13, respectively. From the lists of powers of 2 given
above, we get for the numbers a = 1, 2, . . . , 12, the corresponding values ind2 a =
12, 1, 4, 2, 9, 5, 11, 3, 8, 10, 7, 6 for the index.

If wewish to solve 4x9 ≡ 7 (mod 13), we canworkwith the primitive root 2 of 13.
The congruence is then equivalent to ind 4 + 9 ind x ≡ ind 7 (mod 12), or 9 ind x ≡
9 (mod 12), which in turn is equivalent to ind x ≡ 1 (mod 4). Thus ind x = 1, 5 or
9. From the list of indices we then get the three possible solutions x = 2, 5 and 6
modulo 13.

We could of course have worked with any other primitive root of 13, then taken
the index relative to that root. ♦

The following criterion for solvability of congruences is sometimes useful.

Proposition 1.12.17 Suppose n has a primitive root and is relatively prime to
an integer a. Then xk ≡ a (mod n) has d = gcd(φ(n), k) solutions if and only if
aφ(n)/d ≡ 1 (mod n).

Proof The latter congruence is equivalent to (φ(n)/d) ind a ≡ 0 (mod φ(n)), which
holds if and only if d divides ind a. Now the former congruence is equivalent to
k ind x ≡ ind a (mod φ(n)), and this has d solutions ind x if and only if d divides
ind a. These are then in one-to-one correspondence with the pairwise incongruent
solutions of xk ≡ a (mod n). �

The case when n is a prime was first proved by Euler.

Example 1.12.18 By the proposition above the congruence x3 ≡ 4 (mod 13) has no
solution because 4φ(13)/gcd(φ(13),3) ≡ 44 ≡ 9 (mod 13).

The same proposition tells us also that x3 ≡ 5 (mod 13) has solutions since 54 ≡
1 (mod 13), and these are found by the method outlined in the previous example. ♦
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1.13 Quadratic Reciprocity

Here we focus on quadratic congruences of the form ax2 + bx + c ≡ 0 (mod p)
for an odd prime p relatively prime to a. Any solutions x can be found by first
solving y2 ≡ (b2 − 4ac) (mod p) for y and then solving the linear congruence 2ax ≡
(y − b) (mod p) for x .

So it suffices to study congruences of the form x2 ≡ d (mod p), and to avoid
trivialities, we assume that the integer d is relatively prime to p. Note that if x is a
solution of this congruence, then so is p − x , which is clearly incongruent to x , and
by Lemma 1.12.5, these are all solutions modulo p.

Definition 1.13.1 An integer a is a quadratic residue (non-residue) of an odd prime
p if it is relatively prime to p and if x2 ≡ a (mod p) has (not) a solution x .

Example 1.13.2 The quadratic residues of 7 are 1, 2 and 4 because modulo 7 we
have 12 ≡ 62 ≡ 1 and 22 ≡ 52 ≡ 4 and 32 ≡ 42 ≡ 2. The quadratic non-residues are
3, 5 and 6. Note that the residues and the non-residues partition the numbers 1, . . . , 6
in two equally large parts. The reason for this is Proposition 1.13.6 below. ♦

If an odd prime p is relatively prime to an integer a, then by Fermat’s little
theorem, we have (a(p−1)/2 − 1)(a(p−1)/2 + 1) = (a p − 1) ≡ 0 (mod p), so either
a(p−1)/2 ≡ 1 (mod p) or (a(p−1)/2 ≡ −1 (mod p), and clearly both cannot hold at
the same time.

The following result known as Euler’s criterion shows that these two conditions
distinguish quadratic residues from non-residues.

Proposition 1.13.3 If p is an odd prime relatively prime to an integer a. Then a is
a quadratic residue of p if and only if a(p−1)/2 ≡ 1 (mod p).

Proof The forward implication is clear since we can use Fermat’s little theorem to
any solution of the quadratic congruence.

For the opposite implication pick a primitive root b of p. Then a ≡ bn (mod p)
for some integer 1 ≤ n ≤ p − 1. The order p − 1 of b must divide n(p − 1)/2, so
n = 2m for some integer m, and a solution of the quadratic congruence is bm . �

Since 2(13−1)/2 ≡ −1 (mod 13) and 3(13−1)/2 ≡ 1 (mod 13), we know that 2 is
a quadratic non-residue of 13, whereas 3 is a quadratic residue. In fact, the two
incongruent solutions of x2 ≡ 3 (mod 13) are 4 and 9.

Definition 1.13.4 Given an integer a relatively prime to an odd prime p, then the
Legendre symbol (a/p) is 1 if a is a quadratic residue of p, and is −1 if a is a
quadratic non-residue of p.

Thus (3/13) = 1 and (7/13) = −1.
The nominator in the Legendre symbol clearly respects congruence modulo the

prime number in question.
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By the proposition above (a/p) ≡ a(p−1)/2 (mod p).Hence, ifb is relatively prime
to p, then (ab/p) = (a/p)(b/p) since this holdsmodulo p. So squares in nominators
can typically be removed, and (1/p) = 1. Also (−1/p) = (−1)(p−1)/2 since again
both identities holdmodulo p. Thus (−1/p) = 1 if p ≡ 1 (mod 4) and (−1/p) = −1
if p ≡ 3 (mod 4).

Example 1.13.5 The congruence x2 ≡ −38 (mod 13) admits a solution because
(−38/13) = 1 as

(−38/13) = (−1/13)(38/13) = (3 · 22/13) = (3/13) ≡ 3(13−1)/2 ≡ 1 (mod 13).

Proposition 1.13.6 We have
∑p−1

a=1 (a/p) = 0 for any odd prime p, so there are
(p − 1)/2 quadratic residues of p and (p − 1)/2 non-residues.

Proof Let b be a primitive root of p. Then for any a ∈ {1, . . . , p − 1} there exists a
uniquemember n among the same numbers such that a ≡ bn (mod p). Thus (a/p) ≡
(−1)n (mod p), so (a/p) = (−1)n , which add up to zero. �

From the proof we see that the quadratic residues of p are congruent modulo p
to the even powers of any primitive root b of p, whereas the quadratic non-residues
are congruent to the odd powers of b.

For instance, the quadratic residues 1, 2, 4 of 7 are congruent to 32, 34, 36 modulo
7, whereas the odd powers 31, 33, 35 of the single primitive root 3 of 7 are congruent
to the quadratic non-residues 3, 5, 6.

The following crucial result is known as Gauss’ lemma.

Lemma 1.13.7 Let a be an integer relatively prime to an odd prime p. If n is the
number of members in {a, 2a, . . . , ((p − 1)/2)a} whose remainders upon division
by p exceed p/2, then (a/p) = (−1)n.

Proof Let b1, . . . , bn and c1, . . . , cm be those remainders upon division by p that
exceed and succeed p/2, respectively. Then the (p − 1)/2 integers

c1, . . . , cm, p − b1, . . . , p − bn

lie between 1 and p/2. They are also pairwise incongruent because if ci = p − b j ,
then as ci ≡ ak (mod p) and b j ≡ al (mod p) for integers k, l between 1 and
(p − 1)/2, we get (k + l)a = ci + b j = p ≡ 0(mod p), so k + l ≡ 0(mod p) as
gcd(a, p) = 1, which is impossible. Hence c1, . . . , cm, p − b1, . . . , p − bn is just
a reordering of 1, . . . , (p − 1)/2. Thus

((p − 1)/2)! ≡ c1 · · · cm(p − b1) · · · (p − bn) ≡ (−1)nc1 · · · cmb1 · · · bn
≡ (−1)na · pa · · · ((p − 1)/2)a ≡ (−1)n((p − 1)/2)!a(p−1)/2

≡ (−1)n((p − 1)/2)!(a/p) (mod p),

which by cancelling ((p − 1)/2)! gives the desired result. �
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Example 1.13.8 The (13 − 1)/2 numbers 5, 10, 15, 20, 25, 30 have reminders
5, 10, 2, 7, 12, 4 upon division by 13, and of these three numbers are greater than
13/2, so (5/13) = (−1)3 = −1 by the lemma above. ♦
Proposition 1.13.9 For any odd prime p, we have (2/p) = 1 if p ≡ ±1 (mod 8)
and (2/p) = −1 if p ≡ ±3 (mod 8). Hence (2/p) = (−1)(p

2−1)/8.

Proof Let n be as in the lemma with a = 2. Then n = (p − 1)/2 − [p/4], and
it is easily checked that n is even when p ≡ ±1 (mod 8) and that n is odd when
p ≡ ±3 (mod 8). �

That 107 and 179 have 2 as a primitive root, is clear from the following result,
which is another application of Gauss’ lemma.

Corollary 1.13.10 If p and 2p + 1 are odd primes, then 2(−1)(p−1)/2 is a primitive
root of 2p + 1.

Proof If p ≡ 1 (mod 4), then the order n of 2(−1)(p−1)/2 = 2 modulo 2p + 1 must
divide φ(2p + 1) = 2p, and it cannot be p since 2p + 1 ≡ ±3 (mod 8)which by the
proposition, means that −1 = (2/(2p + 1)) ≡ 2p (mod (2p + 1)). And n certainly
cannot be 1 or 2, so n = 2p.

The case p ≡ 3 (mod 4) is proved similarly. �

So 179 has 2 as a primitive root, whereas 167 has −2 as a primitive root.
Here is another application of Proposition 1.13.9.

Corollary 1.13.11 There are infinitely many primes of the form 8n − 1.

Proof Say we had only p1, . . . , pk such primes. Then there must be an odd prime
divisor p of b = (4p1 · · · , pk)2 − 2. So (2/p) = 1, and by the proposition above p
must be of the form 8l ± 1. If all the odd prime divisors of b were of the form 8l + 1,
then b would be of the form 16c + 2; an impossibility. So we may pick a p of the
form 8l − 1. Then p must divide both b and p1 · · · , pk , which is also impossible. �

Lemma 1.13.12 If a and p are relatively prime odd integers with p prime, then

(a/p) = (−1)
∑(p−1)/2

i=1 [ia/p].

Proof By the division algorithm ia = [ia/p] + ri for integers ri between 1 and
p − 1. Thus if ri < p/2, then it is one of the integers c1, . . . , cm in the proof of
Gauss’ lemma, and it ri > p/2, then is one of b1, . . . , bn . Hence

(p−1)/2∑

i=1

ia =
(p−1)/2∑

i=1

[ia/p] +
m∑

i=1

ci +
n∑

i=1

bi

Using
∑(p−1)/2

i=1 i = ∑m
i=1 ci + ∑n

i=1(p − bi ) = pn + ∑m
i=1 ci − ∑n

i=1 bi to elimi-
nate

∑m
i=1 ci , we get
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n ≡
(p−1)/2∑

i=1

[ia/p] (mod 2),

and the result follows by Gauss’ lemma. �

Thus (5/13) = (−1)
∑6

i=1[i5/13] = (−1)0+0+1+1+1+2 = −1.
Our main result is the following Gauss’ quadratic reciprocity law.

Theorem 1.13.13 We have

(p/q)(q/p) = (−1)
p−1
2

q−1
2

for distinct odd primes p and q.

Proof Consider the rectangle R in the xy-plane with vertices (0, 0), (p/2, 0),
(0, q/2), (p/2, q/2). The number of lattice points, i.e. points (n,m) with integers
1 ≤ n ≤ (p − 1)/2 and 1 ≤ m ≤ (q − 1)/2, inside R is (p − 1)(q − 1)/4. None of
these points lie on the diagonal y = (q/p)x .

The number of lattice points in R below this diagonal is
∑(p−1)/2

i=1 [iq/p], whereas
the number of those above is

∑(q−1)/2
i=1 [i p/q]. Hence

p − 1

2

q − 1

2
=

(p−1)/2∑

i=1

[iq/p] +
(q−1)/2∑

i=1

[i p/q]

and the result is clear from the lemma. �

Corollary 1.13.14 For distinct primes p and q, we have (p/q)(q/p) = 1 and
(p/q) = (q/p) if p ≡ 1 (mod 4) or q ≡ 1 (mod 4), and (p/q)(q/p) = −1 and
(p/q) = −(q/p) if p ≡ q ≡ 3 (mod 4).

Proof This follows from the theorem since the number (p − 1)(q − 1)/4 is even in
the first case and odd in the second case. �

We can now effectively calculate (a/p) for an odd prime p and an integer a
relatively prime to p, by prime factorizing a, removing higher order powers of primes
and using multiplicativity, till we are left with Legendre symbols of the type (±1/p)
and (2/p) and (q/p). The first two types we already know how to calculate, and to
calculate the last type, we use the quadratic reciprocity law repeatedly together with
modulo simplifications to reduce to the first two cases.

Example 1.13.15 We have

(29/53) = (53/29) = (24/29) = (2/29)(3/29) = −(29/3) = −(2/3) = 1.

♦
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By the corollary and the obvious facts that (p/3) = 1 if p ≡ 1 (mod 3) and
(p/3) = −1 if p ≡ 2 (mod 3) for an odd prime p �= 3, we get the following result.

Corollary 1.13.16 For an odd prime p �= 3, the Legendre symbol (3/p) is 1 if
p ≡ ±1 (mod 12) and it is −1 if p ≡ ±5 (mod 12).

Example 1.13.17 Since 1357 = 23 · 59 the congruence x2 ≡ 196 (mod 1257) has
a solution if and only if both x2 ≡ 196 (mod 23) and x2 ≡ 196 (mod 59) are solv-
able. By the corollary (196/23) = (12/23) = (3/23) = 1, so the first of these last
two congruences is solvable. The second one is also solvable because (196/59) =
(19/59) = −(59/19) = −(2/9) = 1. ♦

We consider now composite moduli.

Lemma 1.13.18 Say p is an odd prime relatively prime to an integer a. Then x2 ≡
a (mod pn) has a solution if and only if (a/p) = 1.

Proof Any solution of x2 ≡ a (mod pn) solves x2 ≡ a (mod p), so (a/p) = 1.
In the opposite direction we proceed by induction on n, assuming (a/p) = 1. The

case n = 1 holds by definition of (a/p). Assuming it holds for n, there are integers x
andb such that x2 = a + bpn .Wemaypick an integer y such that 2xy ≡ −b (mod p).
Then it is easily checked that (x + ypn)2 ≡ a (mod pn+1). �

Lemma 1.13.19 If a is an odd number, then:

1. x2 ≡ a (mod 2) has always a solution;
2. x2 ≡ a (mod 4) has a solution if and only if a ≡ 1 (mod 4);
3. x2 ≡ a (mod 2n) for n ≥ 3 has a solution if and only if a ≡ 1 (mod 8).

Proof The first two enumerated statements are obvious. The forward implication of
the third statement is clear since the square of an odd integer is of the form 8k + 1.

For the opposite direction we induct on n, assuming a ≡ 1 (mod 8). The case
n = 3 is clear. If we have solution of x2 ≡ a (mod 2n), there is an integer b such
that x2 = a + b2n . Then pick a solution y of xy ≡ −b (mod 2), and check that (x +
y2n−1)2 ≡ a (mod 2n+1). �

Theorem 1.13.20 Say 2n0 pn11 · · · pnrr is the prime factorization of b and that b is
relatively prime to a. Then x2 ≡ a (mod b) is solvable if and only if all (a/pi ) = 1
and a ≡ 1 (mod 4) if 4 and not 8 divide b and that finally a ≡ 1 (mod 8) whenever
8 divides b.

Proof This is clear from the last two lemmas since x2 ≡ a (mod b) has a solution if
and only if x2 ≡ a (mod 2n0) and all x2 ≡ a (mod pnii ) are solvable. �
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1.14 Certain Classes of Numbers

Definition 1.14.1 A natural number is perfect if it is the sum of all its positive
divisors less than itself.

Thus a natural numbern is perfect if andonly ifσ(n) = 2n. It is not knownwhether
there are infinitely many of them; perfect numbers are rare. The first six ones are
6, 28, 496, 8128, 33550336, 8589869056 and indeedσ(6) = 1 + 2 + 3 + 6 = 2 · 6,
etc.

Theorem 1.14.2 If n is an integer greater than two with 2n − 1 prime, then
2n−1(2n − 1) is perfect, and every even perfect number is of this form.

Proof If 2n − 1 is prime, then by multiplicativity of the arithmetic function σ , we
have

σ(2n−1(2n − 1)) = σ(2n−1)σ (2n − 1) = (2n − 1)((2n − 1) + 1) = 2 · 2n−1(2n − 1),

so 2n−1(2n − 1) is perfect.
If m is even and perfect, then m = 2n−1k for an integer n ≥ 2 and an odd integer

k. Then
2nk = 2m = σ(m) = σ(2n−1)σ (k) = (2n − 1)σ (k),

so k = a(2n − 1) for an integer a < k by Euclid’s lemma. Since both k and a are
divisors of k, we get 2na = σ(k) ≥ k + a = 2na, which shows that a = 1 and that
k = 2n − 1 is prime. �

Proposition 1.14.3 If a ≥ 1 and n ≥ 2 are integers with an − 1 prime, then n is
prime and a = 2.

Proof Since
(an − 1) = (a − 1)(an−1 + an−2 + · · · + a + 1)

and the second factor is greater than one, the first factor must be one, so a = 2.
If n = mk for integers m and k greater than one, then

(an − 1) = ((am)k − 1) = (am − 1)(am(k−1) + am(k−2) + · · · + am + 1)

with both factors greater than one. �

Indeed, the first six perfect numbers correspond to n = 2, 3, 5, 7, 13, 17 in the
theorem. Note that 211 − 1 = 23 · 89, and that it is open whether or not there are
infinitely many primes of the form 2p − 1.

Proposition 1.14.4 Even perfect numbers end with the digits 6 or 8.
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Proof By the theorem and proposition above there is no limitation in considering
an even perfect number a = 2p−1(2p − 1) with 2p − 1 prime for a prime p. Clearly
the result holds when p = 2.

If p = 4n + 1, then a = 2 · 162n − 16n . Utilizing the congruence 16k ≡
6 (mod 10) which by induction holds for any natural number k, we get a ≡
6 (mod 10).

If p = 4n + 3, then a = 2 · 162n+1 − 4 · 16n and by 16k ≡ 6 (mod 10), we get
a ≡ 8 (mod 10). �

In fact, a more careful study of the last case in the proof above (calculatingmodulo
100) shows that if the last digit of a perfect number is 8, then the last two digits are
28.

Definition 1.14.5 A Mersenne prime is a prime number of the form 2n − 1.

By Proposition 1.14.3 any Mersenne prime is of the form 2p − 1 for a prime p.
So 31 = 25 − 1 is a Mersenne prime, and so is the enormous number 231 − 1.

Here are some methods to decide when we have a Mersenne prime.

Proposition 1.14.6 If p and 2p + 1 are primes, then the latter either divides 2p − 1
or 2p + 1, but never both.

Proof Fermat’s little theorem gives (2p − 1)(2p + 1) ≡ 0 (mod 2p + 1). �

Which of these cases the prime 2p + 1 divides is decided by the following result.

Proposition 1.14.7 A prime number p = 2n + 1 divides 2n − 1 provided p ≡
±1 (mod 8). In particular, if n is a prime with n ≡ 3 (mod 4), then p divides 2n − 1.

Proof That p divides 2n − 1 means that 2(p−1)/2 ≡ 1 (mod p), in other words, that
(2/p) = 1. Hence the result follows from Proposition1.13.9. �

In particular, the number 2131 − 1 is composite.

Proposition 1.14.8 Divisors of 2p − 1 for odd primes p are of the form 2np + 1.

Proof If a is a divisor of 2p − 1, then the order m of 2 modulo a must divide p, and
since m ≥ 2, we get m = p. By Fermat’s little theorem this order must also divide
a − 1, so a − 1 = kp for an integer k that must be even since a and p are odd. �

Proposition 1.14.9 Any prime divisor q of 2p − 1 for an odd prime p satisfies
q ≡ ±1 (mod 8).

Proof Write q = 2n + 1 and a = 2(p+1)/2. Then aq−1 ≡ 2n (mod q), which com-
bined with Euler’s theorem aq−1 ≡ 1 (mod q), shows that q divides 2n − 1. The
conclusion then follows from Proposition 1.14.7. �
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Example 1.14.10 Consider a = 217 − 1. The integers of the form 34n + 1 less than√
a are

35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Among these only 103, 137, 239, 307 are prime. We can exclude the last one as
307 �≡ ±1 (mod 8). One checks that the remaining three potential prime divisors are
not divisors. So a is a Mersenne prime. ♦

The greatest prime numbers found are Mersenne primes, and these produce very
large even perfect numbers. It is open whether there are odd perfect numbers. Here
are a couple of result in this direction of inquiry.

Theorem 1.14.11 Every odd perfect number is of the form pn11 p2m2
2 · · · p2mk

k for
distinct odd primes pi and with p1 ≡ n1 ≡ 1 (mod 4).

Proof Let pn11 · · · pnkk be the prime number factorization of an odd perfect number
a. Then

σ(pn11 ) · · · σ(pn11 ) = σ(a) = 2a ≡ 2 (mod 4),

so say σ(pn11 ) ≡ 2 (mod 4) while the remaining σ(pnii ) are odd.
Consider the two cases pi ≡ ±1 (mod 4). With the minus sign the number

σ(pnii ) = 1 + pi + · · · + pnii is 0 modulo 4 if ni is odd, and it is 1 modulo 4 if
ni is even. Thus p1 ≡ 1 (mod 4). It is also clear that if pi ≡ −1 (mod 4) for i ≥ 2,
then ni must be even.

With the plus sign, we get σ(pnii ) ≡ 1 + ni (mod 4) for all i . So n1 ≡ 1 (mod 4) as
σ(pn11 ) ≡ 2 (mod 4). Since σ(pnii ) ≡ ±1 (mod 4) for i ≥ 2, the same identity shows
that ni must again be even. �

It is known that there are no odd perfect numbers below 10100, but this does not
rule out the possibility that there exists one.

Definition 1.14.12 A Fermat number is any number of the form 22
n + 1 for non-

negative n. It is called a Fermat prime if it is a prime number.

Proposition 1.14.13 Any prime number of the form 2n + 1 is a Fermat prime.

Proof If n is not a power of two, say n = (2m + 1)k for natural numbers m and k,
then we arrive at the contradiction

2n + 1 = (2k + 1)(22mk − 2(2m−1)k + · · · + 22k − 2k + 1).

�

The first five Fermat primes are 3, 5, 17, 257 and 65537.

Proposition 1.14.14 The number 22
5 + 1 is divisible by 641.
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Proof Set a = 27 and b = 5, so 1 + ab = 641. Then observe that 1 + ab −
b4 = 1 + (a − b3)b = 1 + 3b = 24, so 22

5 + 1 = 24a4 + 1 = (1 + ab − b4)a4 +
1 = (1 + ab)(a4 + (1 − ab)(1 + a2b2)). �

Proposition 1.14.15 Distinct Fermat numbers are relatively prime.

Proof Let m > n ≥ 0 be integers and set a = 22
m + 1 and b = 22

n + 1. Then

a − 2

b
= (22

n
)2

m−n − 1

22n + 1
= xk − 1

x + 1
= xk−1 − xk−2 + · · · − 1

with x = 22
n
and k = 2m−n . Hence any divisor of b must also divide a − 2, and if it

also divides a, then it must divide 2. �

Proposition 1.14.16 The number 3 serves as a primitive root of any Fermat prime
of the form 22

n + 1 with n ≥ 2, whereas 2 never does.

Proof Set a = 22
n + 1. Since 22

n+1 − 1 = a(22
n − 1) the order of 2 modulo a does

not exceed 2n+1 and φ(a) = a − 1 = 22
n
> 2n+1 by induction on n. So 2 cannot be

a primitive root of a.
Note thata is of the form12k + 5because4m ≡ 4 (mod 12) for all natural numbers

m by induction. Hence (3/a) = −1 by Corollary 1.13.16, and we get 3φ(a)/2 ≡
−1 (mod a) by Euler’s criterion, so 3 has order φ(a) modulo a. �

We will return to Fermat primes in the study of regular polygons.

1.15 Diophantine Equations

The most studied Diophantine equations are those associated with Fermat’s last the-
orem; a long standing conjecture by Fermat proved byAndrewWiles this millennium
using techniques from algebraic geometry.

Theorem 1.15.1 No triple (x, y, z) of natural numbers satisfy xn + yn = zn for any
integer n greater than two.

For n = 2 the statement is wrong.

Definition 1.15.2 A Pythagorean triple is a triple (x, y, z) of natural numbers that
satisfy x2 + y2 = z2. The triple is primitive if gcd(x, y, z) = 1.

The most familiar primitive Pythagorean triple is (4, 3, 5).

Lemma 1.15.3 For a primitive Pythagorean triple (x, y, z) either x is odd and y
is even, or vice verse, while z is always odd. In particular, no Pythagorean triple
consists of primes only.
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Proof If both x and y were even then 2 would be a divisor of x, y and z. If both x
and y were odd, then z2 would be 2 modulo 4, and this is impossible for the square
of any integer. �

The following result is clear from the fundamental theorem of arithmetic.

Lemma 1.15.4 If the product of two relatively prime natural numbers a and b is the
nth power of a natural number, then so are a and b.

So if ab = cn , then a = cn1 and b = cn2 for natural numbers c and ci .

Proposition 1.15.5 All primitive Pythagorean triples (x, y, z)with x even are given
by x = 2ab and y = a2 − b2 and z = a2 + b2 with relative prime integers a > b > 0
such that a �≡ b (mod 2).

Proof By the first lemma there is no restriction in assuming that x is even and
that y and z are odd. Hence there are relatively prime integers m and n such that
z + y = 2m and z − y = 2n. As (x/2)2 = mn, the second lemma provides relatively
prime integers a > b > 0 with m = a2 and n = b2, giving the desired formulas for
x, y and z. In order not to violate the first lemma, one of a and b is odd, while the
other is even.

Conversely, it is easily checked that given numbers a and b subject to the con-
ditions of the proposition, then (2ab, a2 − b2, a2 + b2) is a Pythagorean triple with
no prime dividing all three coordinates. �

Further primitive Pythagorean triples are (12, 5, 13) and (84, 13, 85). Using Fer-
mat’s little theorem it is also easy to see that 3 must divide exactly one of the first
two coordinates of any Pythagorean triple.

A Pythagorean triangle is any right triangle with sides having integral length.

Corollary 1.15.6 The radius of the inscribed circle of a Pythagorean triangle is
always an integer.

Proof Drawing the three lines from the vertices of the triangle to the center of
the inscribed circle with radius r , one gets three triangles with areas r x/2, r y/2
and r z/2 adding up to xy/2, so xy = r(x + y + z). By the proposition x = n2ab
and y = n(a2 − b2) and z = n(a2 − b2) for integers n, a, b. Plugging these into the
former equation gives r = nb(a − b). �

Here is another consequence of the classification of Pythagorean triples. Another
important ingredient in the proof of the following result is the method of infinite
descent.

Theorem 1.15.7 No triple (x, y, z) of natural numbers satisfies the equation x4 +
y4 = z2.
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Proof Suppose to the contrary that we have such a solution (x, y, z).Wemay assume
that x and y are relatively prime since (x/d, y/d, z/d2) is also a solution for any
divisor d of both x and y. Then (x2, y2, z) is a primitive Pythagorean triple. By the
previous proposition, we may write x2 = 2ab and y2 = a2 − b2 and z = a2 + b2,
where only one of the relatively prime natural numbers a and b is odd and where
we have arranged so that x2 and hence x is even. If b were odd, then 1 ≡ y2 =
a2 − b2 ≡ −1 (mod 4), so b = 2n for an integer n. Applying the previous lemma to
(x/2)2 = an, there are natural numbers z1 and w1 with a = z21 and n = w2

1.
But (b, y, a) is evidently also a primitive Pythagorean triple, and by the previous

proposition, there are relatively prime integers s > t > 0 such that b = 2st and
y = s2 − t2 and a = s2 + t2. Since st = w2

1, then by the previous lemma we may
write s = x21 and t = y21 for natural numbers x1 and y1. Observe that x41 + y41 = z21
and z1 ≤ a ≤ a2 < z. Repeating the argument we can produce yet another solution
(x2, y2, z2) of natural numbers with z2 < z1, and we can continue this. Such an
infinite descent among the natural numbers cannot happen. �

This theorem proves Fermat’s last theorem for n = 4. Factorizing general n, we
therefore see that Fermat’s last theorem is equivalent to the statement that no triple
(x, y, z) of natural numbers satisfy x p + y p = z p for any odd prime p. An ’elemen-
tary’ proof of this is not known to exist although extensive work by Kummer has
shown the result to hold for a large class of primes.

The special case n = 4 says that there are no Pythagorean triangles with integer
square lengths as sides. However, there are Pythagorean triangles whose lengths of
sides, if increased by one, are integer squares, like (132 + 1, 102 + 1, 142 + 1). It is
not known whether there are infinitely many such triples. It is also unknown whether
there are infinitely many Pythagorean triples with triangular numbers n(n + 1)/2 as
coordinates, one of which is given by n = 132, 143, 164.

We consider yet another Diophantine equation studied by Fermat.

Proposition 1.15.8 No triple (x, y, z) of natural numbers satisfies the equation x4 −
y4 = z2.

Proof Say we have a solution (x, y, z) of natural numbers. By the well-ordering
principle we may assume it is one with least value of x . If x = 2n for an integer n,
then (n, 2y, 4z) is another solution, so x must be odd. Also, if x = da and y = db
for natural numbers a, b, d, then (a, b, d2z) is another solution, so x and y must be
relatively prime.

Assume first that y is odd. By the previous proposition there are relatively
prime integers s > t > 0 such that z = 2st and y2 = s2 − t2 and x2 = s2 + t2. Then
(s, t, xy) is another solution of natural numberswith s < x . So ymust be even.Hence
y2 = 2st and z = s2 − t2 and x2 = s2 + t2.

Say s is even. By the last lemma, there are natural numbers u, v such that 2s = u2

and t = v2. As u2 is even, there is an integer w with u = 2w. Again by the previous
proposition there are relatively prime integers k > l > 0 such that 2w2 = 2kl and
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v2 = k2 − l2 and x = k2 + l2. The last lemma provides natural numbers i, j with
k = i2 and l = j2. Then (i, j, v) is another solution with i < x . The case s odd is
dealt with similarly. �

Corollary 1.15.9 The area of a Pythagorean triangle is never an integral square.

Proof Say a Pythagorean triple has sides with lengths z > x ≥ y. If xy/2 = n2 for
an integer n, then (x2 − y2)2 = z4 − (2n)4 contradicts the proposition. �

1.16 Sums of Squares

Here we will investigate to what extend a natural number can be written as the sum
of integer squares, starting with sums of two squares. To this end we need a result
by Axel Thue.

Lemma 1.16.1 For an integer a relatively prime to a prime number p, the congru-
ence ax ≡ y (mod p) admits a non-trivial solution (x, y) with |x |, |y| between zero
and [√p].
Proof The set {ax − y | 0 ≤ x, y ≤ [√p]} has cardinality greater than p, so there
must be two distinct elements (xi , yi )with a(x1 − x2) ≡ y1 − y2 (mod p), providing
the required solution (x1 − x2, y1 − y2). �

Proposition 1.16.2 An odd prime p is the sum of two integer squares if and only if
p ≡ 1 (mod 4).

Proof No integer which is 3 modulo 4 can be the sum of two integer squares because
the square of any integer is either 0 or 1 modulo 4. This proves the only if part.

Conversely, suppose p ≡ 1 (mod 4). Pick an integer a such that a2 ≡ −1 (mod p),
and then by the lemma a solution (x, y) of ax ≡ y (mod p) with |x |, |y| between
zero and [√p]. Then −x2 ≡ (ax)2 ≡ y2 (mod p), so x2 + y2 is an integer multiple
of p. As 0 < x2 + y2 < 2p, we must therefore have x2 + y2 = p. �

It can also be shown that up to order and squares of negatives, any such representa-
tion of a prime is unique. As a numerical example we have the unique decomposition
13 = 22 + 32.

Let us go beyond primes.

Proposition 1.16.3 A natural number is the sum of two integer squares if and only
if its prime factors that are 3 modulo 4 occur to even powers.

Proof Any natural number can be written as n2m with m square-free. Assume m =
p1 · · · pk has no prime factor pi which is 3 module 4. By the previous proposition
each pi is the sum of two integer squares. The identity

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2
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shows that the product of finitely many numbers that are sums of two squares is again
a sum of two integer squares. Hence n2m is the the sum of two integer squares.

Conversely, if n2m = a2 + b2 for integers a and b with a prime divisor p of m.
Write a = sd and b = td for integers with s and t relatively prime. Then s2 + t2 ≡
0 (mod p) as m is square-free. Say s is relatively prime to p, so su ≡ 1 (mod p)
for some integer u. Then 1 + (tu)2 ≡ 0 (mod p), and p ≡ 1 (mod 4) since −1 is a
quadratic residue of p. �

Uniqueness is lost as the example 52 + 02 = 32 + 42 shows.

Proposition 1.16.4 A natural number is the difference of two integer squares if and
only if it is not 2 modulo 4.

Proof For any integers a, b the number a2 − b2 will never be 2 modulo 4.
Conversely, suppose a natural number n is not 2 modulo 4. If n is 1 or 3 modulo

4, then n = ((n + 1)/2)2 − ((n − 1)/2)2. And if n is 0 modulo 4, then n = (1 +
n/4)2 − (1 − n/4)2. �

We notice from the proof that any odd prime is the difference of two successive
integer squares, and in this case one has uniqueness because a2 − b2 = (a + b)(a −
b).

Let us move to sums of three squares.

Theorem 1.16.5 A natural number is the sum of three integer squares if and only if
it is not of the form 4n(8m + 7).

Proof We prove only the easy direction, namely, that no natural number of the stated
form is the sum of three integer squares. The case n = 0 is trivial since a2 + b2 + c2

can never be 7 modulo 8 for any integers a, b, c.
Next, if 4n(8m + 7) = a2 + b2 + c2 for n ≥ 1, then a, b, c must all be even, so

we can divide the identity by four and get one with n − 1 instead of n. Continuing
this we finally arrive at the impossibility described in the first paragraph. �

Finally, we consider the even more liberal case of sums of four integer squares,
aiming for Lagrange’s theorem, which says that such a representation is always
possible.

Lemma 1.16.6 Any finite product of integers that are sums of four integer squares,
is again such a sum.

Proof This is clear form the identity

(a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24)

= (a1b1 + a2b2 + a3b3 + a4b4)
2 + (a1b2 − a2b1 + a3b4 − a4b3)

2

+ (a1b3 − a2b4 − a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 − a4b1)

2.

�
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Lemma 1.16.7 For any odd prime p the congruence x2 + y2 ≡ −1 (mod p) has a
solution with 0 ≤ x, y < p/2.

Proof One sees that no two elements of {1 + 02, 1 + 11, . . . , 1 + ((p − 1)/2)2} are
congruent, and nor is this the case for {−02,−12, . . . ,−((p − 1)/2)2}. Since there
are p + 1 elements belonging to the union of these two sets, some element in the
first set must be congruent to some element in the second set. In other words, there
is 0 ≤ x, y < p/2 with 1 + x2 ≡ −y2 (mod p). �

Corollary 1.16.8 For any odd prime p there is an integer n < p such that np is the
sum of four integer squares.

Proof By the lemma there are integers 0 ≤ x, y < p/2 such that x2 + y2 + 12 +
02 = np for some integer n with np < p2/4 + p2/4 + 1 < p2. �

Theorem 1.16.9 Any natural number is the sum of four integer squares.

Proof By the lemma and corollary above together with the fundamental theorem
of arithmetic, it suffices to show that for any odd prime p, the least natural number
n < p such that np = x2 + y2 + z2 + w2 for some integers x, y, z, w is actually
one.

It certainly cannot be even, for by rearranging x, y, z, w, we may assume that
x ≡ y (mod 2) and z ≡ w (mod 2), and then

(n/2)p = ((x − y)/2)2 + ((x + y)/2)2 + ((z − w)/2)2 + ((z + w)/2)2

violates minimality of n.
If n ≥ 3, we can find integers a, b, c, d with absolute value less than n/2 such

that a ≡ x (mod n) and b ≡ y (mod n) and c ≡ z (mod n) and d ≡ w (mod n). Then
a2 + b2 + c2 + d2 = kn for some natural number k such that kn < n2. If k = 0, then
a = b = c = d = 0 and n would divide p, which is impossible as 1 < n < p. Also
k < n.

Now (np)(kn) can by the lemma be written as r2 + s2 + t2 + u2 and r, s, t, u are
all divisible by n. Thus kp is the sum of four integer squares, and this contradicts
minimality of n. �

This result can be generalized, very much so that a whole industry emerged work-
ing on Waring’s problem: Does there exist a function f : N → N such that for any
fixed natural number n, any natural number can be written as

an1 + · · · + anf (n)

for some integers ai? Hilbert settled this in the affirmative. Once one function is
known to exist, there must also be a least one, meaning that its value at every n
is not greater than the value of any other candidate at n. Letting f be the minimal
one, the two previous theorems tell us that f (2) = 4. Obviously f (1) = 1. Much
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less obvious are the facts that f (3) = 9 and f (5) = 37. In fact, it it believed that
f (n) = [(3/2)n] + 2n − 2 for any n, and this has moreover been verified for all but
finitely many n.

Another problem is to decide to what extend any nth power of a natural number is
the sum of n terms of nth powers of natural numbers. For instance, we have 3534 =
304 + 1204 + 2724 + 3154 and 725 = 195 + 435 + 465 + 475 + 675, but for higher
powers the situation is unclear. One can also manage with less terms, as 1445 =
275 + 845 + 1105 + 1335 shows.

1.17 Fibonacci Numbers

Studying the growth of a population of rabbits, Fibonacci came upwith the following
recursive sequence.

Definition 1.17.1 Let u1 = u2 = 1 and define the remaining Fibonacci numbers by
un = un−1 + un−2 for n ≥ 3.

So the Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, . . . .

Proposition 1.17.2 Successive Fibonacci numbers are relatively prime.

Proof Any common divisor of un+1 and un must by the recursive relation also divide
un−1, till ultimately it must also divide u2 = 1. �

Moregenerally,wewill see that the greatest commondivisor of Fibonacci numbers
is again Fibonacci. To this end we need the following result.

Lemma 1.17.3 The identity um+n = um−1un + umun+1 holds for all natural num-
bers m, n with m ≥ 2.

Proof The proof goes by induction on n withm fixed; the case n = 1 being obvious.
Assuming it holds for n and n − 1, it must also hold for n + 1 as

um+n+1 = um+n + um+n−1 = (um−1un + umun+1) + (um−1un−1 + umun)

= um−1(un + un−1) + um(un+1 + un) = um−1un+1 + umun+2.

�

Corollary 1.17.4 The number umn is divisible by um for all natural numbers m
and n.

Proof Fixingm, the claim certainly holds for n = 1, and assuming it holds for n, we
see from the lemma that it also holds for n + 1. So the claim holds by induction. �
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Lemma 1.17.5 If m = qn + r , then gcd(um, un) = gcd(ur , un).

Proof By the lemma and the corollary above, we see that

gcd(um, un) = gcd(uqn−1ur , un) = gcd(ur , un)

as any common divisor of uqn−1 and un will be a common divisor of uqn−1 and uqn ,
and must be one by the proposition above, and then Euclid’s lemma applies. �

Theorem 1.17.6 We have

gcd(um, un) = ugcd(m,n)

for all m and n.

Proof We may assume that m ≥ n. By the Euclidean algorithm applied to finding
the greatest common divisor of m and n, together with repeated application of the
previous lemma, we see that gcd(um, un) = ur , where r = gcd(m, n) is the last
non-zero remainder in the algorithm. �

Corollary 1.17.7 The number um divides un if and only if m divides n.

Proof By the previous corollary, it suffices to show the forward implication. If um |un ,
then ugcd(m,n) = gcd(um, un) = um , so m = gcd(m, n). �

Adding the identities um = um+2 − um+1 for m = 1, . . . , n, and canceling terms,
we get

u1 + · · · + un = un+2 − 1.

Another identity is given by the following result.

Proposition 1.17.8 The identity

u2n = un+1un−1 + (−1)n−1

holds for any integer n ≥ 2.

Proof We have

u2n − un+1un−1 = un(un−1 + un+2) − un+1un−1 = (un − un+1)un−1 + unun−2

= (−1)(u2n−1 − unun−2) = · · · = (−1)n−2(u22 − u3u1).

�

Proposition 1.17.9 Every natural number is a sum of distinct Fibonacci numbers.
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Proof We show by induction that each member of 1, 2, . . . , un − 1 for n ≥ 3 is
a sum of members from {u1, u2, . . . , un−2}, none repeated. Obviously it holds for
n = 3. Assuming it holds for n, say a is a natural number with un − 1 < a < un+1,
then a − un−1 is less than un , and by hypothesis is a sum of distinct members from
{u1, . . . , un−2}. So the induction step holds. �



Chapter 2
Construction of Numbers

In this chapter we turn to the staple diet of fractions and real and complex numbers
digested in calculus courses, and regard the meal from a more fundamental point of
view.Even theGodgivennatural numbers are up for new investigationwith the advent
of set theory which on the threshold of the 20th-century aimed to land mathematics
on amore solid footing. Peano had a decent shot at it by deducing everythingwe know
about the natural numbers starting with a certain injective function on a certain set.
We honor this attempt with a section in this book, although I am not sure whether
his axiom is so much more natural than the well-ordering principle together with
addition and multiplication of elements we think of as numbers.

Having gotten our hands on the natural numbers, the idea is to construct all the
other numbers using set theory, and we do so in successive order; first the whole
numbers, then the rational numbers, next the real numbers, and finally the complex
numbers. The construction of the integers and their fractions is obtained by introduc-
ing a clever equivalence relation, first on the natural numbers, to obtain the integers
as the equivalence classes, and then another equivalence relation on the integers to
obtain the fractions. In the course of doing this we formalize the notions of a ring
and a field, which will play an important role in this book. Their presence is reflected
in the fact that the integers have a zero element and that numbers can be subtracted,
while for the rational numbers, even division by a non-zero number makes sense.

The leap to the real numbers historically required much more effort, withstanding
attempts for more than 2000years. It must have stung the old Greeks that believed
that everything, even music, could be described by rational numbers. Yet, their own
Pythagorean theorem produced lengths with square two, and no such entity can actu-
ally be a rational number. So is there any hope in attaching some sort of number to
such a length? At least there exists a sequence of rational numbers with square entries
that approximate two, in that they get as close to two as one wishes if one goes far
enough out in the sequence. The breakthrough was to consider so called Cauchy

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
L. Tuset, Abstract Algebra via Numbers,
https://doi.org/10.1007/978-3-031-74623-9_2

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74623-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-74623-9_2


48 2 Construction of Numbers

sequences of rational numbers, that is, sequences that behave as if they converge
to something (without actually doing so), in that the members of the sequences get
arbitrarily close to each other sufficiently far out in the sequence. An equivalence
relation between suchCauchy sequences is introduced by declaring those having tails
getting arbitrarily close to each other as equivalent. The algebraic operations from
the rational numbers pass to equivalence classes by applying them term wise to the
corresponding representatives. A distance can also be introduced by considering dis-
tances between the tails of the corresponding representatives. The rational numbers
can be considered as those classes containing constant sequences. The essential point
is that this ordered field of classes is complete in the sense that any Cauchy sequence
will converge to a class consisting of a representative cleverly chosen among the
representatives of the classes in the sequence. Hence numbers like the square root of
two and π will belong there. We have sketched the construction of the real numbers.
They are characterized as the complete ordered field containing the rational num-
bers as a dense ordered subfield. Completeness can also be described by a property
reminiscent of well-ordering, namely that any subset bounded below has a largest
lower bound, the infinum of the subset, or equivalently, the least upper bound, or
supremum, of any subset bounded above. A more hands-on description of the real
numbers, is to regard them as infinite decimal expansions, which we also study here.

It must have come as a shock to the community, to realize that something as
sensible and rigorous as the real numbers, could not be counted, no matter how
drilled, patient or ingenious one was. In fact, the real numbers cannot even be listed,
that is, as an infinite list. You don’t actually need to be able to count to just set up
a string of elements. Imagine, you send your sheep off to the field in the morning,
putting a stone in your pocket for every sheep that passes through the gate. When
you take the sheep in for the night, you drop a stone on the ground for each sheep
that passes back through the opening. When all the stones are gone from you pocket,
you know that all the sheep have returned. You have kept track of the size of the set
of sheep without counting. Similarly, you can say that two sets are of the same size,
or have the same cardinality, if there exists a bijection between them. No bijection
exists between the natural numbers and the real numbers, or what amounts to the
same thing, the latter set cannot be listed. It was Cantor’s diagonal argument that led
to this disturbing fact, and it led set theorists even further astray. All of a sudden one
had to handle infinities of different magnitudes. Soon sets could be spoken about
that were so large that they were not even accessible. Thanks to Gödel, the mere
existence of such types of sets could not be proved from the set theoretic axioms,
demonstrating the limitations of any rich enough axiomatic approach. All this might
seem pretty disillusioning, but our task is to push boarders to the limits of what we
can say, a not so modest goal.

The last step in the construction of numbers, namely from the real to the complex
ones, is surprisingly simple; they appear as ordered pairs of real numbers. There is
a challenge in defining a reasonable product of such pairs, as the coordinate wise
product won’t do. The construction is more geometric. Consider the pairs as the
endpoints of arrows in the plane which start at the origin. Two arrows can be mul-
tiplied by multiplying their lengths and adding their angles to the x-axis, obtaining
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this way a new arrow. The result is a (Cauchy) complete field, namely the complex
numbers, which contains the real numbers as the horizontal arrows in the xy-plane.
The stunning result of this simple construction, is that the complex numbers are
complete in another sense, namely algebraically complete. In fact, any polynomial
equation with complex coefficients always has complex solutions, and when counted
with multiplicity, the number of solutions equals the degree of the polynomial. This
is the fundamental theorem of algebra. It seems Gauss was so puzzled by it, that he
furnished a dozen proofs, perhaps to convince himself that it was indeed true. From
the point of view of equations, or dealing with limits, there is no need to construct any
bigger number system. In some sense there is actually no room for further expansion.

We spice up the chapter with a couple of sections about continued fractions. These
offer another way of looking at numbers, and using this, we provide a solution of
Pell’s equation in a separate section. We also look at p-adic numbers, a study which
opens a gate to other number fields.

2.1 Peano’s Axioms

Peano studied the natural numbers via the function n �→ n + 1. He realized that
everything about them, including addition and multiplication and an order with
required properties, could be constructed from the following data, which he regarded
as axioms.

Axiom 2.1.1 AsetNwith a distinguished element 1 and an injectivemap f : N → N

that does not hit 1 and has no proper invariant subsets that contain 1.

The property relating to invariant subsets echoes the induction principle; if 1 ∈ S
and f (S) ⊂ S, then S = N. Yet, there is no a priori reference to numbers in Peano’s
approach. Simplifying notation, we write a′ for f (a), and only after some effort, it
will be clear that the elements 2 = 1′, 3 = 2′, 4 = 3′, . . . deserve their names.

Peano’s axioms follow from the ZF-axioms in set theory. To see this requires a
rather elaborate and systematic setup, which we won’t enter here. From a philosoph-
ically point of view it might nevertheless be worth seeing how one imagines that
such data would occur. A set theorist think about the creation (of natural numbers)
like this: Say there is nothing. Then there is something, namely nothing. But then
you have even more; you have nothing, and in addition the status of having nothing.
But now you have nothing, and the status of having nothing, and the status of having
both nothing and the status of having nothing. And the list goes on.

It looks more serious in symbols (with the empty set φ as nothing):

{φ}, {φ, {φ}}, {φ, {φ}, {φ, {φ}}}, . . . , A, A ∪ {A}, . . .

The set N consisting of these elements, with 1 = {φ}, and map f (A) = A ∪ {A},
will do the job. Clearly f misses 1. To see that it is injective, first observe that for
any elements A and Ã, either A ⊂ Ã or Ã ⊂ A. For definiteness, say A ⊂ Ã. Now
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if A ∪ {A} = Ã ∪ { Ã}, then the only possibility left is {A} = { Ã}, which means that
A = Ã. Finally, the only invariant subsets are those that consist of all elements to
the right of some element A including A, so the one containing 1 has to be the whole
set.

Let us now return to the axioms. We start by observing that f hits everything
except 1.

Lemma 2.1.2 For any 1 �= a ∈ N, there is a unique b ∈ N such that a = b′.

Proof The set S = N
′ ∪ {1} is clearly an invariant subset of f that contains 1, so

S = N, and uniqueness of b is just injectivity of f . �

We define addition recursively.

Lemma 2.1.3 There exists exactly one binary operation on N, called addition +,
such that (i) a + 1 = a′ and (ii) a + b′ = (a + b)′ for all a, b ∈ N. Moreover, this
operation is associative, (a + b) + c = a + (b + c), and commutative, a + b = b +
a.

Proof For existence, let S consist of all a ∈ N such that a + b is defined for all b ∈ N

and such that (i) and (i i) hold. Now 1 ∈ S because we can define 1 + b to be b′ for
all b ∈ N, and then clearly 1 + 1 = 1′ and 1 + b′ = (b′)′ = (1 + b)′, so (i) and (i i)
hold. Next, if a ∈ S, so that a + b is defined, we can define a′ + b to be (a + b)′ for
all b ∈ N. Then a′ ∈ S because a′ + 1 = (a + 1)′ = (a′)′, so (i) holds for a′, and
a′ + b′ = (a + b′)′ = ((a + b)′)′ = (a′ + b)′ for all b ∈ N, so (i i) holds also for a′.
Thus S = N.

As for uniqueness, suppose ⊕ is another binary operation satisfying (i) and (i i).
Fix a ∈ N and let S = {b ∈ N | a + b = a ⊕ b}. Then 1 ∈ S because a + 1 = a′ =
a ⊕ 1. Also, if b ∈ S, then b′ ∈ S because a + b′ = (a + b)′ = (a ⊕ b)′ = a ⊕ b′.
So S = N, and the two operations coincide.

To see that + is associative, fix a, b ∈ N and verify that

S = {c ∈ N | (a + b) + c = a + (b + c)}

is an invariant subset for f that contains 1. To check commutativity is even easier. �

Multiplication is also defined recursively.

Lemma 2.1.4 There exists a unique binary operation on N, called multiplication
·, such that (i) a · 1 = a and (ii) a · b′ = a · b + a for all a, b ∈ N. Moreover, this
operation is associative, (ab)c = a(bc), commutative, ab = ba, and distributive,
a(b + c) = ab + ac, where we have suppressed the dot.

Proof The proof goes like that for the addition operation. To see that multiplication
distributes over addition, fix a, b ∈ N and let

S = {c ∈ N | a(b + c) = ab + ac}.
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Then 1 ∈ S because a(b + 1) = ab′ = ab + a = ab + a1. If c ∈ S, then c′ ∈ S
because

a(b + c′) = a(b + c)′ = a(b + c) + a = (ab + ac) + a = ab + (ac + a) = ab + ac′.

Thus S = N. �

As for the order operation, we need the following result.

Lemma 2.1.5 Let a, b ∈ N. Then exactly one of the following statements hold:

(i) a = b;

(ii) a = b + u for some u ∈ N;

(iii) b = a + v for some v ∈ N.

Proof We show that (i) and (ii) cannot hold simultaneously, because if so, then a =
a + u, which contradicts S ≡ {b ∈ N | b �= b + u} = N. To see that these two sets
are equal, observe first that 1 ∈ S because 1 �= u′ = 1 + u. Secondly, observe that if
b ∈ S, then b′ ∈ S because b �= b + u and by injectivity of f and commutativity of
+, we get b′ �= (u + b)′ = u + b′ = b′ + u. Therefore S = N.

Similarly, one sees that (i) and (iii) cannot hold simultaneously, and using
associativity, neither can (ii) and (iii).

It remains to see that at least one of the three statements must hold. Fix a ∈ N and
let S denote the set of b’s for which either (i), (ii) or (iii) hold. As usual we show that
S is an invariant set under f that contains 1, so S = N. Now 1 ∈ S because either
a = 1, in which case (i) holds, or a �= 1, and then a = u′ for some u by Lemma
2.1.2, so a = 1 + u, and (ii) holds. Next, if b ∈ S, then b′ ∈ S because if b = a,
then b′ = a′ = a + 1, so (iii) holds for b′, or if b = a + v, then b′ = a + v′, so again
(iii) holds for b′, or finally a = b + u, and then one of two cases will occur: Either
u = 1 and then a = b′, so (i) holds for b′, or u �= 1, and then u = w′ for some w by
Lemma 2.1.2, so a = b + w′ = b + 1 + w = b′ + w and (ii) holds for b′. In either
case b′ ∈ S. �

Definition 2.1.6 Let a, b ∈ N. We say that a is greater than b, and write a > b, if
a = b + u for some u ∈ N.

By the lemma above we see that either a = b, or a > b, or a < b, and that only
one of these statements can hold. Clearly < is transitive. So > is an order on N.

We also have the cancellation property: if a + b = a + c, then b = c, because
the alternative b = c + v for some v, means a + c < a + c, an impossibility, and
the remaining alternative c = b + v, means a + b > a + b, another absurdity. From
Lemma 2.1.2 we also see that any a ∈ N different from 1 is greater than 1.

We claim that a < b if and only if a + 1 ≤ b. To see this, note that if a < b, and
a + u = b with u �= 1, then by Lemma 2.1.2, we can write u = v′ for some v, and
then a + 1 + v = b, so a + 1 < b. The converse direction is even more obvious.

Finally, we prove the well-ordering principle.
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Lemma 2.1.7 Every non-empty subset of N possesses a least element.

Proof Suppose S ⊂ N is non-empty, and let T ⊂ N consist of those elements not
greater than any element of S. Then by the remarks above 1 ∈ T . Also by Lemma
2.1.3, we have a′ > a for all a ∈ N, so in particular a′ /∈ T for a ∈ S. Hence T �= N,
and T cannot be invariant, so there has to exist an element c ∈ T such that c′ /∈ T .
We are done if we can show that c ∈ S. Now if c /∈ S, then since c ∈ T , it has to be
smaller than all elements of S, but then by the remarks above c′ = c + 1 will not be
greater than any element of S, so c′ ∈ T , which is absurd. �

At this point we regard the elements of N as natural numbers with 2 = 1′, 3 = 2′,
etc.

2.2 The Integers Constructed from the Natural Numbers

Our next aim is to construct the integers from the natural numbers.
The idea behind the construction of the integers is to consider a − bwith a, b ∈ N

as a formal pair (a, b), and avoid any reference to the minus sign. Now if a − b is
supposed to correspond to (a, b), then we should not distinguish between (a, b) and
(c, d) whenever a − b = c − d. We can rewrite this equation as a + d = b + c, and
then we have gotten rid of the minus sign, and are left with an expression that makes
sense within N using only addition.

Definition 2.2.1 We say that (a, b) and (c, d) in N × N are equivalent, and write
(a, b) ∼ (c, d), if a + d = b + c.

It is easy to see that our ∼ is an equivalence relation. For instance, we see that
(a, b) ∼ (a, b) because a + b = b + a.

Definition 2.2.2 WriteZ for the quotient setN × N/ ∼, and denote the equivalence
class of (a, b) ∈ N × N by (a, b).

We proceed to show that the elements of Z deserve to be called integers.
Thinking about (a, b) as a − b and because (a − b) + (c − d) = (a + c) − (b +

d) and (a − b)(c − d) = (ac + bd) − (ad + bc), addition and multiplication in Z

ought to be defined as follows:

Definition 2.2.3

(a, b) + (c, d) = (a + c, b + d), (a, b) · (c, d) = (ac + bd, ad + bc).

Although our guiding formulas do not make sense, since they involve a minus
sign, our new definitions do, at least from the outset, since they only involve addition
and multiplication already defined in N.
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There is however a more subtle problem that needs to be dealt with:We are adding
and multiplying sets on the basis of having chosen some elements in them, and have
then added and multiplied these representative elements and taken their equivalence
classes. The resulting sets should not depend on these representatives, otherwise we
have definitions that depend on the choices of elements picked, and we have not even
specified how these choices are made, so in principle the reader has no idea of what
we are defining. We will however see that the resulting sets do not depend on the
representatives chosen, and when this is the case, we say that the operations are well-
defined. When defining things this way, via some representatives, well-definedness
should always be checked.

So how do we check that addition is well-defined? Suppose we have two other
representatives, one (ã, b̃) ∼ (a, b) and another (c̃, d̃) ∼ (c, d). Then we must show
that (ã + c̃, b̃ + d̃) ∼ (a + c, b + d), or equivalently, that ã + c̃ + b + d = b̃ + d̃ +
a + c. But this holds because by assumption, we know that ã + b = b̃ + a and c̃ +
d = d̃ + c. Of course, here we have skipped parentheses and swapped order since +
is associative and commutative. In a similar fashion one shows that multiplication in
Z is well-defined.

With these definitions it is straightforward to check that addition and multipli-
cation in Z are associative and commutative and that multiplication distributes over
addition. Also Z has an identity 1 ≡ (2, 1) for multiplication because

(a, b)1 = (a2 + b1, a1 + b2) = (a + (a + b), b + (a + b)) = (a, b)

as (a + (a + b), b + (a + b)) ∼ (a, b).
The interesting bit is that Z also has an identity (1, 1) for addition, which we call

zero, and denote 0, because (a, b) + 0 = (a + 1, b + 1) = (a, b), and what is more,
we have (a, b) + (b, a) = 0, so (b, a) is to be thought of as minus that of (a, b).

Definition 2.2.4 Any setwith two binary operations, say+ and ·with elements 0 and
1, that is associative, commutative and distributive is called a commutative ring with
identity 1 if each element x has an additive inverse −x , meaning that x + (−x) = 0.
If the ring is not commutative for multiplication, one requires the distributive law
(r + s)t = r t + st on the other side to hold as well, and an identity must then be
two-sided. Unless otherwise specified, a ring is not assumed to be commutative nor
unital, that is, having an identity.

It is easy to see that 0 and 1 in any ring are uniquely determined by their basic
properties, and that properties like 0r = 0 and (−r)(−r) = r2 automatically hold.

Returning to Z, it is easy to see that a �→ (a + 1, 1) defines a unital, additive
and multiplicative map N → Z that is injective, because if (a + 1, 1) = (b + 1, 1),
then (a + 1, 1) ∼ (b + 1, 1), so a + 2 = b + 2, and then a = b by the cancellation
property for N. Using this embedding we identify the elements in N with their
images in Z, so we write a for (a + 1, 1) and −a for its additive inverse (1, a + 1),
which is consistent with the notation for the identity 1. Then (a, b) = (a + 1, 1) +
(1, b + 1) = a + (−b), which we abbreviate as a − b, so any element of Z can be
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written as a difference of two elements in N ⊂ Z, which somehow was our starting
point, but now we have constructed the integers from the natural numbers by a set
theoretically legitimate procedure.

Next we would like to transfer the order from N to Z. This will be done in such a
way that N is the set of positive elements in Z.

Definition 2.2.5 An ordered domain is a ring R together with a subset P which is
closed under + and · and such that R is the pairwise disjoint union of P, {0} and
−P . Then an order can be introduced on R by declaring that a > b if a − b ∈ P .

So the elements of P are the positive elements, and those of −P are the negative
ones. Transitivity is true because P is closed under +. Clearly, also a > b implies
a + c > b + c for any c, and if also c > 0, then since P is closed under ·, we get
ac > bc.

Our discussion on integers culminates in the following result, yet to be proved.

Theorem 2.2.6 The integersZ together withN is an ordered domain with identity 1,
andN is well-ordered (consideredwith order fromZ). And any unital ordered domain
whose set of positive elements is non-empty and well-ordered, is of this form.

Proof We first show that Z together with N ⊂ Z is an ordered domain. Clearly N is
closed under addition and multiplication, so it suffices to prove that −N ∪ {0} ∪ N

is a partition of Z. Suppose (a, b) ∈ Z is non-zero, so a �= b. Then by Lemma 2.1.5,
either a = b + u or b = a + v for some u, v ∈ N, and the first case happens precisely
when (a, b) ∈ N, whereas the second case happens exactly when (a, b) ∈ −N. The
verification of this is routine; at some point one needs the cancellation property for
addition inN. For instance, if (a, b) ∈ −N, then (a, b) ∼ (1, v + 1) for some v ∈ N,
so a + v + 1 = b + 1 and b = a + v.

This also shows that the embedding n �→ (n + 1, 1) of N into Z is order
preserving, because a > b in N means that a = b + u for some u ∈ N, and thus

a − b = (a + 1, 1) − (b + 1, 1) = (a + 1, 1) + (1, b + 1) = (a + 2, b + 2) = (a, b) ∈ N,

so a > b also in Z. But then N ⊂ Z is well-ordered by Lemma 2.1.7.
Next assume that R is any unital ordered domain such that the set P of positive

elements is well-ordered. Denote the identity in R by e, and define a map θ : Z → R
by θ(n) = ne, where nemeans 0 if n = 0, or e added to itself n − 1 times if n ∈ N, or
−((−n)e) if n is negative. It is easy to see that θ is unital and preserves addition and
multiplication; a verification that strictly speaking should be checked by induction.
We are done if we can show that θ is bijective and that θ(N) = P , because then θ

preserves all relevant structure, i.e. is an isomorphism. Uniqueness (of form) is a
statement about unique structure; that is all that matters, not how we name things.
Since we are talking about partitions and because θ(−n) = −θ(n) for all n ∈ Z, we
only need to check that θ is bijective and that θ(N) ⊂ P .

First observe that the square a2 of any non-zero element a in R is positive, because
either a > 0, and then a2 = aa > 0, or−a > 0, and then a2 = (−a)(−a) > 0. Since
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P is non-empty, the identity e cannot be zero, for otherwise b = be = b0 = 0 for all
b ∈ R, and−P, {0}, P is not a partition of R = {0}. But then e = e2 > 0, so ne ∈ P
for any n ∈ N because e ∈ P and P is closed under addition. Hence θ(N) ⊂ P .

If θ(n) = θ(m) for n,m ∈ Z, and if say n > m, then θ(n − m) = 0 and n − m ∈
N, which contradicts θ(N) ⊂ P . So θ is injective.

As for surjectivity, suppose that S ≡ R\θ(Z) is not empty. Then S has to contain
at least one positive element, because if a ∈ S, then also −a ∈ S, otherwise if −a ∈
θ(Z), then also a ∈ θ(Z). Since P is well-ordered, there exists a least element a in
the subset of positive elements in S. Then a − e �= 0 as e ∈ θ(Z). If a − e > 0, then
a − e /∈ θ(Z) would be smaller than a. The only option left is that e − a > 0. Then
e > a = ae > a2, and a2 cannot belong to θ(Z) as otherwise e > a2 = ne for some
n ∈ N and this is impossible. So a2 ∈ S but this also contradicts the minimality of
a. Hence θ is surjective. �

This theorem characterizes the integers and the natural numbers. We also state
the following consequence.

Corollary 2.2.7 Any unital ordered domain R whose set of positive elements P is
non-empty and well-ordered, is commutative and has the property that if rs = 0,
then either r = 0 or s = 0.

Proof Commutativity is immediate from the theorem above.
To check the second property, by the theorem above, we may as well work with

Z. Suppose (a, b) · (c, d) = (1, 1), so ac + bd + 1 = ad + bc + 1. If (a, b) �= 0,
then a �= b, so either a = b + u or b = a + v. We consider only the case a = b + u
as the discussion for the other case is similar. Then plugging this into the previous
identity andusing the cancellationproperty inN,wegetuc = ud. If c �= d, then either
c = d + n or d = c + m for some n,m ∈ N. In the first case ud + un = u(d + n) =
uc = ud, so ud > ud, which is a contradiction. We get a similar contradiction in the
second case. So c = d and (c, d) = 0. �

Definition 2.2.8 Any commutative unital ring such that rs = 0 implies either r = 0
or s = 0, is called an integral domain.

This means that in the equation rs = r ′s one can cancel any non-zero s. This
property will be crucial when we now form the rational numbers from the integers,
since indeed Z is an integral domain.

2.3 From the Integers to the Rational Numbers

We think of a rational number as a quotient a/b of integers a, b where b �= 0. To
construct such quotients we proceed as we did when we produced the integers from
the natural numbers.



56 2 Construction of Numbers

Definition 2.3.1 Define a relation∼ between ordered pairs of integerswith non-zero
second coordinates by requiring that (a, b) ∼ (c, d) if ad = bc.

Considering a/b as (a, b) this is just a rewriting of a/b = c/d that makes sense
within Z.

Now ∼ is an equivalence relation. Reflexivity and symmetry are immediate from
commutativity of Z, and as for transitivity, if also (c, d) ∼ (c′, d ′), then (a, b) ∼
(c′, d ′), because (ad ′)d = d ′(ad) = d ′(bc) = b(cd ′) = b(dc′) = (bc′)d andwe can
cancel the non-zero d.

Definition 2.3.2 Write Q for (Z × (Z\{0}))/ ∼ and let [a, b] be the equivalence
class of the pair (a, b).

Since we think of [a, b] as a/b, addition andmultiplication inQ should be defined
as follows.

Definition 2.3.3

[a, b] + [c, d] = [ad + bc, bd], [a, b][c, d] = [ac, bd].

This makes sense since first of all bd �= 0 as b �= 0 and d �= 0, and secondly
because the equivalence classes on the right of = do not depend on the chosen
representatives in the equivalence classes on the left, i.e. the operations are well-
defined. Drawing on properties from Z it is easy to see that Q is a commutative ring
with zero 0 = [0, 1] and identity 1 = [1, 1], and −[a, b] = [−a, b]. What is more
interesting is that each non-zero element [a, b] has a multiplicative inverse, namely
the element [b, a], as [a, b][b, a] = [ab, ba] = 1.

Definition 2.3.4 A field is a commutative unital ring such that any non-zero element
has a multiplicative inverse.

So Q is a field. Now the map a �→ [a, 1] from Z to Q is clearly unital, additive,
multiplicative and injective, and upon identifying Z with its image inQ, we see that
[a, b] = [a, 1][1, b] = [a, 1][b, 1]−1 = a(1/b) ≡ a/b, where we have written 1/b
for b−1. SoQ is indeed the desired field of quotients of elements in Z, and should be
called the rational numbers. It is obviously also the smallest field containing Z, and
this characterizes Q.

LetQ+ be the subset ofQ of elements a/b where either both a and b are positive,
or both are negative. Then clearlyQ together withQ+ is an ordered domain, and the
natural numbers will be among the positive elements Q+.

Definition 2.3.5 An ordered field is an ordered domain that is also a field.

We have proved the following result.

Theorem 2.3.6 The rational numbers Q is the smallest ordered field that
contains Z.

Clearly any field of characteristic zero, that is, such that n · 1 �= 0 for all n ∈ N,
has to contain Q, which is then generated by the identity 1 of the field.
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2.4 Finite Simple Continued Fractions

Here we will look at rational numbers from a different perspective.

Definition 2.4.1 A finite simple continued fraction is a fraction of the form

a0 + 1

a1 + 1
···+ 1

an−1+ 1
an

,

where a0 is an integer and the partial denominators a1, . . . , an are natural numbers.
We also write [a0; a1, . . . , an] for the continued fraction.

The representation a = [a0; a1, . . . , an] is not unique: If an > 1, we may also
write a = [a0; a1, . . . , an − 1, 1], and if an = 1, then a = [a0; a1, . . . , an−1 + 1].
But these are the only options, so every finite simple continued fraction has a unique
representation with an (even) odd number of partial denominators. For instance, we
may write 2 + 1

3+ 1
5

= [2; 3, 5] = [2; 3, 4, 1].
Obviously, every finite simple continued fraction is a rational number. The

converse is also true.

Proposition 2.4.2 Any rational number can be written as a finite simple continued
fraction.

Proof Say we have a rational number a/b with b > 0. By Euclid’s algorithm, there
are integers n, ai , ri with 0 < r1 < b and 0 < ri < ri−1 such that a = ba0 + r1 and
b = r1a1 + r2 and ri−2 = ri−1ai−1 + ri for i ∈ {1, . . . , n + 1}with the exception that
rn+1 = 0. Then a/b = a0 + 1/(b/r1) and b/r1 = a1 + 1/(r1/r2) and ri−2/ri−1 =
ai−1 + 1/(ri−1/ri ) show that b/a = [a0; a1, . . . , an] as rn−1/rn = an . �

So we can indeed study rational numbers from the point of view of finite simple
continued fractions.

Consider now the Fibonacci numbers un . Applying the technique in the proof
above to rewrite a rational number as a continued fraction, we get un+1/un =
[1; 1, . . . , 1] with n + 1 ones. So as a continued fraction the ratio of two successive
Fibonacci numbers looks particularly simple.

Definition 2.4.3 The kth convergent Ck of [a0; a1, . . . , an] is [a0; a1, . . . , ak] for
1 ≤ k ≤ n. Set C0 = a0.

Note that if ak in Ck is replaced by ak + 1/ak+1, then one gets Ck+1.

Proposition 2.4.4 Given [a0; a1, . . . , an] and 0 ≤ k ≤ n, we have Ck = pk/qk,
where p0 = a0, q0 = 1 and p1 = a1a0 + 1, q1 = a1 and pk = ak pk−1 + pk−2 and
qk = akqk−1 + qk−2 for k ≥ 2.
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Proof The proposition is easily verified for k = 0, 1, 2. Assuming it is true for 2 ≤
k < n, we have

Ck = pk/qk = (ak pk−1 + pk−2)/(akqk−1 + qk−2).

Since the p’s and q’s in this formula do not depend on ak , we may replace ak by
ak + 1/ak+1 in the formula. Hence by the remark prior to this proposition together
with the recursive formulas for the p’s and q’s, the induction step is seen to hold. �

Proposition 2.4.5 If Ck = pk/qk is the kth convergent of a a simple continued
fraction [a0; a1, . . . , an] with 1 ≤ k ≤ n, then

pkqk−1 − qk pk−1 = (−1)k−1.

In particular, the integers pk and qk are relatively prime.

Proof The formula obviously holds for k = 1. Assuming it holds for k < n, and
using the recursive formulas for p and q, we see that the formula also holds for
k + 1.

As for the second assertion, the formula shows that any common divisor of pk
and qk must divide (−1)k−1. �

The second statement of this proposition shows that pk and qk are uniquely
determined by Ck = pk/qk .

Since for Fibonacci numbers un+1/un = [1; 1, . . . , 1], the formula in the propo-
sition above reproduces Proposition 1.17.8.

The formula in the proposition abovemay also be used to solve linear Diophantine
equations. Namely, if ax + by = 1 for relatively prime integers a and b, then writing
a/b as [a0; a1, . . . , an], we see that a = pn and b = qn as a/b = Cn = pn/qn . So

aqn−1 − bpn−1 = pnqn−1 − qn pn−1 = (−1)n−1,

which gives particular solutions x0 = qn−1, y0 = −pn−1 when n is odd, and x0 =
−qn−1, y0 = pn−1 when n is even. The general solution is then x = x0 + bm and
y = y0 − am for every integer m.

Example 2.4.6 We find all integers x and y such that 172x + 20y = 1000. Division
by four gives 43x + 5y = 250, where 43 and 5 are relatively prime.We first solve the
Diophantine equation 43x + 5y = 1. We find the finite simple continued fraction of
43/5 using Euclid’s division algorithm: 43 = 8 · 5 + 3, 5 = 1 · 3 + 2, 3 = 1 · 2 + 1
and 2 = 2 · 1. So 43/5 = [8; 1, 1, 2]. The convergents are thereforeC0 = 8/1,C1 =
9/1, C2 = 17/2 and C3 = 43/5, so p2 = 17, q2 = 2, p3 = 43 and q3 = 5. Then

43 · 2 − 5 · 17 = p3q2 − q3 p2 = (−1)3−1 = 1,



2.5 Construction of the Real Numbers 59

which when multiplied with 250 gives 43 · 500 + 5(−4250) = 250. Hence the gen-
eral integer solution of 172x + 20y = 1000 is x = 500 + 5m and y = −4250 −
43m for every integer m. ♦
Lemma 2.4.7 The denominators of the convergents of a finite simple continued
fraction grow with the length of the convergents, and strict inequality occurs from
the second convergent onwards.

Proof This is clear from the formula qk+1 = ak+1qk + qk−1 for the denomi-
nator of the (k + 1)th convergent Ck+1 of a finite simple continued fraction
[a0; a1, . . . , an]. �

Proposition 2.4.8 Let Ck be the kth convergent of a finite simple continued fraction.
ThenC0 < C2 < C4 < · · · andC1 > C3 > C5 > · · · and every convergent with odd
subscipt is greater than any one with even subscript.

Proof The first two inequality statements are immediate from the lemma and the
following identity

Ck+2 − Ck = pk+2

qk+2
− pk+1

qk+1
+ pk+1

qk+1
− pk

qk
= (−1)k(qk+2 − qk)

qkqk+1qk+2
.

As for the third statement, divide the identity pkqk−1 − qk pk−1 = (−1)k−1 by qkqk−1

to get Ck − Ck−1 = (−1)k−1/qkqk−1. From this also the second inequality in

C2i < C2i+2 j < C2i+2 j−1 < C2 j−1

holds for all integers i and j for which the expression makes sense. �

2.5 Construction of the Real Numbers

The Pythagoreans knew that the diagonal d of a square of length 1 satisfies d2 = 2.
This puzzled them since their aim was to reduce everything to numbers, including
harmonies, and rational numbers were the only numbers they knew of. And yet they
were facing a perfectly reasonable length that could not be realized as a rational
number.

Proposition 2.5.1 There exists no rational number d such that d2 = 2.

Proof Say d = a/b for integers a and b not both even, which we can safely assume.
Then a2 = 2b2 is even, so a has to be even (otherwise a2 would be odd), showing
that b2 and thus b is even, a contradiction. �

More generally, we have the following result.
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Proposition 2.5.2 If a natural number n is not the mth power of another, then n1/m

will be irrational.

Proof If we had n1/m = a/b for natural numbers a and b, then each prime factor in
am will occur a multiple of m times, and this will obviously not be so for all prime
factors in nbm . �

Similar problems relate to the area and circumference of the unit disc since π also
fails to be rational.

All this seems contraintuitive since between any two rational numbers there is
another, e.g. their average, so they are pretty dense, suggesting that there should be
few if no gaps between them. But this is very far from the truth. It took however
more than 2000years before the real numbers were constructed, and in one stroke
every length, area, volume, angle, etc. could be represented by numbers. This was
a dramatic event because up till that point their absence mounted to obstructions to
simple answers in geometry and algebra, and where indeed considered as such by
rigorous thinkers, but with the advent of the real numbers these obstructions where
embodied in numbers that could be studied effectively as algebraic objects. This sort
of process happens all the time in mathematics and in life; out of a thesis and an
antithesis grows a synthesis.

We shall also see that there are many more real than rational numbers amounting
to a certain substance that the rationals never could mobilize.

So how are the real numbers constructed? As often is the case in mathematics,
the answer might well lie right in front of your nose. First of all, observe that the
rational numbers approximate lengths and other geometric and physical quantities
arbitrarily well.

Example 2.5.3 Rational numbers approximate any d with d2 = 2 as well as we
please. One way of seeing this is to note that d lies between 1 and 2, and then
decide which half of this interval d belongs to. It will be the lower interval since
12 < 2 < (3/2)2. Continue this division till required accuracy is achieved. ♦

Why don’t we therefore consider the approximation itself as some sort of new
number? Does this make sense? And what are we asking precisely?

Pursuing this idea further, we consider new numbers as sequences of rational
numbers intended to approximate something arbitrarily well. If a sequence is sup-
posed to approximate something, the elements in the sequence should get closer to
each other the further out in the sequence one goes.

Definition 2.5.4 A sequence {an} of rational numbers is a Cauchy sequence if for
any natural number k, the non-negative difference |an − am | < 1/k for all n and m
greater than some N .

Clearly, two (or more) Cauchy sequences might approximate the same thing,
and then they ought to correspond to the same new number. Their eventual term
wise distance ought then to be zero, and we don’t want to distinguish between such
sequences.
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Definition 2.5.5 Two Cauchy sequences {an} and {bn} are said to be equivalent if
for any natural number k there exists another N such that |an − bn| < 1/k for every
n > N .

This is indeed an equivalence relation as any sequence has zero eventual term
wise distance to itself, and if one sequence has zero distance to another, then that
other sequence has no distance to the first one, and finally it is transitive, because if
a sequence has no distance to a second one, and that second one has no distance to
a third, then so will there be no distance between the first and the third.

Definition 2.5.6 The real numbers are all the equivalence classes of Cauchy
sequences of rational numbers.

Note that the definition of an equivalence class of Cauchy sequences of rational
numbers involves only rational numbers, otherwise we would be cheating.

For the definition to be any good, various things need to be checked. For these
equivalence classes to be called numbers, we must be able to define number-like
operations on them. But this is easy.

Definition 2.5.7 We add and subtract and multiply and divide real numbers by pick-
ing representatives in the classes, do these operations term wise and then form the
class of the resulting sequence.

We should convince ourselves that these operations do not depend on the particular
representatives chosen. For instance, the sum [{an}] + [{bn}] of two classes [{an}]
and [{bn}] is by definition the class which contains the Cauchy sequence {an + bn}.
If we picked other representatives {a′

n} and {b′
n}, then for any natural number k, we

get

|(a′
n + b′

n) − (an + bn)| ≤ |a′
n − an| + |b′

n − bn| <
1

k

for all natural numbers n large enough. So {a′
n + b′

n} will belong to the same class as
{an + bn}, and addition is well-defined. We therefore have a number system with an
obvious identity and zero class. These operations inherit properties from the rational
numbers, so we get a field.

It is also an ordered field with order defined as follows:

Definition 2.5.8 [{an}] < [{bn}] if an < bn eventually, that is, for all n greater than
some N .

Well-definedness is again easy to verify.
The rational numbers correspond to those classes which contain constant

sequences. This is a one-to-one correspondence which preserves order and addi-
tion and multiplication, so the real numbers, being this ordered field of classes, is an
extension of the rational numbers.

Example 2.5.9 When we approximated d with d2 = 2 we produced a Cauchy
sequence {an} of rational numbers such that eventually |a2n − 2| < 1/k. The class of
this sequence deserves the status as

√
2 because [{an}]2 − 2 = [{a2n − 2}] = 0. ♦
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By construction we get everything that can be approximated by rationals. But
what about quantities that can be approximated by these new numbers, can they also
be represented by numbers of the same type, or do we need to extend further? Put
differently, will Cauchy sequences of real numbers have limits as real numbers? The
answer is yes; real numbers are complete in this sense. Let us first formalize what
we mean.

Definition 2.5.10 A sequence of classes [{a(k)n}], or real numbers, converge to
[{bn}], or has this number as a limit, if for any natural number m there is another N
such that

|[{a(k)n}] − [{bn}]| <
1

m

for any k > N , which again means that there exists a natural number Mk such that

|a(k)n − bn| <
1

m

for every k > N and n > Mk . Cauchy sequences of real numbers are defined
analogously.

It is now clear that any Cauchy sequence [{a(k)n}]k of classes will converge to
the class of the sequence {a(n)n}, and the latter is indeed a Cauchy sequence as

|a(n)n − a(m)m | < |a(n)n − a(m)n| + |a(m)n − a(m)m |.

The rational numbers are dense in the set of real numbers, because given a class of
a Cauchy sequence {an} of rational numbers, there is a sequence [{b(k)n}]k of classes
that will converge to [{an}]. Namely, let b(k)n = an for n < k and b(k)n = ak for
n ≥ k, and note that the Cauchy sequence {b(k)n}, with k fixed, is equivalent to the
constant sequence associated to the rational number ak .

In conclusion we have constructed an ordered field R that is Cauche complete, in
that every Cauchy sequence of elements in it has a limit belonging to it. Moreover,
the rational numbers Q sits inside as a dense ordered field. In fact, these properties
characterize R, meaning that it is uniquely determined by these properties.

Theorem 2.5.11 There exists a unique Cauchy-complete ordered field R that
contains Q as a dense ordered field.

Proof To prove uniqueness, suppose that R̃ is another field with the same properties
as R. We want to identify R and R̃ by setting up a map a �→ ã, which should be
bijective and preserve all properties. How do we define it? Well, to a ∈ R we know
there exists a sequence {an} of rational numbers such that a = lim an , and being
necessarily Cauchy, this sequence also has to have a limit ã in R̃. Clearly, any other
sequence of rational numbers with limit a, will produce the same limit ã, so we have
a well-defined map a �→ ã from R to R̃. Using this argument once more, we can
define a map in the opposite direction R̃ → R, and it is easy to see that this map is
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the inverse of the previous one. So a �→ ã is bijective, and clearly it preserves order
and addition and multiplication since these properties are governed by those inQ. �

The members of R are the real numbers, and we don’t need to think of them any
more as classes of Cauchy sequences of rational numbers, which admittedly is rather
cumbersome. How they are constructed is not important, it is their properties that
matter, and we have singled out the essential ones, those that characterize them.

Our construction is due to Cantor. There are other constructions or realizations
of the real numbers. Dedekin, another pioneer, focused on the order structure and
regarded real numbers as certain subsets of Q called cuts. We won’t repeat his
approach here.

2.6 The Least Upper Bound Property

TheCauchy-completeness property of the real numbers can be replaced by a property
reminiscent of the well-ordering principle for natural numbers, namely, the least
upper bound property:

Proposition 2.6.1 For any non-empty subset S of R with an upper bound, there
exists a least number among the numbers greater than or equal to every element
of S. Such a least upper bound is called the supremum of S, and denoted by sup S.
Equivalently one can talk about the greatest lower bound, or infinum, with symbol
inf S, of a non-empty subset S of R that is bounded below. Furthermore, Theorem
2.5.11 is valid with Cauchy-completeness replaced by this least upper (or greatest
lower) bound property.

To get from one property to another, note that any Cauchy sequence {an} is a
non-empty subset of R that is bounded above and below, and converges to

lim sup an ≡ infmsup{an}∞n=m = supm inf{an}∞n=m ≡ lim inf an

provided the least upper (and hence the greatest lower) bound property holds. Con-
versely, if a subset S ofR has somemember s and an upper bound u ∈ R. Then adapt
the dividing-in-half-procedure that we performed for

√
2. If the average (s + u)/2 is

still an upper bound, repeat the argument with (s + u)/2 instead of u, or otherwise
with s replaced by (s + u)/2. The limit of the Cauchy sequence of upper bounds
obtained this way will obviously be a least upper bound for S.

Repeating the argument we used for natural numbers, with the well-ordering
principle replaced by the least upper bound property, we see that the Archimedean
property holds also for real numbers, so any real number will be smaller than any
positive real number multiplied by a large enough natural number.
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2.7 Decimal Expansions

It is customary to consider real numbers as decimal expansions, a realization we can
now get to quickly and which in view of our discussion, also seems very natural. The
decimal expression 364, 78 is the number 3 · 102 + 6 · 101 + 4 · 100 + 7 · 10−1 +
8 · 10−2, which is of course a rational number, as would any finite expansion be with
or without the convention of adding a tail of infinitely many zeros.

Definition 2.7.1 A decimal expansion

n−r · · · n−1n0, n1n2 · · ·

with digits nk ∈ {0, 1, . . . , 9} and non-negative integer r , means the real number that
is the limit of the Cauchy sequence {am} of rational numbers

am =
m∑

k=−r

nk · 10−k .

Proposition 2.7.2 Any real number admits a decimal expansion.

Proof The Archimedean property and the type of arguments used to establish this
property, will do. Indeed, given any positive real number a pick the greatest integer r
such that 10r ≤ a, and then the largest non-negative integer n−r such that n−r · 10r ≤
a. Having chosen n−r , . . . , nm−1, let nm be the greatest non-negative integer such
that

am ≡
m∑

k=−r

nk · 10−k ≤ a.

Then the sequence {am} clearly converges to a. If a was negative, find the expansion
for −a and put a minus sign in front. �

Proposition 2.7.3 Let a ∈ R. Then

m∑

n=0

an = 1 − am+1

1 − a
.

Hence the geometric series
∑∞

n=0 a
n converges if and only if |a| < 1, and it then

converges to
∞∑

n=0

an = 1

1 − a
.

Proof Let S ≡ ∑m
n=0 a

n . Then (1 − a)S = S − aS = 1 − am+1 upon telescoping
terms, and we are done. �
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Infinite expansions can still be rational numbers.

Example 2.7.4 Consider the number 1/3, which has the expansion 0, 333 · · · . To
recover 1/3 from the expansion, we single out a geometric series:

0, 333 · · · = 3(1/10 + 1/100 + · · · ) = 3 · (1/10)/(1 − 1/10) = 1/3.

♦
The rational numbers are distinguished by expansions that turn periodic, that is,

with digits ultimately repeated in blocks.

Example 2.7.5 The rational number 9/11 = 0.818181 · · · has period 2, while
3227/555 = 5, 8144144144 · · · has period 3 with repeated block 144. Note that
an expansion that terminates, like 21, 7 = 21.700 · · · = 21.699 · · · , has period 1. ♦

An expedient way to recover the fraction from a periodic expansion goes as
follows:

Example 2.7.6 Consider x = 5, 8144144 · · · . Then

(10000 − 10)x = 10000x − 10x = 58144, 144 · · · − 58, 144 · · · = 58086.

♦
So all periodic expansions are rational numbers. This means that expansions of

irrational numbers will never turn periodic.

Example 2.7.7 Some people take pride in memorizing digits of
√
2 and π , but will

ever only approximate such numbers by rational numbers, doomed to cut off the
expansions at best further to the right than their competitors.

In fact, any pattern in the digits ofπ would come as a surprise as it is conjectured to
be normal to base 10,meaning that any block of digits occur with expected frequency,
so 58 is expected to occur a hundredth of the time, and 467 every thousand.

It is also unknownwhether every digit occur infinitelymany times in the expansion
of π . ♦

The expansion of a fraction can be obtained by long division:

Example 2.7.8 For x = 5/74 we get x = 0, 06 · · · because 10 · 10 · 5/74 = 6 +
56/74. Next x = 0, 067 · · · because 10 · 56/74 = 7 + 42/74, and in the next
step x = 0, 0675 · · · as 10 · 42/74 = 5 + 50/74. At this stage we start on a new
period because 10 · 50/74 = 6 + 56/74, just as we had before. So we get x =
0, 0675675675 · · · .

The remainders in the division are 56, 42, 50, 56, 42, 50, . . . . Clearly, all it takes
for the expansion of a fraction to become periodic is that some remainder will be
repeated (in this case 56 is the first such), but the possible remainders are limited by
the denominator of the fraction (in this case to 0, 1, . . . , 73), so a periodic expansion
is ultimately unavoidable. ♦
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We have just seen that expansions of fractions will always turn periodic. In
conclusion we have shown the following result.

Proposition 2.7.9 The rational numbers are precisely the real numbers that admit
periodic expansions.

There are various results on the relation between fractions and the periodicity in
their expansions.

Proposition 2.7.10 If p is a prime number that is not a divisor of 10, the repeating
block in the extension of 1/p starts just after the comma. Furthermore, the length
of the block equals the order of 10 modulo p, that is, the smallest natural number n
such that 10n ≡ 1 (mod p).

By Fermat’s little theorem 10p−1 ≡ 1 (mod p), the number n has to be a factor
of p − 1. If the order is maximal, then the first p − 1 digits after the comma in the
expansion of any integer multiple of 1/p are rotated.

Example 2.7.11 The fraction 1/7 = 0, 142857 · · · has period 6, and the first 6 digits
after the comma in 3 · 1/7 = 0, 428571 · · · are obtained by rotating those of 1/7,
and so are those of 2 · 1/7 = 0, 285714 · · · , etc. ♦

Similar types of results hold for expansions of reciprocals of composites with
prime factors relatively prime to 10.

In our discussion on expansions we could have replaced the base 10 by any integer
larger than one, producing different realizations of the real numbers. We happened to
pick 10 because we have ten fingers, but 2 is a better choice for computers with their
on-and-off modus, allowing to handle the real numbers as binary numbers with digits
0 and 1. For example, the number 73, 5 (in the decimal expansion) reads 1001001, 1
in the binary expansion which by definition equals 26 + 23 + 20 + 2−1.

2.8 Infinite Continued Fractions

The generalization of finite continued fractions to infinite ones is clear.

Definition 2.8.1 Given a sequence an of integers with an ≥ 1 for n ≥ 1, the infinite
simple continued fraction [a0; a1, a2, . . . ] is the real number limn→∞ Cn , where Cn

is the nth convergent [a0; a1, . . . , an].
This definition makes sense because by Proposition 2.4.8, the even-numbered

convergents form a monotone increasing sequence with supremum b, while the odd-
numbered convergents form a monotone decreasing sequence with infinum b′, and
the proof of the proposition shows that

|b′ − b| = b′ − b ≤ C2n − C2n−1 ≤ 1/q2nq2n−1,



2.8 Infinite Continued Fractions 67

so b′ = b, which we suggestively have denoted by [a0; a1, a2, . . . ].
The infinite simple continued fraction x = [1; 1, 1, . . . ] associated to the

Fibonacci numbers un satisfies

x = lim
n

un+1

un
= lim

n

un + un−1

un
= lim

n
(1 + 1

un/un−1
) = 1 + 1

x
,

or x2 − x − 1 = 0, which has as positive solution the golden ratio x = (1 + √
5)/2.

Definition 2.8.2 If the integers in an infinite simple continued fraction x =
[a0; a1, a2 . . . ] from a certain point n onwards repeat themselves in blocks b1, . . . , bm
of length m, we write [a0; a1, . . . , an, b1, . . . bm] for x . In this case the shortest such
block is called the period of x , and x is said to be periodic.

Example 2.8.3 To determine x = [3; 6, 1, 4] write x = [3; 6, y] with

y = [1; 4] = [1; 4, y] = 1 + 1

4 + 1/y
.

Then 4y2 − 4y − 1 = 0 with y = (1 + √
2)/2 as its positive solution. This in turn

gives x = (14 − √
2)/4. ♦

That the infinite simple continued fractions so far have been irrational numbers
is no coincidence.

Lemma 2.8.4 All infinite simple continued fractions are irrational numbers.

Proof Say [a0; a1, a2, . . . ] is a rational number a/b. Then

0 < |C2n − a/b| < C2n − C2n+1 = 1/q2nq2n+1,

so 0 < |aq2n − bp2n| < |b/q2n+1|, which is impossible since aq2n − bp2n is an
integer and qn → ∞ as n → ∞. �

Lemma 2.8.5 If [a0; a1, a2, . . . ] = [b0; b1, b2, . . . ], then an = bn for all n. In par-
ticular, distinct infinite simple continued fractions represent distinct irrational
numbers.

Proof First observe that if a < y < a + 1/b for integers a, b with b ≥ 1, then a <

y < a + 1, so [y] = a. As

a0 + 1/[a1; a2, a3, . . . ] = [a0; a1, a2, . . . ] = x = [b0; b1, b2, . . . ] = b0 + 1/[b1; b2, b3, . . . ],

we therefore get a0 = [x] = b0. Then [a1; a2, a3, . . . ] = [b1; b2, b3, . . . ]. By the
same argument we get a1 = b1, and then a2 = b2, and so forth. �

Lemma 2.8.6 Every irrational number is an infinite simple continued fraction.
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Proof Say x is an irrational number. Define an inductively by an = [xn], where
xn+1 = 1/(xn − [xn]) and x0 = x . Since x is irrational, so is xn for all n, and there-
fore xn+1 > 1 as 0 < xn − [xn] < 1. Hence we get infinitely many natural numbers
a1, a2, . . . .

Since xk = ak + 1/xk+1, repeated substitution yields x = [a0; a1, . . . , an, xn+1]
for every n. But

|x − Cn| = | xn+1 pn + pn−1

xn+1qn + qn−1
− pn

qn
| = 1

(xn+1qn + qn−1)qn

<
1

(an+1qn + qn−1)qn
= 1/qnqn+1

tends to zero as n → ∞. So x = [a0; a1, a2, . . . ]. �

The following result is an immediate consequence of the three previous lemmas.

Theorem 2.8.7 The map Z × N
N → R\Q given by

(a0, a1, a2, . . . ) �→ [a0; a1, a2, . . . ]

is a bijection.

In other words, the irrational numbers can be considered as infinite simple con-
tinued fractions. We have also seen that the rational numbers can be considered as
finite simple continued fractions; in this case we have a one-to-one correspondence
between finite sequences and the rational numbers with continued fractions of say
odd length.

The proof of the last lemma provides an algorithm for working out the continued
fraction representation of an irrational number. For instance, with x = √

23 one gets
x0, . . . , x4 with greatest integer parts a0 = 4, a1 = 1, a2 = 3, a3 = 1 and a4 = 8.
But then x5 = x1, so

√
23 = [4; 1, 3, 1, 8].

In fact, it is not hard to see that the periodic infinite simple continued fractions
are precisely the irrational solutions of quadratic equations with integer coefficients.
So infinite simple continued fractions of cube roots are not periodic.

One checks that e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ], which has a periodic
pattern of length three with the first entry increased by two at each repetition. The
standard way of showing that e = ∑∞

m=0 1/m! is irrational goes as follows: Assume
to the contrary that it is written as a fraction of integers, and let n be larger than the
positive denominator. Then a = n!(e − ∑n

m=0 1/m!) must be a natural number, and
yet

a = 1/(n + 1) + 1/(n + 1)(n + 2) + · · · < 1/(n + 1) + 1/(n + 1)2 + · · · = 1/n < 1.

Similarly, one proves that eb and tan b are irrational for any non-zero rational
number b.
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Since tan(π/4) = 1, one infers that π is also irrational. Resorting again to a
pocket calculator one sees that π = [3; 7, 15, 1, 292, . . . ], and here no pattern seems
to emerge. The convergents 3/1, 22/7, 333/106, . . . do indeed approach π . For
instance, for the so-called Archimedian value 22/7 of π , we know that |π − 22/7| <

1/72. This is a special case of the useful inequality from the proof of the last lemma,
which we state as a separate result.

Corollary 2.8.8 For an infinite simple continued fraction x = [a0; a1, a2, . . . ], we
have

|x − pn/qn| < 1/qnqn+1 < 1/q2
n .

Anatural question is howwell irrational numbers can be approximated by rational
numbers. The next question is what one should mean by ’approximate’ since in the
naive sense they can be approximated arbitrarily well. One approach is to consider
rational numberswith the same denominator. The next result shows that among these,
the convergents of the infinite simple continued fraction of an irrational number offer
the best possible approximations.

Proposition 2.8.9 Consider an irrational number x expressed as an infinite simple
continued fraction [a0; a1, a2 . . . ]. For a rational number a/b with 1 ≤ b ≤ qn, we
have |x − pn/qn| ≤ |x − a/b|.
Proof The system of equations pnu + pn+1v = a and qnu + qn+1v = b for fixed n,
has the unique solution u = (−1)n+1(aqn+1 − bpn+1) and v = (−1)n+1(bpn − aqn).

If u = 0, then aqn+1 = bpn+1 and as gcd(qn+1, pn+1) = 1, the number qn+1 must
divide b, and this contradicts b ≤ qn < qn+1. So u �= 0.

If v = 0, then we certainly have the required inequality, so we may assume that
v �= 0. In this case it is clear from the equations for u and v, that u and v will
have opposite signs. And so will qnx − pn and qn+1x − pn+1 as x lies between the
convergents pn/qn and pn+1/qn+1. Hence u(qnx − pn) and v(qn+1x − pn+1) have
the same signs. Therefore

|bx − a| = |(qnu + qn+1v)x − (pnu + pn+1v)| = |u(qnx − pn) + v(qn+1x − pn+1)|
= |u||qnx − pn| + |v||qn+1x − pn+1| > |qnx − pn|.

�

So the Archimedian value 22/7 is the best possible approximation of π among
rational numbers with positive denominators not greater than seven.

The next result shows that if a rational number is sufficiently ’close’ to an irrational
number x , then it must be one of the convergents of x .

Corollary 2.8.10 Let x be an irrational number. If a rational number a/b with b ≥ 1
satisfies |x − a/b| < 1/2b2, then a/b must be one of the convergents pn/qn of x.
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Proof Assume a/b �= pn/qn for all n. Then 1 ≤ |bpn − aqn|. Pick n such that qn ≤
b < qn+1. Then by the proposition above |qnx − pn| ≤ |bx − a|, so |x − pn/qn| <

1/2bqn . Hence

1

bqn
≤ |bpn − aqn

bqn
| ≤ | pn

qn
− x | + |x − a

b
| <

1

2bqn
+ 1

2b2
,

which implies the contradiction b < qn . �

Definition 2.8.11 An algebraic real number is any real solution x of an algebraic
equation anxn + · · · + a1x + a0 = 0with integer coefficients ai . The transcendental
real numbers are the real numbers that are not algebraic.

Transcendental numbers are obviously irrational, and by definition, the square root
of two is algebraic, and so is any algebraic combination of nth roots. Although we
will see that most irrational numbers are transcendental, they are not easy to detect.
In the appendix we show that the familiar numbers e and π are transcendental. On the
other hand, it is not even known whether e + π or eπ or π e are irrational. However,
the first two of these cannot both be rational since e is transcendental and satisfies
x2 − (e + π)x + eπ = 0.

Liouville was the first to prove the existence of transcendental numbers by study-
ing how well irrational numbers can be approximated by rational numbers. We have
already seen in the second last corollary above that for any irrational number a, there
are infinite many rational numbers m/n with n > 0 such that |a − m/n| < 1/n2.
However, for any rational number k/ l �= m/n with l > 0, we have |k/ l − m/n| =
|(kn − ml)/ ln| ≥ 1/ ln. So rational numbers cannot be approximated as well by
other rational numbers as irrational numbers can.

The following result by Liouville, which is proved in the appendix, shows that in a
certain sense there is also a limit to howwell algebraic numbers can be approximated
by rationals.

Theorem 2.8.12 Say a is an irrational solution of an algebraic equation of degree
n > 0. Then there is a real number c > 0 such that |a − p/q| > c/qn for all integers
p, q with q > 0.

Definition 2.8.13 A Liouville number is a real number a such that for any natural
number n, there are integers p, q with q ≥ 2 such that 0 < |a − p/q| < 1/qn .

By our previous remark no Liouville number is rational. In fact, by the previous
theorem we have the following stronger result.

Corollary 2.8.14 All Liouville numbers are transcendental.

We will now construct a Liouville number, hence a transcendental number. Con-
sider the irrational number a = ∑∞

k=1 1/10
k! = 0, 110001 . . . with non-periodic

expansion. Introduce the integers qn = 10n! and pn = qn
∑n

k=1 1/10
k!. Then
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0 < |a − pn/qn| =
∞∑

k=n+1

1/10k! ≤
∞∑

k=(n+1)!
1/10k < (9/10(n+1)!)

∞∑

k=0

1/10k

= (9/10(n+1)!)(10/(10 − 1)) ≤ 10n!/10(n+1)! = 1/qn
n ,

so a is Liouville. This specific number is called Liouvilles’s constant. This argument
also holds for the abundance of numbers of the type

∑∞
k=1 ak/b

k! for integers ak
and b with b ≥ 2 and 0 ≤ ak ≤ b − 1, with ak �= 0 for infinitely many k. All these
numbers are therefore Liouville and hence transcendental.

Roth improved Liouville’s result drastically by showing that for any real algebraic
number a of degree n ≥ 2 and for any real number ε > 0, there are at most finitely
many rational numbers p/q with q > 0 such that |a − p/q| > 1/q2+ε. Hence there
is a constant c > 0 such that |a − p/q| > c/q2+ε for all rational numbers p/q with
q > 0. This deep theorem, which surpassed previous improvements by Siegel and
Thue, is as good as it gets since there are infinitely many rational numbers p/q with
q > 0 such that |a − p/q| < 1/q2. The estimate in Roth’s theorem does not depend
on n as opposed to the improvements of Thue and Siegel, who obtained 1 + n/2 and
2
√
n as exponents for q. But as shown by Thue, see the appendix, any lowering of

the exponent beyond Liouville’s estimate have profound implications on the study
of Diophantine equations.

2.9 Pell’s Equation

Pell’s equation x2 − dy2 = 1 has been studied since ancient times. We are interested
in finding positive integer solutions x and y when d is a natural number which is not
a perfect square. There is an intimate connection to continued fractions. To keep the
length down, we adapt a brief style here.

Proposition 2.9.1 For any positive integer solution (x, y) of x2 − dy2 = 1 with d
a natural number which is not a perfect square, the number x/y is a convergent of
the infinite simple continued fraction of

√
d.

Proof The identity (x − y
√
d)(x + y

√
d) = 1 shows that x > y

√
d , so we have

0 < x/y − √
d = 1/y(x + y

√
d) <

√
d/y(y

√
d + y

√
d) = 1/2y2

and the result follows from Corollary 2.8.10. �

The estimate in Corollary 2.8.8 tells us that |p2 − dq2| < 1 + 2
√
d for any con-

vergent p/q of
√
d , but p2 − dq2 need not be the integer 1. Finding solutions among

the convergents of
√
d requires more work.
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Lemma 2.9.2 If pk/qk are the convergents of
√
d for a natural number d which

is not a perfect square, and n is the length of the periode of the continued fraction
expansion of

√
d, then

p2nk−1 − dq2
kn−1 = (−1)kn

for every natural number k.

Proof First observe that the infinite simple continued fraction of
√
d for any natural

number d which is not a perfect square, is always of the form

√
d = [a0; a1, a2, a3, . . . , a3, a2, a1, 2a0].

We leave the proof of this claim as an exercise to the reader.
Having done so, we can write

√
d = [a0; a1, a2, . . . akn−1, bkn], where

bkn = [2a0; a1, a2, . . . an−1, 2a0] = a0 + √
d.

Substituting this into
√
d = (bkn pkn−1 + pkn−2)/(bknqkn−1 + qkn−2) gives

√
d(a0qkn−1 + qkn−2 − pkn−1) = a0 pkn−1 + pkn−2 − dqkn−1,

which splits into two relations

a0qkn−1 + qkn−2 − pkn−1 = 0 = a0 pkn−1 + pkn−2 − dqkn−1.

Multiplying the first of these by pkn−1 and the second by −qkn−1, and then adding,
gives

p2kn−1 − dq2
kn−1 = pkn−1qkn−2 − qkn−1 pkn−2 = (−1)kn.

�
The following result is then immediate.

Theorem 2.9.3 Say pk/qk are the convergents of
√
d for a natural number d which

is not a perfect square, and that n is the length of the periode of the continued fraction
expansion of

√
d. Then (x, y) = (pkn−1, qkn−1) are solutions of x2 − dy2 = 1 for all

natural numbers k, when n is even, and (p2kn−1, q2kn−1) are solutions for all natural
numbers k, when n is odd.

A more careful analysis shows that these are all the positive integer solutions of
x2 − dy2 = 1.

Definition 2.9.4 The fundamental solution of the Pell equation x2 − dy2 = 1 for a
natural number d which is not a perfect square, is the integer solution (x, y) with
least positive value for both x and y among all integer solutions.

The results above guarantee the existence and uniqueness of a fundamental
solution.
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Example 2.9.5 Since
√
7 = [2; 1, 1, 1, 4] has periode with length four, the conver-

gens p3/q3 = 8/3, p7/q7 = 127/48 and p11/q11 = 2024/765 produce respectively
the first three positive integer solutions (x, y) = (8, 3), (127, 48) and (2024, 765) of
the Pell equation x2 − 7y2 = 1.

Since
√
13 = [3; 1, 1, 1, 1, 6] has periode of length five, the fundamental solution

(649, 180) of x2 − 13y2 = 1 correspond to the convergent p9/q9 = 649/180.

The fundamental solution can some times be difficult to find. For the equation
x2 − 1000099y2 = 1 it’s x-value has 1118 digits due to the form of the continued
fraction expansion of

√
1000099 which has a periode of length 2174. Also, while

the fundamental solution of the Pell equation with d = 60 is (31, 4), the one for
d = 61 is (17663319049, 226153980), so small perturbations in d can cause huge
variations.

The next result shows how all the positive integer solutions can be obtained from
a fundamental solution.

Theorem 2.9.6 Let d be a natural number which is not a perfect square, and let
(x1, y1) be the fundamental solution of x2 − dy2 = 1. The condition xn + yn

√
d =

(x1 + y1
√
d)n uniquely determines pairs (xn, yn) for n = 1, 2, . . . which are positive

integer solutions, and these pairs exhaust the positive integer solutions.

Proof Clearly, the condition uniquely determines positive integers xn and yn for
every n. It is also easy to check that the condition implies xn − √

dyn = (x1 −
y1

√
d)n . Then

x2n − dy2n = (xn + yn
√
d)(xn − yn

√
d) = (x1 + y1

√
d)n(x1 − y1

√
d)n = (x21 − dy21 )

n = 1

shows that (xn, yn) is a solution.
Suppose (u, v) is a positive integer solution that is not of the asserted form.

Since a ≡ x1 + y1
√
d > 1, there is n such that an < u + v

√
d < an+1. Multiplying

both sides of these inequalities by the positive number xn − yn
√
d, and invoking the

condition in the theorem to use Pell’s equation, we get

1 < (xn − yn
√
d)(u + v

√
d) < x1 + y1

√
d.

Define integers r and s by r + s
√
d = (xn − yn

√
d)(u + v

√
d). Then r2 − ds2 = 1,

and 1 < r + s
√
d < x1 + y1

√
d shows that (r, s) is a positive integer solution with

r < x1 and s < y1, which cannot be as (x1, y1) is a fundamental solution. �

Example 2.9.7 Since (x1, y1) = (6, 1) is a fundamental solution of x2 − 35y2 = 1,
the condition

x2 + y2
√
35 = (6 + √

35)2 = 71 + 12
√
35

gives another solution (71, 12), whereas (x3, y3) = (846, 143) is the next solution
in the sequence. ♦
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2.10 Complex Numbers

The quest for more general numbers is driven by the need to solve equations. The
extension from natural numbers to integers arose from the need to solve e.g. the
equation x + 7 = 1. Further extension to the rational numbers solved equations of
the type 3x − 11 = 0. The real numbers extended the rational numbers and offered
for instance solutions to equations like x2 − p = 0 with p prime.

Nowwhat about the equation x2 + 1 = 0?Such an equationhas no solution among
real numbers because x2 + 1 > 0 for any real number x . To solve this equation we
need more numbers, and if we insist on extending the real numbers, these are the
complex numbers. A solution of the equation x2 + 1 = 0 amounts to finding square
roots of −1. How do we construct such numbers? Secondly, does this extension
business ever stop? Do we need infinitely many number systems to cover all types
of equations? Even worse, the more numbers we introduce, the more equations we
generate that require solutions since nothing prevents us from picking coefficients
from the new numbers, just like the equation

√
2x3 − πx2 + ex − 3/4 = 0 emerges

from having introduced the real numbers.
The solution to all this is highly satisfactory. As soon as we have constructed

the complex numbers, we do not need more general numbers to solve equations
even with complex numbers as coefficients; all thanks to the fundamental theorem
of algebra, which says that the complex numbers are closed in this respect.

Theorem 2.10.1 Any equation of the form

anx
n + · · · a1x + a0 = 0

with complex coefficients ai , has exactly n complex solutions counted with
multiplicity.

Gauss was the first to prove this result, he gave many proofs. Since then several
other proofs have occurred. One of the easiest and shortest uses complex function
theory, and goes as follows: If a non-trivial polynomial f has no zeroes, then 1/ f is
a holomorphic and bounded function, so it must be a constant by Liouville’s theorem
in the appendix, and this is absurd. Having gotten one root, we can perform polynom
division, obtaining a polynomial of one grade lower, which by induction hypothesis
has the remaining roots of f . We shall provide an algebraic proof in Section 8.4.

The construction of complex numbers is very geometric and surprisingly simple.
Consider the vectors in the plane, and think of a vector as starting at the origin
and ending at the point (x, y) with x, y ∈ R. Such a point and a vector amount to
the same thing, but in what follows it is easier to think in terms of arrows than
points. We know how to add (and hence subtract) vectors both geometrically (via
parallelograms) and algebraically (coordinate wise addition). But is there a way to
multiply vectors, producing a new vector in the plane? Indeed there is. First specify
a vector by indicating its length r and its angle θ to the x-axis.
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Definition 2.10.2 We multiply two vectors in the real plane R × R by multiplying
their lengths and adding their angles. This gives a new vector which by definition is
the product of the two vectors.

The first thing we have to check is that this is a sensible operation, in that the
vectors form a field. Clearly the product is commutative and associative with the
unit vector along the x-axis as the unit for multiplication. The inverse of a non-zero
vector is obviously the vector with reciprocal length and angle with opposite sign.
A little exercise in trigonometry shows that the distributive law also holds, so we get
indeed a field.

Definition 2.10.3 The complex numbers C is the field of vectors R × R under the
previously prescribed product.

The real numbers correspond to the vectors lying on the x-axis, called the real
axis, and we write a for (a, 0), so the unit is 1.

The rest of the plane are new numbers, with the y-axis coined the imaginary axis.
The unit vector (0, 1) on this axis, denoted by i , has the property that i2 = −1

because the length remains the same upon squaring whereas the angle doubles
2(π/2), so we end up with an arrow with its tip at −1. Thus i is a square root
of −1 (there are two of them) and we write i = √−1.

Since multiplication by i means adding π/2 to the angle, real numbers y are
erected to vertical vectors iy = (0, y).

Definition 2.10.4 Any complex number z = (x, y) can be written as

z = x + iy,

called its normal form.

The components x and y are the real and imaginary parts of z, and we sometimes
use the notation Rez and Imz for them. The complex conjugate z̄ of z is obtained by
reflecting the vector about the x-axis, so z̄ = x − iy, and the length |z| of the vector
z is clearly the square root of the non-negative number zz̄.

The normal form allows for amore algebraic approach to complex numbers.When
you multiply together two complex numbers in normal form just use ordinary rules
for calculating with numbers together with the identity i2 = −1. So on the one hand
zz′ = rr ′(cos(θ + θ ′) + i sin(θ + θ ′)), and on the other hand

zz′ = (x + iy)(x ′ + iy′) = xx ′ − yy′ + i(xy′ + yx ′)
= rr ′(cos θ cos θ ′ − sin θ sin θ ′ + i(cos θ sin θ ′ + sin θ cos θ ′)),

and we have recovered the trigonometric formulas for addition of angles. This can
also be used to show the distributive law.

The following result, which characterizes the complex numbers, is immediate
from the fundamental theorem of algebra, and involves the notion of algebraic
closure, to be defined and studied in Section 7.3.
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Proposition 2.10.5 The field of complex numbers is the algebraic closure of the real
numbers R.

However, there exists no order onC turning it into an orderedfield like the situation
was for the real numbers.

The distance between two complex numbers z and z′ is the usual Euclidean
distance

|z − z′| =
√

(x − x ′)2 + (y − y′)2

between them as points in the plane.

Proposition 2.10.6 The complex numbers are complete, in that every Cauchy
sequence has a limit.

Proof To see that every Cauchy sequence {zn} converges to a complex number,
it suffices to observe that the corresponding real sequences {xn} and {yn} are
Cauchy. �

2.11 Absolute Values and p-Adic Numbers

Definition 2.11.1 An absolute value on a field F is a function a �→ |a| from F
to the non-negative real numbers that is zero at zero, and only then, and satisfies
|ab| = |a| · |b| and |a + b| ≤ |a| + |b| for all a, b ∈ F . It is called non-archimedean
or a valuation if it satisfies the stronger inequality |a + b| ≤ max{|a|, |b|} for all
a, b ∈ F .

Observe that |1| = 1 when 1 �= 0, and that |a| = | − a| and |a−1| = |a|−1 for
any non-zero a ∈ F . The trivial absolute value on any field is the non-archimedean
absolute value that is one for every non-zero element.

We can obviously define Cauchy sequences and convergence of sequences with
elements in F just as we did for the rational numbers, but now with respect to the
given absolute value on F . This allows also for the formation of a completion of F
in the same way as we formed the real numbers from the rational numbers. Such a
completion is clearly the unique field which contains F and has the property that any
element a of it can be approximated by some sequence {an} ⊂ F in the sense that
|a − an| → 0 as n → ∞. The field F is contained in the completion as the classes
having Cauchy sequences that eventually become constant with the constants being
the elements in F , and the absolute value was extended to an absolute value on the
completion by declaring |a| = lim |an|, which exists as {|an|} is Cauchy in R.

Definition 2.11.2 Two absolute values on the same field are equivalent if whenever
a sequence converges with respect to one absolute value, it does so for the other
absolute value as well.
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The ordinary absolute value | · | onQ is an archimedean absolute value, and so is
| · |r for any r ∈ 〈0, 1〉. However, these are all equivalent to | · |, and their completions
is the field of real numbers.

Proposition 2.11.3 Two non-trivial absolute values | · |i are equivalent if and only
if |a|1 < 1 implies |a|2 < 1. In this case there is a positive real number r such that
|a|2 = |a|r1 for all a.
Proof Note that |a|i < 1 if and only if lim an = 0, which proves the first statement.

For the second assertion, first note that |a|1 > 1 implies |a|2 > 1 by going
to inverses. Since | · |1 is non-trivial, there is c such that |c|1 > 1. Let r =
log(|c|2)/ log(|c|1), so |c|2 = |c|r1.

For any non-zero element a, there is a real number s such that |a|1 = |c|s1. For any
integers m, n with m/n > s and n > 0, we have |a|1 > |c|m/n

1 , or |an/cm |1 < 1. So
|an/cm |2 < 1, or |a|2 < |c|m/n

2 . Thus |a|2 ≤ |c|s2. Arguing similarly with m/n < s,
we get |a|2 = |c|s2 = |c|rs1 = |a|r1. �

In the other directionwehave the following approximation result byArtin-Waples.

Theorem 2.11.4 Let | · |i be non-trivial pairwise inequivalent absolute values on a
field F. For ε > 0 and any finite collection of elements ai ∈ F, there is a ∈ F such
that |a − ai |i < ε.

Proof By assumption we have a, b ∈ F with |a|1, |b|s > 1 and |a|s, |b|1 ≤ 1. With
c = a/b, we get |c|1 > 1 and |c|s < 1.We show by induction that there is d ∈ F such
that |d|1 > 1 and |d|i < 1 for i = 2, 3, . . . , s. Assume this holds with s replaced by
s − 1. If |d|s ≤ 1, then replacing d by dnc for large n, the induction step is seen to
hold. If |d|s > 1, replace d by dnc/(1 + dn) for large n to perform the induction
step. As the case s = 2 was already established, we have the required element d.

Now dn/(1 + dn) tends to 1 with respect to | · |1, and goes to 0 with respect to
the other absolute values. So for each i we have an element bi ∈ F that is close to 1
with respect to | · |i , and which is close to 0 with respect to | · | j for all j �= i . Hence
a = ∑

aibi has the required property. �

Pick a prime number p. By the fundamental theorem of arithmetic, write any
non-zero rational number as pna/b for a unique integer n such that neither a nor b
contains factors of p. The p-adic absolute value | · |p on Q is the non-archimedean
absolute value given by |pna/b|p = 1/pn .

Example 2.11.5 Since a = 63/550 = 2−1325−27111−1 we have

|a|2 = 2, |a|3 = 1/9, |a|5 = 25, |a|7 = 1/7, |a|11 = 11, |a|p = 1

for all primes p > 11. ♦
Definition 2.11.6 The p-adic numbers is the completion Qp of Q with respect to
the p-adic absolute value.
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Notice that the completed absolute value on the field Qp has range within the
set {0, 1/pn | n ∈ Z}. Also note that due to non-archimedeaness, a series of p-adic
numbers converge if and only if the terms of the series tend to zero. This suggests
that analysis in Qp is easier than in R.

The significance of the p-adic numbers is due to the following result byOstrowski.

Theorem 2.11.7 Every absolute value onQ is either trivial, equivalent to the usual
absolute value or to the p-adic absolute value for some p.

Proof Suppose | · | is an absolute value on Q. We distinguish two cases. Say first
that there is some n ∈ N with |n| > 1. Pick the least such n, and then a real number
r such that |n| = nr . Write any natural number m as

m = a0 + a1n + · · · + akn
k

with ai ∈ [0, n〉 and ak �= 0. Then all |ai | ≤ 1 by definition of n, and obviously
nk ≤ m, so

|m| ≤ |a0| + |a1|nr + · · · + |ak |nkr = nkr (1 + n−r + · · · + n−kr ) ≤ bmr

with b = ∑∞
k=0(1/n

r )k . Replacing m by ml for l ∈ N gives |m| ≤ b1/ lmr . Letting
l → ∞ we thus get |m| ≤ mr .

For the opposite inequality, note that nk ≤ m < nk+1, so

|m| ≥ |nk+1| − |nk+1 − m| ≥ n(k+1)r − (nk+1 − m)r ≥ n(k+1)r − (nk+1 − nk)r ≥ cmr

with c = 1 − (1 − 1/n)r . Replacing againm byml and letting l → ∞, we get |m| ≥
mr . Hence |d| = dr for all d ∈ Q, and | · | is equivalent to the usual absolute value.

Next assume that |n| ≤ 1 for all n ∈ N, and that | · | is non-trivial. Pick the least
p ∈ Nwith |p| < 1. Then p must be prime because if p = n1n2 for ni ∈ {2, 3, . . . },
then |n1| = |n2| = 1 as ni < p, so |p| = 1, which is absurd.

Consider another prime q �= p. If |q| < 1, then |qu | < 1/2 and |pv| < 1/2 for
large u, v ∈ N. Pick integers s, t with 1 = squ + tpv , so 1 ≤ |s||qu | + |t ||pv| <

1/2 + 1/2, which is absurd. So |q| = 1. Hence for any d ∈ Q, we have |d| = |p|w,
where d = pwe/ f for the integer w such that p does not divide e nor f . So | · | is
equivalent to | · |p. �

Let us be more concrete about the p-adic numbers.

Lemma 2.11.8 For any rational number a with |a|p ≤ 1 and any natural number
i , there is an integer b ∈ [0, pi 〉 such that |a − b|p ≤ 1/pi .

Proof Write a = c/d for relative prime integers c and d. Since |a|p ≤ 1, the prime
number p cannot divide d, so there are integers m, n such that md + npi = 1. Then

|mc − a|p ≤ |c/d|p|md − 1|p ≤ |npi | ≤ 1/pi .
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Let b ∈ [0, pi 〉 be mc plus an appropriate integer multiple of pi . Then |b − a|p ≤
1/pi by non-archimedeaness. �

Theorem 2.11.9 Every equivalence class a ∈ Qp with |a|p ≤ 1 has exactly one
representative Cauchy sequence {ai } such that ai ∈ {0, 1, . . . , pi − 1} and ai+1 ≡
ai (mod pi ) for all i ∈ N.

Proof Say we have a Cauchy sequence {bi } in the class a. For j ∈ N pick N ( j) ∈ N

such that |bi − bk |p ≤ 1/p j for every i, k ≥ N ( j). We may assume that {N ( j)}
increases strictly with j .

Note that |bi |p ≤ 1 for i ≥ N (1) since

|bi |p ≤ max{|bk |p, |bi − bk |p} ≤ max{|bk |p, 1/p}

for k ≥ n(1), and |bk |p → |a|p ≤ 1 as k → ∞. Thus |bN ( j)|p ≤ 1 for all j . By the
lemma we may therefore pick integers ai ∈ [0, p j 〉 such that |a j − bN ( j)|p ≤ 1/p j .

Then

|a j+1 − a j |p ≤ max{|a j+1 − bN ( j+1)|p, |bN ( j+1) − bN ( j)|p, |a j − bN ( j)|p} ≤ 1/p j ,

so a j+1 ≡ a j (mod p j ). Also, for i ≥ N ( j) ≥ j , we have

|ai − bi |p ≤ max{|ai − a j |p, |a j − bN ( j)|p, |bi − bN ( j)|p} ≤ 1/p j ,

so |ai − bi |p → 0 as i → ∞, and {ai } therefore belongs to the class a. �

If |a|p > 1 for a ∈ Qp, then |pna| ≤ 1 for some n ∈ N, so if {ai } represents pna
as in the theorem above, then {p−nai } represents a.

Writing ai = b0 + b1 p + · · · + bi−1 pi−1 for digits bi ∈ {0, 1, . . . , p − 1}, the
condition ai+1 ≡ ai (mod pi ) means that the first i digits for ai coincide with the
corresponding first i digits of ai+1.

Hence we have a unique p-adic expansion

a = b0 p
−n + b1 p

−n+1 + · · · + bn + bn+1 p + bn+2 p
2 + · · ·

of a. The partial sums sm obtained by cutting off this expansion after m terms form
a Cauchy sequence in Q with respect to | · |p that converges to a. We write the
expansion of a in base p as

· · · bn+2bn+1bn.bn−1 · · · b1b0
with powers of p increasing from right to left. Sometimes we put p as an index to
indicate the base. Note that the ambiguity that occurs in any base expansion of the
real numbers, like 0, 99 · · · = 1.00 · · · , does not occur here; the expansion is unique.
We can think of p-adic numbers as formal Laurent series over the variable p, where
we define what we mean by a formal Laurent series over a variable in the chapter on
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rings. Pointwise addition andmultiplication of Cauchy sequences convert to ordinary
addition and convolution product of series, but the coefficients are shifted to fall in
the correct range; just like we handle addition and multiplication of real decimal
numbers.

We illustrate the arithmetic’s with an example.

Example 2.11.10 Since

2 + 2 · 3 + 2 · 32 + · · · + 2 · 3n = 2(1 − 3n+1)/(1 − 3) ≡ −1 (mod 3n+1)

for all n ∈ N, we get · · · 2223 = −1 in base 3.
In base 5 we have (54 − 1)/3 = 44445/3 = 13135, so −1/3 = · · · 13135 and

−2/3 = · · · 13135 · 2 = · · · 31315 and 1/3 = 1 − 2/3 = · · · 31325, which upon
multiplication with 3 gives · · · 0015. ♦
Definition 2.11.11 The p-adic integers are those a ∈ Qp with |a|p ≤ 1, which
means that the p-adic expansion of a has no negative powers of p. The p-adic
integers form a unital subring Zp of Qp, and we refer to the subring of ordinary
integers Z ⊂ Zp as the rational integers.

Clearly Zp is an integral domain, but not a field, and should not be confused with
the field of equivalence classes in Z modulo p. The p-adic numbers in the example
above are all p-adic integers, but most of them are not rational integers, although
the lemma above tells us that p-adic integers can be approximated arbitrary well
by rational integers. In fact, most of the p-adic integers in the example above are
rational numbers. It is easy to see that the rational numbers are the p-adic numbers
with p-adic expansions that eventually become periodic.

The units in Zp are the invertible elements under multiplication, so a ∈ Zp is a
unit if and only if |a|p = 1, alternatively, if and only if the first digit in its p-adic
expansion is non-zero. Clearly every a ∈ Qp can be written uniquely as a = pnu for
a unit u in Zp and a rational integer n. Also, given a natural number m, the rational
integers are seen to be congruent modulo pm in Z if and only if they are congruent
modulo pm in Zp. So there are pm residue classes modulo pm in Zp.

We could of course have worked with other digits than {0, 1, . . . , p − 1} in the
expansion of a p-adic number. Any collection {a1, . . . , ap−1} of p-adic integers with
ai ≡ i (mod p) will do as digits.

Remark 2.11.12 The field of p-adic numbers is not algebraically closed. Its alge-
braic closure Qp has infinite degree over Qp as opposed to the field of complex
numbers which has only degree two over R. And while C is metrically complete,
this is not so forQp with respect to an extension of | · |p, which exists and is unique.
The Cauchy completeness �p of Qp is however an algebraically closed field, and
should therefore be thought of as the p-adic analogue of the field of complex numbers.

♦
Here is a remark for the analyst who is familiar with topology and locally compact

groups.
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Remark 2.11.13 A local field is a locally compact topological field with a non-
discrete topology. As an additive group it has a Haar measure μ which is unique
up to a positive real number. Then a �→ μ(aX)/μ(X) for any measurable set X with
finite non-zero measure, defines an absolute value on the field which obviously does
not depend on the chosen set X .

One shows then that the archimedean local fields are isomorphic to R or C,
whereas any non-archimedean one is isomorphic to a finite extension ofQp for some
p, or to the field of formal Laurent series over a finite field of characteristic p. ♦

2.12 Cardinality

We shall see that in some sense there are many more real numbers than rational
numbers. Of course, there are infinitely many in both cases.

Definition 2.12.1 We say that two sets X and Y have the same number of elements,
or the same cardinality, if there exists a bijection between them. We then write
|X | = |Y |.

Any set with the same cardinality as {1, · · · , n} is finite and is said to consist of
n ∈ N elements.

Definition 2.12.2 A set X is countable if |X | = |N|.
The members of X can then be counted because having a bijection f : N → X

means that you can list up the distinct members { f (1), f (2), . . . }. If f was only
injective, you wouldn’t find all the members on the list, and if f was only surjective,
the list would be complete but there would be repetitions. Removing these, you could
form a new list of the distinct members of X which is at most countable:

Definition 2.12.3 A set is at most countable if it is either countable or finite.

Proposition 2.12.4 Any subset of a countable set X is at most countable.

Proof From a list of all the members of X one can form a new list by systematically
weeding out the members not in the subset and replacing them by a preselected
element of the subset. �

So the even numbers are countable (we can also list them directly 2, 4, . . . ), and
so are the odd ones, although in both cases the feeling is that there are only half as
many because N is the union of these two subsets.

Peculiarly enough, the following result holds.

Proposition 2.12.5 A countable union ∪∞
n=1Xn of at most countable sets Xn is at

most countable.
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Proof To list the members of this union, first write the members up in an array with
the list of the members of the first set in the first row, the list of the second set in the
second row, and so forth. Then the list of the union is obtained by starting in the upper
left corner and proceeding by a zig-zag movement mopping up all the members as
you move towards the lower right corner at infinity. �

Corollary 2.12.6 The integers are countable.

Proof Write Z = −N ∪ {0} ∪ N . Alternatively we can list the integers directly:
0, 1,−1, 2,−2, . . . . �

Corollary 2.12.7 If X and Y are at most countable, so is X × Y .

Proof Write X × Y = ∪n{(xn, y)|y ∈ Y }, where x1, x2, . . . are the members
of X . �

Since the map Z × N → Q : (m, n) �→ m/n is surjective, it follows from what
we have said that Q is countable.

Corollary 2.12.8 The rational numbers are countable.

By induction any finite Cartesian product of sets that are at most countable is at
most countable, but this is not so for infinite products.

It suffices to consider the countable Cartesian product {0, 1}N withmembers being
sequences of 0’s and 1’s. No vertical list of such sequenceswill be exhaustive because
the sequence with the nth entry that is one minus the nth entry of the nth sequence
cannot be on the list since it will differ from every sequence on the list at least one
place.

This is known as Cantor’s diagonal argument, and can easily be generalized to an
arbitrary set X , using |{0, 1}X | = |P(X)|.
Proposition 2.12.9 There exists no surjection from a set X to its power set P(X).

Proof We must show that there is no surjection from X to {0, 1}X . Suppose we had
one, say x �→ fx , where fx : X → {0, 1}. Then the function g : X → {0, 1} defined
by g(x) = 1 − fx (x) is not of the form fx for any x . �

Furthermore, the map x �→ {x} is clearly an injection from X to P(X). This
suggests the notation |X | < |P(X)|.
Definition 2.12.10 We write |X | < |Y | for sets X and Y if there exists an injection
X → Y and |X | �= |Y |.

Forming power sets increases the cardinality, and we get a hierarchy of sets

N ⊂ P(N) ⊂ P(P(N)) ⊂ · · · ,

which breaks radically with the idea that every set is at most countable; there is
an infinite string of uncountable sets, each with cardinality larger than that of their
predecessor.
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Cantor originally used his argument to show that the real numbers are uncount-
able. Viewing real numbers as equivalence classes of Cauchy sequences of rational
numbers, they are members of P(P(Q)), so it is perhaps not surprising that they are
not countable.

Proposition 2.12.11 |N| < |P(N)| = |R|.
Proof Perhaps the easiest way to see this is to look at real numbers as binary expan-
sions, and consider the obvious surjection {nk} �→ 0, n1n2 · · · from {0, 1}N to [0, 1].
This map is not injective because as we know e.g. the two expansions 0, 1000 · · ·
and 0, 0111 · · · represent the same number. To get rid of this problem remove the
rational entities in both camps, i.e. those sequences and expansions that turn periodic.
Then the map is bijective between the remaining sets and both parts removed are
countable.

To see directly that the sequences that turn periodic are countable, categories them
in lengths of periods and where the periods start, and you have contained them in a
countable union of countables.

Composing the bijection from the non-periodic sequences to the irrational num-
bers in 〈0, 1〉 with any bijection from 〈0, 1〉 to R, like x �→ tan(π(x − 1/2)), we get
a bijection from the non-periodic sequences to a subset of R, and we have left out
countable sets in both {0, 1}N and R that will be taken care of by some bijection we
know exists. �

We saw that the rational numbers, being those expansions that turn periodic, are
countable, and this seems reasonable as there should be many more expansions of
the other kind. This multitude is what gives the real numbers substance as opposed
to the scanty rational ones. Note also that the p-adic numbers and the p-adic integers
are both uncountable and have the same cardinality as R, since their members can
be expressed uniquely as infinite expansions with digits taking arbitrary values in
{0, 1, . . . , p − 1}.

We end this discussion on cardinality with some more general results that will be
needed later. We will derive them using a mixture of Zorn’s lemma and the axiom of
choice.

Proposition 2.12.12 If there is a surjection from one set to another, then there exists
an injection in the other direction.

Proof Say f : X → Y is a surjection. Then any choice function g : Y → X that
picks an element g(y) ∈ f −1({y}) for every y ∈ Y will obviously be injective. �

The converse direction also holds and does not even use the axiom of choice. The
following result is known as the Shröder-Bernstein theorem.

Proposition 2.12.13 Two sets have the same cardinality if there are injections both
ways between them.
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Proof To injections f : X → Y and g : Y → X , let Z = ∪∞
n=0( f g)

n( f (X)c). Define
a map h : X → Y by sending x ∈ g(Z) to g−1(x) and x ∈ g(Z)c to f (x). It is easy
to check that x ∈ g(Z) if and only if f (x) ∈ Z . Using this ones sees that h is a
bijection. �

A host of injections are provided by the following result.

Proposition 2.12.14 Given any two non-empty sets, there is at least one injection
between them.

Proof Consider non-empty sets X and Y . Let F be the family of all injections from
any subset of X to Y . Then F is non-empty because for any elements x ∈ X and
y ∈ Y , it contains the function {x} → Y which sends x to y. Now partially order F
by saying that f ≤ g for injections f : A → Y and g : B → Y with A, B subsets of
X , if A ⊂ B and g(x) = f (x) for x ∈ A, so g is an extension of f .

Every chain { fi : Ai → Y } in F has an upper bound, namely the function f : ∪
Ai → Y defined to be f (x) = fi (x) for x ∈ Ai . It is well-defined because if also
x ∈ A j for some j , then either Ai ⊂ A j or A j ⊂ Ai , and in both cases fi (x) = f j (x).
Also f is injective because if x �= x ′, with x ∈ Ai and x ′ ∈ A j , then again both
x, x ′ ∈ Ai , in which case fi (x) �= fi (x ′) as fi is injective, or both x, x ′ ∈ A j , and
then f j (x) �= f j (x ′). So f ∈ F and it is obviously an upper bound for the chain.

By Zorn’s lemma there is amaximal element g : B → Y inF . Now either B = X ,
and we are done, or g is surjective, and then by Proposition 2.12.12, we are done.
The last option is that g is not surjective and B �= X . But then we can pick x ∈ X\B
and y ∈ Y\g(B), and define a function h : B ∪ {x} → Y by h(x) = y and h = g on
B. Clearly h ∈ F and g < h, which contradicts maximality of g.

So we are left with the first two options, saying that either g : X → Y is an
injection, or there is an injection Y → X . �

This means that the cardinality of any two non-empty sets X and Y is comparable,
that is, either |X | < |Y |, or |X | = |Y |, or |Y | < |X |.

A natural question then is whether there are subsets of R with cardinality strictly
between |N| and |R|. The Continuum Hypothesis claims that this is not the case.
However, it has been shown that this claim is independent of the set theoretic axioms
of Zermelo-Frankel, including the axiom of choice, provided these are consistent,
leaving us free to add the hypothesis to the axioms or cutting it out.

The following result says that you can partition an infinite set in blocks that are
countable, and not just at most countable.

Lemma 2.12.15 Any infinite set can be written as a disjoint union of countable
subsets.

Proof Say X is an infinite set. By Proposition 2.12.14 either there is an injection
from N to X , or there is an injection the other way, but then as X is infinite, it has to
be countable. So in either case there is an injection N → X .



2.12 Cardinality 85

This shows that the family F of all disjoint countable subsets of X is non-empty,
and we can partially orderF by inclusion. Also every chain inF has an upper bound,
namely the collection of all subsets of the chain, because any pair of subsets in this
collection will belong to a common subcollection which requires them to be disjoint.

By Zorn’s lemma F has a maximal element C of disjoint countable subsets of X .
If the union Y of the members of the collection C is not the whole of X , there are
two options. Either X\Y is finite, in which case these finitely many elements can be
joined to a member of C , and we are done. Or X\Y is infinite. But then as in the first
paragraph of this proof, we can get a copy Z of N inside X\Y , and the collection
C ∪ {Z} will be disjoint and strictly greater than C , which is impossible. �

The following result generalizes |N × N| = |N| from Corollary 2.12.7, and also
the result |R × N| = |R|, which is easily gotten by noting that the map 〈0, 1〉 × N →
R which sends (a, n) to n + a is an injection.

Proposition 2.12.16 For any infinite set X we have |X × N| = |X |.
Proof By Lemma 2.12.15 we can write X as a disjoint union ∪Xi of countable
subsets Xi of X . Then X × N equals the disjoint union ∪(Xi × N).

Corollary 2.12.7 tells us that |Xi × N| = |Xi |, so by the axiom of choice there is a
family { fi : Xi → Xi × N} of bijections. Using this family we can define a function
f : X → X × N between the disjoint union of the Xi ’s and that of the Xi × N’s by
f (x) = fi (x) for x ∈ Xi , and this f is obviously bijective. �

It can also be shown that |X × X | = |X | if and only if the set X consists of one
element or is infinite.

One could say that the ‘cardinal number’ |X | of a set X should be the equivalence
class of all sets having a bijection to X . Thanks to Proposition 2.12.14 and the
Shröder-Bernstein theorem, our relation |X | < |Y | would then be an order on the
‘cardinal numbers’, and one could also prove within naive set theory that this would
be a well-ordering.

However, the collection of all sets is not a set, so this definition does not work
within the ZF-axioms including the axiom of choice. If one limits to ‘allowed’
sets, one can manage. But a better and more conventional way to proceed is the one
suggested by von Neumann, who defined the cardinal number of a set to be the least
ordinal with a bijection to the set.

We won’t be more precise here as we have not considered ordinals. Let us just
mention that vonNeumann’s definition does require the axiom of choice to guarantee
the existence of such an ordinal; without it the situation becomes more complicated
and adjustments have to be made. It should also be said that the cardinal number of
a set with n ∈ N elements will be n under the appropriate identification.



Chapter 3
Linear Algebra

Euclidean space with its linear structure of vectors, or arrows, that can be added and
scaled seems to be deeply rooted in our way of thinking. Some philosophers even
claim that it is an a priory prerequisite for our ability to reason. No wonder then
that we try to build up so much mathematics around linear structures, and equally
important, transfer or reduce complicated problems to a linear setting.

There is no good way of multiplying arrows beyond the plane, but in space we can
still add them together and scale them, and (regarded as elements rather than arrows)
this can also be done in multi-parameter spaces way beyond ordinary space. One
adapts an axiomatic approach to vector spaces, as sets where we can add elements,
coined vectors, together, and where vectors can be scaled sensibly by elements in
any field. This is basically all we require. Out of thin air one can then prove the
existence of a linear basis, that is, a subset of elements such that any vector can
be written as a unique linear combination of the basis vectors. Having at least one
basis for the vector space, one can produce other bases by forming appropriate linear
combinations of the basis vectors one started with. This way one gets more than
countably many bases for non-trivial real vector spaces, and each basis may contain
more than countably many vectors. Yet, one can prove the astonishing fact that in any
fixed vector space any two bases will always have the same cardinality, defined as the
dimension of the vector space. From an abstract point of view, one basis is equally
good as another. There is democracy, no canonical basis exists, and one should keep
this subtle point in mind. However, in applications certain candidates might point
themselves out as more convenient than others as one already can easily have picked
a basis unknowingly. For instance, in the finite dimensional case, when dealing with
matrices, that is, arrays with scalars as entries, a choice is already made.

A matrix represents the more fundamental notion of a linear transformation
between vector spaces, which is basically a map that preserves the linear structures
in the two spaces. Having fixed a basis in each one of two finite dimensional vector
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spaces, one can set up a complete correspondence between the linear transformations
between the two spaces and matrices of a certain size. The linear transformations can
be pointwise added and scaled, forming thus a new vector space. This is reflected in
the fact that matrices can be added and scaled in a coordinate wise sense. If there is a
third vector space with a chosen finite basis, then the given linear transformation can
be composed with any linear transformation leaving the target space and entering
the third space. This composition is reflected in a peculiar product of the two corre-
sponding matrices. Whenever the three vector spaces are one and the same, then we
get quadratic matrices. They form a unital ring (even an algebra) under this type of
product, where the identity I corresponds to the identity transformation.

Beyond dimension one, this ring will never be a field since it will not be commu-
tative, and only non-zero matrices corresponding to bijective transformations have
invertible matrices. A quadratic matrix A has an inverse A−1, which by definition
satisfies AA−1 = I = A−1A, if and only if the determinant |A| of A is non-zero. The
determinant of a quadratic matrix is a scalar attached to the matrix which respects
multiplication of matrices and is one on the identity matrix I . The scalar is defined
by adding together with appropriate signs products of the entries of the matrix.
Convenient inductive procedures are available for computing determinants.

Matrices are useful in solving systems of linear equations. For instance, the system

a11x1 + a12x2 = v1

a21x1 + a21x2 = v2

with variables x1, x2 can be written as the matrix equation Ax = v, where

A =
(
a11 a12
a21 a22

)
and v =

(
v1
v2

)
and x =

(
x1
x2

)
.

The system can then be solved by ‘dividing by A’, ormore precisely, if A is invertible,
the solution is obtained as follows x = I x = (A−1A)x = A−1(Ax) = A−1v.

The inverse of amatrix can be found by invoking Cramer’s rule involving determi-
nants, which is not a very efficient method, but is of theoretical importance. A more
efficient way is by Gauss-Jordan elimination, which amounts to a systematic way
of eliminating variables in systems of linear equations. When there are more or less
variables than equations, say when the variables are under- or over-determined, then
the coefficient matrix will no longer be quadratic. The image of the corresponding
linear transformation might easily fail to have the same dimension as the domain
space, and the discrepancy is exactly measured by the dimension of the space of
vectors killed by the transformation.

Given a finite dimensional complex vectors space V and a linear transformation
A : V → V . We are interested in scalars λ such that A − λI is not invertible. Fix
such a scalar λ. A generalized eigenvector of Awith eigenvalue λ is a non-zero vector
v ∈ V such that (A − λI )n(v) = 0 for some natural number n. In the final section
of this chapter we prove that such vectors with respect to some eigenvalue form a
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linear basis for V , and when they are properly organized, the corresponding matrix
becomes particularly simple, namely on Jordan canonical form. All its entries are
then zero except on the diagonal (where only eigenvalues appear) and just off below
the diagonal (where only ones or zeros appear). In the real case the form obtained is
just slightly more complicated.

The generalized eigenvectors corresponding to n = 1 are simply the eigenvectors
of A, as A(v) = λv says that A reproduces the vector up to a scalar. If they already
form a basis for V , the Jordan canonical form becomes perfectly diagonal.

Crucial in the entire investigation is the so called characteristic polynomial p(x) =
|A − x I |, as the eigenvalues are found by solving the algebraic equation p(x) = 0.
The complex numbers are algebraically complete, meaning that p can be completely
factorized intofirst order polynomials,while in the real case onemight also need some
second order polynomials, which cannot be further factorized as polynomials with
real coefficients. The decomposition into such irreducible polynomials, resembles
the decomposition of an integer into prime numbers, and this turns out to be more
than an analogy, as we shall see in Chap.6. What irreducible polynomials one has to
deal with depends on the properties of the ground field, and this will be studied in
Chaps. 7 and 8.Andfinally inChap.9,wewill see that this polynomial decomposition
leads to the Jordan canonical form. In that context we consider V as a module over
the polynomial ring by letting a polynomial q(x) act on vector u ∈ V via the matrix
A as q(A)(u).

We end this chapter with a section about dual spaces, inner products and tensor
products, notions which we need in the next two chapters. Inner products are gener-
alizations of scalar products, and they lead to the familiar notion of distance between
points in a vector space. Tensor products are a vehicle which turns multilinear maps
into linear ones. The notion is a bit abstract, but it is introduced at this stage because
we need tensor products when discussing finite dimensional representations before
we embark on tensor products of rings and modules.

3.1 Vector Spaces

Having introduced real numbers, it is natural to consider the Euclidean space R
n of

all n-tuples of real numbers. This set comes with two natural algebraic operations:
addition of n-tuples, performed coordinate wise

x + y = (x1 + y1, . . . , xn + yn),

and multiplication of an n-tuple by a scalar a ∈ R, again performed coordinate wise

ax = (ax1, . . . axn).
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We considered R
2 with this sort of addition when we constructed the complex

numbers. Then we also defined multiplication of two 2-tuples and produced C as a
field, but this is not possible in the general case.

It turns out to be extremely useful to settle for addition of tuples andmultiplication
of such by scalars. This way some of the field properties of R are carried into R

n .
The geometric picture forR

3 is then of arrows, or vectors, starting at the origin and
ending at a point x ∈ R

3, with addition according to the well known parallelogram-
rule, and with ax amounting to a rescaling of the arrow corresponding to x by a
magnitude a when a ≥ 0, and in addition with a rotation of the arrow so that it points
in the opposite direction when a is negative. This is the geometric intuition we bring
with us also when dealing with R

n for general n.
We could allow only rational rescaling of arrows, or more generally, consider the

set R
n with the same addition, but with multiplication only by scalars from Q ⊂ R,

and Q is after all a field.
We could also restrict to rational n-tuples, and replaced R

n by Q
n with addition

as before and with multiplication by scalars from Q. Of course, then we could not
use R as scalars since RQ is not a subset of Q.

Perhaps we also would want to consider C
n instead of R

n , again allowing for
multiplication by scalars belonging to a field, which in this case could be C, R, Q,
or any other subfield of C.

There are various combinations, and we are well-served with a notion that is
sufficiently flexible and yet embodies the essential properties. Instead of talking
about a set of n-tuples, we work with an arbitrary set V having two basic operations
to be though of as addition and multiplication by a scalar of a field F .

Definition 3.1.1 A vector space V over a field F is a set with:

1. an associative, commutative binary operation +, called addition, that has a zero
element 0 and an inverse element −x ∈ V for each x ∈ V ,

2. a map F × V → V ; (a, x) �→ ax , called multiplication by scalars, such that

a(bx) = (ab)x, (a + b)x = ax + bx, a(x + y) = ax + ay, 1x = x

for all x, y ∈ V and a, b ∈ F , where 1 is the identity in F .

When it is clear from the context what field we have in mind, we simply speak of
a vector space. Elements of vector spaces are usually called vectors.

Example 3.1.2 We leave it as an exercise to check that properties like

0x = 0 = a0, (−a)x = a(−x) = −(ax)

automatically hold in any vector space. ♦
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One can clearly restrict the scalars, so that any vector space V over a field F is
a vector space over a subfield E of F . To distinguish the two cases we sometimes
write VF and VE , respectively, for V .

Example 3.1.3 Given any field F , the set V = Fn is a vector space over F with
coordinate wise addition and with coordinate wise multiplication by scalars. One
checks that the compatibility conditions hold, these being inherited from the field as
the operations are coordinate wise.

Thus the set C
n under coordinate wise addition is a vector space over C or R or

Q under coordinate wise multiplication by scalars.
A special case is obtained by considering any field F as the vector space V

with addition from the field and with multiplication by scalars from a subfield E of
F , turning F into a vector space over E . Briefly V = FE . Such examples will be
important when we in Chap.7 study algebraic equations from the point of view of
Galois theory. ♦

We state the following important observation as a trivially verified result.

Proposition 3.1.4 Any subset W of a vector space V over a field F such that

x + y ∈ W and ax ∈ W

for all x, y ∈ W and a ∈ F, is again a vector field over F with operations given by
restriction to W × W and F × W. Such subsets are called subspaces of the vector
field.

WhenW + W ⊂ W , we say thatW is closed under addition, and thatW is closed
under multiplication by scalars if FW ⊂ W , with e.g. the understood convention
that W + W = {x + y | x, y ∈ W }.
Example 3.1.5 Any subset of C

n that is closed under addition and multiplication
by scalars is a subspace of C

n . So for instance, the subset

W = {x ∈ C
n |

∑
i

xi = 0}

of C
n is a vector space over C because

∑
i (ax)i = ∑

i axi = a
∑

i xi = a0 = 0
and

∑
i (x + y)i = ∑

i (xi + yi ) = ∑
i xi + ∑

i yi = 0 + 0 = 0 for any x, y ∈ W
and a ∈ C, showing that ax, x + y ∈ W .

The set
W ′ = {(x, y, z) ∈ R

3 | y = 0}

is a subspace of the vector space R
3 over R because 0 + 0 = 0 and a0 = 0 in the

second coordinate. So it is a vector space over R, and hence also over Q. As for the
geometric picture, the vector space W ′ over R is just the xz-plane in R

3.
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The sphere is not a subspace of R
3 since it does not allow arbitrary rescaling.

Neither is any line that does not contain the origin, because any subspace will contain
the same zero element 0 as 0 = 0x .

In fact, the subspaces of R
3 are {0}, R

3, any straight line that goes through the
origin, and any plane that contains the origin.

We will realize that all subspaces of R
n over R are essentially of the form R

m for
some m ≤ n, but the proof of this requires some preparation. Geometrically, in R

3

the tilted planes are just copies of the xy-plane, which can be thought of as R
2. The

sloped lines through the origin are rotated versions of the x-axis, which should be
thought of as R. ♦

Wehave seen that there aremanyvector spaces over a field F that are not subspaces
of Fn; the simplest example being RQ, which cannot be of the form Q

n as the latter
is countable whereas R is uncountable.

But there are many other examples, where instead of going to subfields, one
presents large sets V associated to a field F , most notably various function spaces.

Example 3.1.6 The set V of all functions from a set X to a field F is a vector space
over F under pointwise addition and multiplication by scalars.

The subset
{ f ∈ V | f (y) = 0 for all y ∈ Y }

is a subspace of V for any subset Y ⊂ X . In fact, this vector space is essentially the
same as the one given by all functions from X\Y to F under pointwise operations.

Restricting to bounded functions produces another subspace ofV .More subspaces
ofV can be obtained by appropriately restricting the class of functions on X suggested
by structures imposed on X , like that of a topology or a σ -algebra, or simply by letting
X itself be a vector space. ♦

Weshall see that the vector spaceV from the example above is infinite dimensional
(whatever that means) when X is infinite, in contrast to the vector space Fn over any
field F , which has finite dimension n.

A more general way of forming new vector spaces from old ones, with additional
subspaces coming from various potential restrictions on the elements, is as follows:

Definition 3.1.7 The product
∏

Vi of vector spaces Vi over a field F is a vector
space over F with coordinate wise operations, called the algebraic product of the
vector spaces Vi . The direct sum ⊕Vi of the vector spaces Vi is the subspace of

∏
Vi

consisting of all elements x such that xi = 0 for all but finitely many i’s.

Note that for a finite family of vector spaces the direct sum and the algebraic
product coincide.

Curiously enough we will see that all these constructions of vector spaces come
down to one basic example.
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Example 3.1.8 Let V consist of all functions from a set I to a field F that are non-
zero only at finitely many points of X . This is clearly a vector spaces over F with
pointwise operations. In fact, it is just ⊕i Vi with Vi = F for all i ∈ I , which we
denote by ⊕i F . ♦

3.2 Linear Basis

We introduce some fundamental notions for vector spaces.

Definition 3.2.1 Suppose S is a subset of a vector space V over a field F . Then S
spans V if every element of V is a linear combination

a1x1 + · · · + anxn

of some xi ∈ S and ai ∈ F . The elements of S are linear independent if for any
xi ∈ S, the equation

a1x1 + · · · + anxn = 0

only holds when all ai = 0. Otherwise the elements of S are called linear dependent.
The collection S is a linear basis of V if S spans V and its elements are linear
independent.

Note that S need not be finite for this definition to make sense.
The span of a subset of a vector space is the smallest subspace that contains the

subset. It clearly consists of all linear combinations of elements of the subset.
The notion of linear independence is based on the idea that two non-zero vectors

are linear independent if they are not parallel.More generally, we see that a collection
of vectors are linear independent precisely when none of them is a linear combination
of the others, so the picture we have in mind is that each arrow points out of the
subspace spanned by any subcollection excluding the arrow, spanning together with
this subcollection a strictly larger subspace. We are onto an inductive argument here.
Together with Zorn’s lemma we can take this further.

Theorem 3.2.2 Every non-trivial vector space has a linear basis. In fact, any linear
independent subset S of a vector space V can be enlarged to a basis S′ for V , and
by enlarged we mean S ⊂ S′.

Proof The first assertion follows from the second because any subset consisting of
a non-zero element x of V is linear independent; otherwise ax = 0 for a �= 0, and
then

0 = a−10 = a−1(ax) = (a−1a)x = 1x = x �= 0,

which is an absurdity.
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To prove the second claim, let F be the family of all linear independent subsets
of V that contain S. This family is non-empty because S belongs to it.

Order F by inclusion. Then every chain has an upper bound, namely the union of
all members of the chain. By Zorn’s lemma F has a maximal element S′, which we
claim is a basis for V .

We need only show that S′ spans V . If not, pick any member x of V outside
the span. Then S′ ∪ {x} is linear independent. To convince ourselves of this crucial
claim, say S′ = {xi }, and suppose that a linear combination

∑
ai xi + ax is 0 for

some scalars ai and a. If a �= 0, then

x =
∑

(−a−1ai )xi

is in the span of S′, which is impossible. So a = 0, and then
∑

ai xi = 0 forces all
the ai ’s to be 0 as the xi ’s are linear independent.

So S′ ∪ {x} is linear independent and obviously contains S, so it belongs to F .
But it is strictly larger than S′ as x /∈ S′, contradicting the maximality of S′. �

It can be shown that the axiomof choice follows from the other axioms ofZermelo-
Frankel if every non-trivial vector space admits a basis.

The most important property of a basis is the following, which geometrically
means that the vectors of a basis form a coordinate system for the vector space with
axes in the direction of the basis elements and unit lengths along the axes set to be
the length of the corresponding basis element.

Proposition 3.2.3 If S is a linear basis for a vector space V over F, then any x ∈ V
can be written as

x = a1x1 + · · · + anxn

for unique vectors xi ∈ S and scalars ai ∈ F. The unique scalars {ai } are called the
coordinates of x with respect to the basis S, with ai corresponding to xi .

Proof Existence of such a linear combination is saying that S spans V , and
uniqueness is immediate from linear independence. �

Any subset S of a vector space with the property stated in this proposition is
automatically a basis.

There are in general many coordinate systems or bases for a given vector space.

Example 3.2.4 The vectors {(1, 0), (0, 1)} form a basis for R
2 because (a, b) =

a(1, 0) + b(0, 1). The vectors {(k, 0), (1, 1)} with k �= 0 also form a basis for R
2

because a(k, 0) + b(1, 1) = (ak + b, b), which is (0, 0) only if b = 0 and ak + b =
0, so a = 0, showing linear independence. And (a−b)

k (k, 0) + b(1, 1) = (a, b) shows
that they span R

2. ♦
The fact that there are infinitely many bases for any non-trivial vector space, and

that none of them are natural, or point themselves out as unique in some way or
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other, does generate various problems, since the concept of a vector space is defined
without any reference to a specific basis. And yet many vector spaces seem to come
with a preselected basis, like for instance R

n , which comes with the standard basis
{e1, . . . , en}, where

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

From a theoretical point of view there is nothing special about this basis, it is as good
as any other basis.

Amazingly though, any two bases have the same number of elements, which is n
for R

n . The verification of such a statement in full generality is actually a bit tricky,
and calls for the axiom of choice or some weaker version of it.

Theorem 3.2.5 Any two bases in a vector space have the same cardinality.

Proof Say we have bases {xi }i∈I and {y j } j∈J of a vector space V . Aiming for a
contradiction, we may assume by Proposition 2.12.14 that |J | < |I |. We have to
distinguish two cases.

Suppose first that I is infinite. By assumption any y j is a linear combination

y j =
∑
i∈Fj

ai j xi

of the x’s, where Fj is a finite subset of I .
By the axiom of choice we have a family { f j } j∈J of injections f j : Fj → N as

each Fj is finite. Hence we have an injection

⋃
j∈J

Fj → J × N,

which sends i ∈ Fj to ( j, f j (i)). Together with Proposition 2.12.16, this shows that
the cardinality of ∪Fj is less than that of I . So there is a k ∈ I that does not belong
to Fj for any j ∈ J .

But by assumption it must be possible to write xk as a linear combination of the
y j ’s, and each of these y j ’s can be written as a sum of the form

∑
i∈Fj

ai j xi

and k does not belong to Fj for any j ∈ J . So xk is a linear combination of the
xi ’s, none of which can be xk , and this shows that {xi }i∈I is linear dependent; a
contradiction.

Next suppose that I is finite, say with |I | = n and |J | = m, so m < n. Then

{x1, y1, y2, . . . , ym}
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spans V as {yi } already spans V . But x1 �= 0 because {xi } is linear independent.
Writing x1 as a linear combination of the y’s, then at least one of the coefficients is
non-zero, and the corresponding y can therefore be written as a linear combination
of x1 and the other y’s. Removing this y we still get vectors that span V . Upon
renumbering the indices of the y’s, we therefore get a list

x1, y1, · · · , ym−1

of m vectors spanning V .
Next, the list with x2 included will certainly also span V . Writing x2 �= 0 as a non-

trivial linear combination of x1 and the m − 1 new y’s, then not all the coefficients
of the y’s can be 0 as otherwise x2 would be a rescaling of x1, and {xi } is linear
independent. Removing any y with non-trivial coefficient, we getm vectors that still
span V , say

x1, x2, y1, · · · , ym−2,

where again we have renumbered the indices of the y’s.
We can continue this way and inductively remove y’s, till we get a list

x1, . . . , xn, y1, · · · , ym−n

of m vectors that still span V . In particular, we see that n ≤ m, which is a
contradiction. �

We now know that a basis exists, and that any two of them have the same
cardinality, so the following definition makes sense.

Definition 3.2.6 The dimension dim V of a vector space V is the cardinal number of
any basis for it. If this cardinal number is finite n, we talk about a finite dimensional
vector space of dimension n. Otherwise we say that the vector space is infinite
dimensional.

Example 3.2.7 The vector space Fn for anyfield F is finite dimensionalwith dimen-
sion n, whereas RQ is an infinite dimensional vector space. We consider F0 as the
trivial vector space {0}, which has dimension 0 as there are no linear independent
vectors in {0}. Note that every vector space contains the trivial vector space as a
subspace, and that the empty set is not a vector space. ♦
Corollary 3.2.8 Say V is a vector space of finite dimension n. Then any collection
of vectors in V that spans V has to have at least n elements. And any linearly
independent collection of elements in V cannot contain more than n elements.

Proof From the spanning collection keep removing members, one by one, that are
linear combinations of others till they are linear independent. Then you have a basis
counting n members by Theorem 3.2.5.



3.3 Linear Transformations 97

Alternatively, one can get the result from the last inductive part of the proof of
the same theorem, where we only used that {yi } spanned V .

The last claim is immediate from Theorems 3.2.2 and 3.2.5. �

3.3 Linear Transformations

All vector spaces considered in this section are over a fixed field F .
In relating vector spaces to each other, the following notion is very natural.

Definition 3.3.1 A linear transformation or a linear operator A is a map from a
vector space V to a vector space W satisfying

A(ax + by) = aA(x) + bA(y)

for all x, y ∈ V and scalars a, b. Denote the set of linear transformations from V toW
by End(V,W ), and use End(V ) for End(V, V ). Elements of End(V ) are sometimes
referred to as linear operators on V .

Note that any linear transformation takes 0 to 0.
A linear transformation A : V → W is completely determined by its action on

any basis {xi } of V . To see this, write any x ∈ V as a unique linear combination

x =
∑

ai xi

and then
A(x) =

∑
ai A(xi ),

which shows that A(x) is uniquely determined by the vectors A(xi ).
Conversely, any map that ascribes arbitrary vectors A(xi ) in W to the basis

elements xi , defines a linear A : V → W according to the formula

A(x) =
∑

ai A(xi ),

for x ∈ V written in the form x = ∑
ai xi .

Definition 3.3.2 A linear isomorphism is a bijective linear transformation. Two
vector spaces V and W are said to be isomorphic vector spaces, with symbolic
notation V ∼= W , if there exists a bijection between them.

Linear isomorphisms preserve the two linear operations on a vector space, and
identify the vector spaces as sets, so isomorphic vector spaces are essentially the
same, and are often identified, sometimes with the isomorphism suppressed.
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Example 3.3.3 Given a family {Vi } of vector subspaces of a vector space V such
that every element of V is a finite sum of elements from the family, and such that∑

vi = 0 for vi ∈ Vi implies vi = 0. Then evidently the map⊕Vi → V which sends
{xi } to ∑

xi is a linear isomorphism. The image of this map is sometimes called the
internal direct sum of the family. ♦

If A ∈ End(V,W ) and B ∈ End(U, V ), then clearly the composition AB belongs
to End(U,W ), and it will be an isomorphism if both A and B are. So the relation of
being isomorphic is transitive. Also it is reflexive with the identity map I ∈ End(V )

as an isomorphism. That the relation is also symmetric, is clear as the inverse map
A−1 of a linear isomorphism A : V → W is also a linear isomorphism. So the relation
of being linearly isomorphic is an equivalence relation.

Theorem 3.3.4 A vector space is uniquely determined by its dimension, that is, if V
and W are two vector spaces with dim V = dimW, then V ∼= W. Thus every vector
space V over a field F is isomorphic to ⊕i∈I F for some set I with |I | = dim V .

Proof Pick bases {xi }i∈I and {y j } j∈J for V andW , respectively, and pick a bijection
f : I → J . Then the linear map A : V → W uniquely determined by A(xi ) = y f (i)

is a linear isomorphism with inverse given by A−1(y j ) = x f −1( j).
For the second assertion, define for each i ∈ I , functions fi : I → F by fi (i) = 1

and fi ( j) = 0 for j �= i , and note that { fi }i∈I is a basis for ⊕i∈I F , which shows that
dim(⊕i∈I F) = |I |. �

One can think of dim as a bijection from the class of equivalence classes of vector
spaces to the class of cardinal numbers, except that the class of equivalence classes
of vector spaces is not a set in the ZF-axioms, and neither is the class of all cardinal
numbers. But we have vector spaces of every dimension and up to isomorphisms
they are distinguished by their dimension. In this sense dim is a complete invariant
for all vector spaces, classifying them in terms of cardinal numbers, which for finite
dimensional vector spaces are the non-negative integers.

Definition 3.3.5 We define the image and kernel of a linear transformation A : V →
W to be imA ≡ A(V ) and ker A ≡ {x ∈ V | A(x) = 0}, respectively.

Note that imA and ker A are subspaces ofW and V , respectively, so the following
result known as the rank-nullity theorem makes sense.

Proposition 3.3.6 Suppose A : V → W is a linear transformation and that V finite
dimensional. Then

dim V = dim ker A + dim imA.

Proof Clearly dim imA < ∞. Let {xi } be a basis for ker A, and pick vectors y j in
V so that {A(y j )} is a basis for imA. It is enough to show that {xi } ∪ {y j } is a basis
for V . They span V because if x ∈ V , then A(x) = ∑

b j A(y j ) for some b’s, and
x − ∑

b j y j ∈ ker A shows that x = ∑
ai xi + ∑

b j y j for some a’s. They are also
linear independent because if

∑
i ai xi + ∑

j b j y j = 0, then
∑

j b j A(y j ) = 0 as all
A(xi ) = 0. But {A(y j )} is linear independent, so all b j = 0, and then in turn all
ai = 0 as {xi } is linear independent. �
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Corollary 3.3.7 A linear operator on a finite dimensional vector space is injective if
and only if it is surjective. So it is an isomorphism if it is either injective or surjective.

Proof Note that A ∈ End(V ) is injective if and only if ker A = {0}, because A(x) =
A(y) if and only if x − y ∈ ker A.

Hence by Proposition 3.3.6 we see that dim A(V ) = dim V if A is injective, so
any basis for A(V ) will also be a basis for V , and therefore A(V ) = V . If A is
surjective, then by Proposition 3.3.6, we see that dim ker A = 0, so ker A = {0} and
A is injective. �

Given A, B ∈ End(V,W ) and scalars a, b ∈ F , we define aA + bB ∈
End(V,W ) by (aA + bB)(x) = aA(x) + bB(x), turning End(V,W ) into a vector
space over F for which aA + bB is a linear combination of A and B.

When V = W the composition AB belongs to End(V ) making End(V ) a unital
algebra over F with composition as multiplication.

Definition 3.3.8 An algebraA over a field F is a vector space over F together with
multiplication xy turning (A,+, ·) into a ring, and such that

a(xy) = (ax)y = x(ay)

for x, y ∈ A and a ∈ F . The algebra A is said to be a unital algebra if the ring
(A,+, ·) has an identity, and A is a commutative algebra if the ring is. An element
in the algebra is invertible if it is invertible in the ring.

The following example shows that the algebra End(V ) is only commutative when
dim V ≤ 1.

Example 3.3.9 Let V = F2 with standard basis {e1, e2}. Define A, B ∈ End(F2) by
A(e1) = e2, A(e2) = 0 and B(e1) = 0, B(e2) = e1. Then AB(e1) = 0 and AB(e2) =
e2, whereas BA(e1) = e1 and BA(e2) = 0. So AB �= BA. ♦

3.4 Matrices

In this section all vector spaces are assumed to be finite dimensional.
Linear transformations between finite dimensional vector spaces can conveniently

be represented by matrices of scalars.

Definition 3.4.1 An m × n matrix (ai j ) over a field F is a map

(i, j) �→ ai j ∈ F,

where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The scalar ai j is the i j-entry of (ai j ).
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It is common to visualize a matrix A = (ai j ) as a rectangular array ofm rows and
n columns:

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
· · · · · ·

am1 am2 · · · amn

⎞
⎟⎟⎟⎟⎠ .

Definition 3.4.2 The matrix of A ∈ End(V,W ) with respect to bases {x j }nj=1 and

{yi }mi=1 of V and W , respectively, is the m × n-matrix Ã with entries ai j uniquely
determined by

A(x j ) =
m∑
i=1

ai j yi .

Note that the coordinates of the vector A(x j ) is the j th column of the matrix.
More generally, if x = ∑

c j x j , then

A(x) =
∑
i

(
∑
j

ai j c j )yi (3.1)

has coordinates
∑

j ai j c j with respect to {yi }.
Example 3.4.3 Consider A ∈ End(F2, F3) with A(e1) = e2 and A(e2) = e3 in
standard bases for F2 and F3. Then the 3 × 2-matrix (ai j ) of A with respect to
these bases is ⎛

⎝0 0
1 0
0 1

⎞
⎠

♦
Proposition 3.4.4 The map : A �→ Ã from End(V,W ) to the set of all m × n-
matrices over F is a bijection.

Proof Injectivity is clear. Surjectivity follows from the fact that the formula for A(x)
in Eq.3.1 defines A ∈ End(V,W ) for any matrix (ai j ) over F , and this matrix will
by definition be the matrix Ã with respect to the bases {x j } and {yi } of V and W ,
respectively. �

Using the bijection A �→ Ãwe can transfer operations on End(V,W ) to the set of
all m × n-matrices over F . The linear combination aA + bB of A, B ∈ End(V,W )

corresponds then to the matrix (aai j + bbi j ), turning the set of m × n-matrices over
F into a vector space with coordinate wise addition and multiplication by scalars.
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SupposeU is a finite dimensional vector space with basis {zk}pk=1, and say (b jk) is
the n × p-matrix of B ∈ End(U, V )with respect to bases {zk} and {x j }, respectively,
so

B(zk) =
∑
j

b jk x j .

Then the m × p-matrix (cik) of AB ∈ End(U,W ) with respect to bases {zk} and
{yi }, respectively, is given by

cik =
∑
j

ai j b jk

because

(AB)(zk) = A(B(zk)) =
∑
j

b jk A(x j ) =
∑
j

b jk

∑
i

ai j yi =
∑
i

(
∑
j

ai j b jk)yi .

We define matrix multiplication accordingly.

Definition 3.4.5 The (matrix) product of an m × n-matrix A = (ai j ) and an n ×
p-matrix B = (bi j ) is the m × p-matrix AB with ik-entry

∑
j

ai j b jk

gotten by taking the scalar product of the i th row of A with the kth column of B.

Definition 3.4.6 Let M(n, F) be the set of n × n-matrices over a field F .

We consider M(n, F) an algebra over F under matrix multiplication and
coordinate wise linear combinations, so by definition we have the following result.

Proposition 3.4.7 Let n = dim V . Then End(V ) and M(n, F) are isomorphic as
unital algebras.

The isomorphism A �→ Ã is not canonical since it depends on some chosen basis
{x j } for V .

Let δi j = 1 if i = j and δi j = 0 for i �= j . The identity matrix is the n × n-matrix
In = (δi j ) with 1’s along the diagonal and 0’s everywhere else. Obviously In is the
unity Ĩ of the algebra M(n, F). We sometimes write I for In .

Any linear isomorphism A ∈ End(V ) produces an invertiblematrix Ã ∈ M(n, F)

with inverse ( Ã)−1 = Ã−1.
If we consider another basis {y j } for V and define C ∈ End(V ) by C(x j ) = y j ,

then C will be invertible. Moreover, it is easy to see that C̃ ÃC̃−1 will be the matrix
of A ∈ End(V ) with respect to the basis {y j }.
Definition 3.4.8 Two matrices A, B ∈ M(n, F) are similar matrices, and we write
A ∼ B, if there is an invertible matrix C ∈ M(n, F) such that B = CAC−1.
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Clearly ∼ is an equivalence relation on M(n, F), and we have seen that matrices
of operators on V with respect to different bases are always similar. Also it is clear
that similarity accounts exactly for the discrepancy of representing a linear operator
in terms of matrices associated to different bases.

Example 3.4.9 The linear operators A, B ∈ End(F2) from Example 3.3.9 can be
represented by matrices

A =
(
0 0
1 0

)
, B =

(
0 1
0 0

)

with respect to the standard basis {e1, e2} for F2. Matrix multiplication then gives

AB =
(
0 0
0 1

)
�= BA =

(
1 0
0 0

)

and again we see that AB(e1) = BA(e2) = 0 and AB(e2) = e2 and BA(e1) = e1.
Yet AB ∼ BA as AB = C(BA)C−1 with

C =
(
0 1
1 0

)
= C−1.

The linear isomorphism of the matrix C sends e1 to e2 and e2 to e1. So AB, seen as
a matrix with respect to bases {e2, e1} will equal BA, seen as a matrix with respect
to bases {e1, e2}. ♦
Definition 3.4.10 The n × n-matrix Ekl = (δikδ jl) is called a matrix unit for the
algebra M(n, F).

Note that the identity matrix In for M(n, F) equals
∑

i Eii . The following result
is straightforward.

Proposition 3.4.11 The matrix units {Ei j } form a basis for M(n, F) and

A =
∑
i j

ai j Ei j

for A = (ai j ). Hence the product in M(n, F) is completely specified by the formulas:

Ei j Ekl = δ jk Eil .

Example 3.4.12 With A and B from Example 3.4.9, we see that A = E21 and B =
E12, so AB = E22 and BA = E11, which is consistent with Proposition 3.4.11. ♦
Definition 3.4.13 The transpose of an m × n-matrix A with i j-entry ai j is the n ×
m-matrix AT with i j-entry a ji .
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The operation of taking transposes is a linear map from the vector space ofm × n-
matrices to the vector space n × m-matrices, and if you take the transpose twice, you
obviously get the identity map. If B is an n × p-matrix, so AB makes sense, then
clearly (AB)T = BT AT . Hence if A is invertible, its transpose is also invertible and
(AT )−1 = (A−1)T .

Definition 3.4.14 The complex conjugate Ā of a complex matrix A is gotten by
taking the complex conjugate of each entry of A. The adjoint A∗ of A is ĀT .

Clearly ĀT = AT and A∗∗ = A and (AB) = Ā B̄, so (AB)∗ = B∗A∗ and
(A∗)−1 = (A−1)∗ whenever this makes sense.

Definition 3.4.15 The trace Tr(A) of an m × n-matrix A with i j-entry ai j in a field
is the element of the field given by Tr(A) = ∑

i aii .

If A, B ∈ M(n, F), then Tr(AT ) = Tr(A) and Tr(AB) = ∑
ai j b ji = Tr(BA),

so Tr(BAB−1) = Tr(A) whenever B is invertible. Hence we can speak of the trace
of an endomorphism A, then being the trace of any associated matrix. The trace
of the identity endomorphism on a vector space V is the dimension of V . Note
that Tr(A∗) = Tr(A) when A is complex, and that Tr(A∗A) = ∑

i j |ai j |2 > 0 when
A = (ai j ) �= 0.

3.5 Systems of Linear Equations

Linear algebra grew out of studying linear equations. The following assembly

a11x1 + · · · + a1nxn = b1
a21x1 + · · · + a2nxn = b2

· · · · · · · · · · ·
am1x1 + · · · + amnxn = bm

is a system of m linear equations in n unknowns xi with coefficients ai j in a field F .
When the scalars bi ∈ F are all 0, we talk about a homogeneous system as opposed
to an inhomogeneous system.

Using standard bases, introduce vectors x = ∑
x j e j ∈ Fn and b = ∑

biei ∈ Fm

and a linear transformation A ∈ End(Fn, Fm) given by A(e j ) = ∑
i ai j ei . Then the

system of linear equations above is equivalent to the single equation

A(x) = b.

The same would be true if we worked with other bases than the standard bases.
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In this setting it is customary to write n-tuples as column vectors, or as n × 1-
matrices, with coordinates ordered from top to bottom, and then A(x) is the column
vector obtained by matrix multiplication

⎛
⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
· · · · · ·

am1 am2 · · · amn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1
x2
·
·
xn

⎞
⎟⎟⎟⎟⎠ .

The study of the system of linear equations have quickly become an issue about
linear transformations. Finding solutions of the system of equations simply amounts
to finding vectors x ∈ Fn that satisfy A(x) = b. Such vectors exist exactly when b
belongs to the image of the linear transformation A, and there is only one solution
exactly when A is injective. So a unique solution x of the system of linear equations
exists precisely when

ker A = {0} and b ∈ imA.

In the casem = n, this happens exactly when A is invertible, and then the solution
is x = A−1(b). So it becomes imperative to find the inverse of a linear transformation,
or in other words, to find the inverse of a matrix. Hence we need algorithms for
inverting matrices.

Before we enter this, let us look at the more general case where m might be
different from n. How do we solve such systems?

First let us remove the surplus x . The augmented matrix of the system A(x) = b
is the m × (n + 1)-matrix

(a1 · · · an b),

where ai = ∑
m amiem is the i th column vector of A.

We ’simplify’ this matrix by successively performing three types of operations,
so called elementary row operations:

(O1) interchanging two rows;

(O2) multiplying a row by a non-zero scalar;

(O3) multiplying a row by a scalar and then adding this row to another row.

None of these operations performed on the corresponding system A(x) = b, with
row replaced by equation, will alter its solution set.

Definition 3.5.1 If a matrix A is obtained from another matrix B by a (perhaps
empty) sequence of elementary row operations, then A and B are row equivalent,
and we write A ∼r B.

The relation ∼r is an equivalence relation. Reflexivity follows because each ele-
mentary row operation of type Oi is obviously reversible by an operation of the same
type.
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Example 3.5.2 Applying row operations of the type O1, then O2 and then O3, we
get (

1 0
0 0

)
∼r

(
0 0
1 0

)
∼r

(
0 0
5 0

)
∼r

(
7 0
5 0

)
.

♦
Note that A(x) = a1x1 + · · · + anxn , so imA = span{ai }. Also, when A ∼r B,

we know that A(x) = 0 if and only if B(x) = 0, so linear dependence relations of
column vectors of row equivalent matrices are the same.

By a ‘simplification’ of the augmented matrix, we mean the following.

Definition 3.5.3 A matrix is in reduced echelon form if:

(i) all zero-rows are at the bottom;

(ii) every leading entry in a row i.e., the leftmost non-zero entry in the row, is 1;

(iii) the leading entry is the only non-zero entry in its column;

(iv) every leading entry is to the right of a leading entry in the row above.

Example 3.5.4 The matrices

⎛
⎝1 0 4 3 0 0 0
0 1 2 2 1 0 0
0 0 0 0 0 1 0

⎞
⎠ and

⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠

are in reduced echelon form. ♦
Note that the leading columns, that is, those columns with a leading entry in them,

form a basis for the vector space spanned by all column vectors of these matrices.
This is true in general. In fact, we see that the first leading columns form a basis
for the vector space of all columns not to the right of any of these leading columns.
Hence we get the following result.

Proposition 3.5.5 The columns in a matrix A corresponding to the leading columns
of a row equivalent matrix on reduced echelon form is a basis for imA.

Gauss-Jordan elimination is an algorithm that brings a matrix A to reduced ech-
elon form by elementary row operations, and goes as follows:

(i) Take any leftmost leading entry, rescale it to 1 by an operation of the type O2,
then move it to the first row by an operation of the type O1;

(ii) Apply operations of the type O3 to provide only 0’s as entries below the leading
entry in the same column;

(iii)Repeat (i) and (i i) to the matrix with the first row of the previous matrix covered
(or ignored), and continue with additional covering till there are no more non-zero
rows to modify.
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At this stage you are finished with the forward phase, and have now transformed
the matrix to echelon form. To get it in reduced echelon form, you must enter the
backward phase:

(iv) Beginning with the rightmost leading entry, and working upward and to the left,
create 0’s above each leading entry by applying operations of the type O3.

Theorem 3.5.6 Each matrix is row equivalent to one and only one reduced echelon
form.

Proof That a matrix A is row equivalent to some matrix B in reduced echelon form,
is guaranteed by Gauss-Jordan eliminating A.

Suppose C is another candidate, say obtained by Gauss-Jordan eliminating A
differently. We claim that C = B.

As opposed to any other column, a leading column of a matrix in reduced echelon
form is one that is not a linear combination of any column to its left. The position of
such a column can be read straight off the linear dependence relations between the
columns. As these relations are the same for row equivalent matrices, the matrices
B and C have their leading columns at the same positions. But then these columns
are the same because the first leading column of a matrix in reduced echelon form
looks like e1, and the second leading column looks like e2, and so on.

The other columns of B and C must also coincide because they are the same
unique linear combinations of leading columns. �

To solve A(x) = b, Gauss-Jordan eliminate the augmented matrix to reduced
echelon form, and consider this newmatrix as an augmented matrix for a new system
of equations with the same solution set. In writing out this system, consider any xi
that does not have a leading entry as coefficient, as a free parameter, and find the
other x’s with respect to these parameters by back substitution, working upwards
towards the left.

This way of solving a system of linear equations is quite efficient. It can be shown
that for a system of n equations in n unknowns, the number of arithmetic operations
needed is less than some constant times n3.

Example 3.5.7 We want to solve the linear system

2x2 + 2x3 = 8

3x1 − 15x3 = 3

x2 + x3 = 4.

This can of course be solved directly by some non-systematic way, but let us follow
the recipe to illustrate the general method. Here A(x) = b with

A =
⎛
⎝0 2 2
3 0 −15
0 1 1

⎞
⎠ , b =

⎛
⎝8
3
4

⎞
⎠ and x =

⎛
⎝x1
x2
x3

⎞
⎠ .
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We then Gauss-Jordan eliminate the augmented matrix

(
A b

) =
⎛
⎝0 2 2 8
3 0 −15 3
0 1 1 4

⎞
⎠ ∼r

⎛
⎝3 0 −15 3
0 1 1 4
0 2 2 8

⎞
⎠

∼r

⎛
⎝1 0 −5 1
0 1 1 4
0 2 2 8

⎞
⎠ ∼r

⎛
⎝1 0 −5 1
0 1 1 4
0 0 0 0

⎞
⎠ ,

where we in the first step interchanged rows, and in the second step we rescaled the
first row, and in the last step we multiplied the second row by −2 and added this row
to the third row. The final result is a matrix in reduced echelon form. The leading
columns are in the first and second place, and they have leading coefficients 1 as
required. According to Proposition 3.5.5 one basis for imA consists of the first two
columns of A.

To solve A(x) = b we write down the system corresponding to the augmented
matrix in reduced echelon form:

x1 − 5x3 = 1

x2 + x3 = 4.

The free parameter is x3, say x3 = t . Solving with respect to t gives

x1 = 5t + 1

x2 = −t + 4,

so we have infinitely many solutions; one for each choice of t . This is typical for
solutions of systems of linear equations; either there is no solution, or there is exactly
one, or there are infinitely many, and in the latter case there can be one or several
free parameters.

Geometrically each equation corresponds in this case to a plane in space, so the
solution of all 3 equations is the intersections of these planes, being the intersection
of the solution sets of each single equation. For a solution to exist no pairs of planes
can be parallel unless they coalesh. Here there are three possibilities; either none
of them coalesh, and then there is only one solution, or two of them coalesh and
intersect the third plane in a straight line parametrized by one parameter, or finally
all three planes coincide, so one gets a plane described by two free parameters.

Note that one basis for ker A consists of
(

5
−1

)
,

gotten by putting b = 0 in the calculation above and looking at the solution x . ♦
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We can also use Gauss-Jordan elimination to find the inverse of a matrix. To this
end, first notice that the effect of an elementary row operation OE on an n × n-
matrix A is to produce the matrix E A, where E is the elementary matrix obtained
by applying the same operation OE to the identity matrix In . This is straightforward
to check.

Example 3.5.8 Consider

A =
⎛
⎝a b c
d e f
g h i

⎞
⎠ .

Swapping OE of the first two rows of A produces E A, because

E A =
⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠

⎛
⎝a b c
d e f
g h i

⎞
⎠ =

⎛
⎝d e f
a b c
g h i

⎞
⎠ .

♦
Moreover, the elementary matrices E obtained this way are all invertible as the

elementary row operations are reversible.
Now suppose we have Gauss-Jordan eliminated A and gotten In , say after k steps.

Then Ek · · · E1A = In , where Ei is the elementary matrix corresponding to the i th
operation. But then A−1 = Ek · · · E1 is the matrix obtained by applying the same
elementary row operations to In . To keep track of the operations applied, we consider
the enlarged matrix (A|In) and Gauss-Jordan eliminate this one to obtain (In|A−1),
where A−1 can be read off directly.

If we do not obtain In by Gauss-Jordan eliminating A, then the system A(x) = 0
has more than one solution, and therefore A is not invertible.

Example 3.5.9 We have

(
1 2 | 1 0
1 1 | 0 1

)
∼r

(
1 2 | 1 0
0 −1 | −1 1

)

∼r

(
1 2 | 1 0
0 1 | 1 −1

)
∼r

(
1 0 | −1 2
0 1 | 1 −1

)
,

so (
1 2
1 1

)−1

=
(−1 2

1 −1

)
,

which can readily be verified. ♦
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3.6 Permutations

Denote the set of permutations, or bijections, on {1, . . . , n} by Sn . A permutation
σ ∈ Sn can be exhibited in the form

(
1 2 · · · n

σ(1) σ (2) · · · σ(n)

)
.

Definition 3.6.1 A cycle (i1, . . . , im) is a permutation σ ∈ Sn such that σ(ik) = ik+1

for k < m and σ(im) = i1 and which keeps all other elements i fixed, meaning that
σ(i) = i . Cycles with no numbers in common are disjoint cycles. Any cycle of length
2 is called a transposition.

So a cycle permutes some of the numbers cyclically when spaced on a circle as
an orbit. The order in which disjoint cycles are composed is obviously irrelevant,
and e.g. the cycles (2, 3, 5, 1) and (5, 1, 2, 3) are identical whether they both act on
{1, . . . , 5} or both act on {1, · · · , 8}.
Proposition 3.6.2 Any permutation can be written as a composition of disjoint non-
trivial cycles, and modulo order, such a composition is unique.

Proof Pick i ∈ {1, . . . , n} and apply the permutation σ repeatedly to i just till
σm(i) = i . Then (i, σ (i), . . . , σm−1(i)) is a cycle that represents the action of σ

on the numbers {i, σ (i), . . . , σm−1(i)}. Next pick an element in the complement of
these numbers, and repeat the argument to get another cycle that represents the per-
mutation on another subset of {1, . . . , n}. Continue this till all elements of the set
have fallen into orbits, and you have the desired disjoint cycles.

Clearly every element of {1, . . . , n} will fall into exactly one of these orbits, so
the decomposition is unique as described. �

A further decomposition into transpositions is also possible.

Corollary 3.6.3 Every permutation can be written as a composition of transposi-
tions.

Proof It is easily verified that any cycle (i1, . . . , im) can be written as the
decomposition

(i1, im)(i1, im−1) · · · (i1, i2)

of m − 1 transpositions. Now the result follows from the proposition. �

Example 3.6.4 We have the decomposition

(
1 2 3 4 5 6
4 6 2 1 3 5

)
= (

1 4
) (
2 6 5 3

)
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and (
2 6 5 3

) = (
2 3

) (
2 5

) (
2 6

) = (
3 2 6 5

) = (
3 5

) (
3 6

) (
3 2

)
.

♦
This example shows that the decomposition into transpositions is not unique,

not even the total number of them occurring; we could have composed further with(
5 6

) (
6 5

)
without altering the permutation.

However, we will see that the number of transpositions in any decomposition of a
permutation into transpositions is either always even or always odd, and this allows
us to define the sign of a permutation.

Theorem 3.6.5 There exists a unique map sign : Sn → {±1} that is −1 on transpo-
sitions and satisfies sign(στ) = sign(σ )sign(τ ) for any σ, τ ∈ Sn.

Proof Consider the function f : Z
n → Z given by

f (x1, . . . , xn) =
∏
i< j

(x j − xi ),

where the product ranges over all pairs (i, j) of integers with 1 ≤ i < j ≤ n.
Let σ ∈ Sn act on f giving another function σ( f ) : Z

n → Z defined according
to the formula

σ( f )(x1, . . . , xn) =
∏
i< j

(xσ( j) − xσ(i)).

Then clearly (στ)( f ) = σ(τ( f )) for any τ ∈ Sn .
Moreover, if τ is a transposition, then τ( f ) = − f . To see this, say τ interchanges

r and s, and say r < s. Then τ changes the factor xs − xr in f to xr − xs . All other
factors in f involving r and s can be paired as follows:

(xk − xs)(xk − xr ) if k > s,

(xs − xk)(xk − xr ) if r < k < s,

(xs − xk)(xr − xk) if k < r,

and each one of these pairs remains unchanged under the action of τ on f . The
overall effect is indeed that τ( f ) = − f .

Since by Corollary 3.6.3 each permutation can be decomposed into a composition
of transpositions, each producing a sign change when acting successively, we can
define sign : Sn → {±1} by

sign(σ ) f = σ( f ),

and sign clearly has all the required properties. Obviously there can be only one map
satisfying these properties. �
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Note that sign(σ ) = 1 precisely when there is an even number of transpositions in
the decomposition of σ ∈ Sn , and we talk then of an even permutation. If sign(σ ) =
−1, we say that σ is an odd permutation.

Also note that sign(σ−1) = sign(σ ) for any σ ∈ Sn as sign is multiplicative and
sign(ι) = 1.

In conclusion we can perform any permutation by swapping two and two numbers
repeatedly, and no matter how we arrange the swapping, we will either always need
an even number of swaps, or always need an odd number of swaps.

3.7 Determinants

Determinants offer a fancy and theoretically interesting way of deciding whether a
matrix is invertible, and when it is, they provide a formula for the inverse.

Definition 3.7.1 Let V be a vector space over a field F and let m ∈ N. A map from
Vm to another vector space over F is multilinear or m-linear on V if it is linear
in each coordinate, that is, while the other ones are kept fixed. A map Vm → F is
alternating if it changes sign whenever two coordinates are interchanged.

Note that a multilinear map is alternating if and only if it is zero whenever two
variables are equal. This is evident from the fact that

f (x + y, x + y) = f (x, x) + f (x, y) + f (y, x) + f (y, y)

for a 2-linear, or bilinear, map f on any vector space.

Proposition 3.7.2 Let n ∈ N. Then there exists exactly one alternating multilinear
map � on Fn that satisfies �(e1, . . . , en) = 1.

Proof Clearly such a map is uniquely defined. In fact, if xi = ∑
ai j e j is a general

vector of V , then expanding �(x1, . . . , xn) using multilinearity, we get a sum of all
possible terms of type

a1,σ (1) · · · an,σ (n)�(eσ(1), . . . , eσ(n)),

where σ ∈ Sn . We refer to Sect. 3.6 for the definition of Sn and of fundamental
properties of permutations σ .

Rearranging (eσ(1), . . . , eσ(n)) by repeated swaps till we get the standard orien-
tering, we thus get

�(x1, . . . , xn) =
∑
σ∈Sn

sign(σ )a1,σ (1) · · · an,σ (n)�(e1, . . . , en)

=
∑
σ∈Sn

sign(σ )a1,σ (1) · · · an,σ (n).
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On the other hand, we can take this formula as the definition of �(x1, . . . , xn).
Clearly it is multilinear and satisfies�(e1, . . . , en) = 1. It only remains to check that
it is alternating.

Suppose τ ∈ Sn . Then

�(xτ(1), . . . , xτ(n)) =
∑
σ∈Sn

sign(σ )aτ(1),σ (1) · · · aτ(n),σ (n)

=
∑
σ∈Sn

sign(στ)aτ(1),στ(1) · · · aτ(n),στ(n)

=
∑
σ∈Sn

sign(στ)a1,σ (1) · · · an,σ (n)

= sign(τ )
∑
σ∈Sn

sign(σ )a1,σ (1) · · · an,σ (n)

= sign(τ )�(x1, . . . , xn),

where in the second step we used that σ �→ στ is a bijection on Sn , and in the third
step we reordered the product of a’s in each term, and in the fourth step we used the
multiplicative property of the function sign.

The result now follows since in the particular case of a transposition τ , which
amounts to a swap of two variables, we have sign(τ ) = −1. �

Definition 3.7.3 The determinant of an n × n-matrix A is the scalar

det(A) = �(a1, . . . , an),

where ai is the i th column vector of A. We sometimes write |A| for det(A).

By definition det : M(n, F) → F is the only map that is alternating multilinear
on the column vectors of the input matrices, and that satisfies det(In) = 1. Also, from
the proof of Proposition 3.7.2, together with the proposition below, we see that

det(A) =
∑
σ∈Sn

sign(σ )aσ(1),1 · · · aσ(n),n

as ai = ∑
a ji e j .

Example 3.7.4 Consider a 3 × 3-matrix A with entries ai j . Then S3 has the 3! = 6
elements:

ι =
(
1 2 3
1 2 3

)
, σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2 3
3 1 2

)
,

σ3 =
(
1 2 3
2 1 3

)
, σ4 =

(
1 2 3
3 2 1

)
, σ5 =

(
1 2 3
1 3 2

)
.
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Of these, the first three are even, and the others are odd. Thus

det(A) = a11a22a33 + a21a32a13 + a31a12a23
− a21a12a33 − a31a22a13 − a11a32a23.

♦
Proposition 3.7.5 Let A, B ∈ M(n, F). Then

(i) det(AT ) = det(A);

(ii) det(AB) = det(A) det(B).

Proof We have

det(A) =
∑
σ∈Sn

sign(σ )a1,σ (1) · · · an,σ (n)

=
∑
σ∈Sn

sign(σ )aσ−1(1),σσ−1(1) · · · aσ−1(n),σσ−1(n)

=
∑
σ∈Sn

sign(σ−1)aσ−1(1),1 · · · aσ−1(n),n

=
∑
σ∈Sn

sign(σ )aσ(1),1 · · · aσ(n),n

= det(AT ),

where we in the first step rearranged the product of a’s in each term, simplified the
expression and used that sign(σ−1) = sign(σ ) in the second step, and in the third
step, we used that σ �→ σ−1 is a bijection on Sn .

To prove the second claim, observe first that by replacing the ei ’s by general
vectors, say yi ’s, in the first part of the proof of Proposition 3.7.2, we get

�(x1, . . . , xn) =
∑
σ∈Sn

sign(σ )a1,σ (1) · · · an,σ (n)�(y1, . . . , yn)

= det(AT )�(y1, . . . , yn),

where xi = ∑
ai j y j . Now let

xi = (AB)i =
∑

(AB) j i e j =
∑

a jkbki e j =
∑

bki yk,

where yk = ∑
a jke j = ak . Then

det(AB) = �(x1, . . . , xn) = det(B)�(y1, . . . , yn) = det(B) det(A).

�
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So det : M(n, F) → F is unital and multiplicative, but it is not linear; it is alter-
nating multilinear on the rows of any input matrix. Hence det(aA) = an det(A) for
a ∈ F , whereas the operation of multiplying a row in A by a scalar and adding this
to another row does not alter the determinant.

Definition 3.7.6 The determinant of a linear operator A on a finite dimensional
vector space V is the determinant of its associated matrix Ã.

This definition makes sense because any two matrices of a linear operator with
respect to different bases of V are similar, and if A ∼ B, say B = CAC−1, then

|B| = |CAC−1| = |C ||A||C−1| = |CC−1||A| = |I ||A| = |A|.

This argument also shows that the determinant of an invertible matrix is non-zero.
To see that the converse also holds, we invoke Cramer’s rule, which is a method to
solve system of linear equations.

Proposition 3.7.7 Say A(x) = b, where A ∈ M(n, F). Then the i th coordinate of
x is given by

xi det(A) = �(a1, . . . , b, . . . , an),

where the column vector b is placed at the i th place.

Proof The proof is shockingly simple. Note that A(x) = b can be written as∑
a j x j = b. Plug in this expression for b on the right hand side above. All terms

will obviously be zero, except for j = i , which gives the left hand side above. �

Now suppose det(A) �= 0. Then one can divide by det(A) in Cramer’s rule and
get a unique solution x with coordinates

xi = det(A)−1�(a1, . . . , b, . . . , an).

In particular, when b = 0 the only solution is x = 0. So A is injective, and therefore
by Corollary 3.3.7 it is invertible.

To find a formula for the inverse, consider all terms in the sum

det(A) =
∑

σ

sign(σ )a1,σ (1) · · · an,σ (n)

that contain a given entry ai j of A as a factor. They are associated to those σ ’s that
satisfy σ(i) = j . Hence, the sum of all such terms is

∑
σ(i)= j

sign(σ )a1,σ (1) · · · an,σ (n) = ai jCi j ,
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where
Ci j =

∑
σ(i)= j

sign(σ )a1,σ (1) · · · ai−1,σ (i−1)ai+1,σ (i+1) · · · an,σ (n)

is the cofactor of ai j in det(A).
Now

det(A) =
∑

σ

sign(σ )a1,σ (1) · · · an,σ (n) =
n∑
j=1

∑
σ(i)= j

sign(σ )a1,σ (1) · · · an,σ (n),

leading to the following expansion of det(A) according to the i th row:

det(A) = ai1Ci1 + · · · + ainCin.

Let k �= i . Then

n∑
j=1

akjCi j =
∑

σ

sign(σ )a1,σ (1) · · · ai−1,σ (i−1)ak,σ (i)ai+1,σ (i+1) · · · an,σ (n) = 0,

as this is the determinant of a matrix with two identical rows, namely the i th and kth
row.

All in all we have
n∑
j=1

akjCi j = δik det(A). (3.2)

This tells us that if det(A) �= 0, then A−1 exists and its i j-entry is the scalar
det(A)−1C ji .

But we are still not entirely happy. We would like a more hands on way of
computing cofactors.

Definition 3.7.8 Let Ai j be the matrix obtained by removing the i th row and j th
column of A.

Lemma 3.7.9 Let A be an n × n-matrix. Then Ci j = (−1)i+ j det(Ai j ).

Proof Now
C11 =

∑
σ

sign(σ )a2,σ (2) · · · an,σ (n),

where the summation is over all permutations σ of {2, . . . , n}. Hence C11 is the
determinant of A11.

The general case can be reduced to this situation by first bringing the i j-entry ai j
of A to the upper left corner by i − 1 obvious interchanges of rows and then j − 1
interchanges of columns, a procedure which results in the sign factor (−1)i+ j when
computing the determinant of this new matrix. By the first paragraph, the cofactor
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of ai j in this new determinant is the determinant of the matrix with the first row and
column omitted, and this matrix is Ai j . Hence Ci j = (−1)i+ j det(Ai j ). �

In conclusion we have the following result.

Proposition 3.7.10 Let A ∈ M(n, F). Then

det(A) = (−1)i+1ai1 det(Ai1) + · · · + (−1)i+nain det(Ain),

where Ai j is the submatrix of A obtained by omitting the i th row and jth column.
Moreover, if det(A) �= 0, then A−1 exists and its i j -entry is

det(A)−1(−1)i+ j det(A ji ).

Considering the transpose one can obviously also expand the determinant
according to columns.

This proposition offers a way to compute determinants inductively.

Example 3.7.11 We have ∣∣∣∣a b
c d

∣∣∣∣ = ad − bc,

which also happens to be the area of the parallelogram spanned out by the vectors
(a, c) and (b, d). If ad − bc �= 0, then

(
a b
c d

)−1

= 1

ad − bc

(
d −b

−c a

)
.

♦
Using this we can then calculate determinantes of 3 × 3-matrices.

Example 3.7.12 Expanding according to the first row, we get

∣∣∣∣∣∣
1 2 4
0 2 1
0 1 2

∣∣∣∣∣∣ = 1

∣∣∣∣2 1
1 2

∣∣∣∣ − 2

∣∣∣∣0 1
0 2

∣∣∣∣ + 4

∣∣∣∣0 2
0 1

∣∣∣∣ = 3,

but it would have been easier to expand according to the first column. In general it is
a good idea to pick a row or columnwith many zeros. As the determinant is non-zero,
we know that the corresponding matrix A is invertible with inverse

A−1 = 1

det(A)

⎛
⎝ |A11| −|A21| |A31|

−|A12| |A22| −|A32|
|A13| −|A23| |A33|

⎞
⎠ = 1

3

⎛
⎝3 0 −6
0 2 −1
0 −1 2

⎞
⎠ .

♦
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A geometric interpretation can also be given for 3 × 3-determinants: The deter-
minant equals the volume of the parallelepiped spanned out by the column vectors
of the matrix.

In computing the determinant of an n × n-matrix by expanding according to
some row or column in general one first has to compute n determinants of (n − 1) ×
(n − 1)-matrices, and expanding these, one must compute n(n − 1) determinants of
(n − 2) × (n − 2)-matrices, and so on, yielding in the end n! terms with alternating
signs to add up. Not a very pleasant job.

It is muchmore efficient to first simplify thematrix by performing elementary row
or column operations, keeping track of signs and factors that occur in the process. The
determinant of a matrix in reduced echelon form is obviously very easy to calculate.

Example 3.7.13 Say xi ∈ F . The Vandermonde determinant V is defined to be

V =

∣∣∣∣∣∣∣∣∣∣

1 · · · 1
x1 · · · xn
· · · · ·
· · · · ·

xn−1
1 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣
with explicit value

V =
∏
i< j

(x j − xi ).

The reader might recall that we used such an expression to define the sign of a per-
mutation, which was then used to introduce determinants, so the circle is completed.
Let us illustrate by considering n = 3, how one finds this expression:

∣∣∣∣∣∣
1 1 1
a b c
a2 b2 c2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
a b c
0 (b − a)b (c − a)c

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
0 b − a c − a
0 (b − a)b (c − a)c

∣∣∣∣∣∣
=

∣∣∣∣ b − a c − a
(b − a)b (c − a)c

∣∣∣∣ = (b − a)(c − a)

∣∣∣∣1 1
b c

∣∣∣∣
= (b − a)(c − a)(c − b),

where in the first step we multiplied the second row by −a and added this row to the
third, and in the next step we multiplied the first row by −a and added that to the
second row, and then we expanded according to the first column, and then we used
multilinearity of the columns to extract the factor (b − a)(c − a), leaving us with a
smaller matrix of the same type to compute the determinant of. ♦

Let us finally gather various settled conditions for invertibility.
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Proposition 3.7.14 Let A ∈ M(n, F). Then the following conditions are equivalent:

(i) A is invertible;

(ii) A(x) = 0 forces x = 0;

(iii) imA = Fn;

(iv) det(A) �= 0.

3.8 Eigenvalues and Eigenvectors

Let us start with some motivation.

Definition 3.8.1 An n × n-matrix D is diagonal if it has only zeros off the diagonal,
i.e. if it is of the form D = (λiδi j ) for scalars λi ∈ F .

Diagonal matrices are particularly easy to deal with. Say we are dealing with
complex scalars. The power Dm of a diagonal matrix D = (λiδi j ) is again diagonal
with entries λm

i along the diagonal. The determinant det(D) is the product λ1 · · · λn

of the diagonal entries, so D is invertible exactly when none of these entries vanish,
and then D−1 is diagonal with diagonal entries λ−1

i . The linear system D(x) = b has
then a unique solution x with coordinates xi = λ−1

i bi .
Wanting to reduce to such a simple situation, the question is whether an arbitrary

n × n-matrix A by any chance is similar to a diagonal matrix D. Any matrix with
such a property is called diagonalizable.

Powers of A = PDP−1 with D diagonal is still easy to compute. Actually,

Am = PDmP−1

because a P between the D’s cancel its inverse P−1.
Now A ∼ D means that A is diagonal with respect to some basis. Concretely, if

A = PDP−1, then with respect to {vi }, where vi = P(ei ), we have

A(vi ) = AP(ei ) = PD(ei ) = P(λi ei ) = λivi .

Definition 3.8.2 An eigenvector of A ∈ M(n, F)with associated eigenvalue λ ∈ F
is any non-zero vector v ∈ Fn such that A(v) = λv.

Note that eigenvalues of similar matrices are the same, so eigenvalues are intrinsic
to linear operators on finite dimensional vector spaces.

Proposition 3.8.3 Suppose there are n eigenvectors vi for A ∈ M(n, F)with eigen-
values λi . Then AP = PD, where D = (λiδi j ) and P = (v1, . . . , vn). Hence if {vi }
is linear independent, then P is invertible and A = PDP−1.
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Proof We have

AP(ei ) = A(vi ) = λivi = λi P(ei ) = P(λi ei ) = PD(ei )

for all i , so AP = PD.
The second statement is clear as an n × n-matrix is invertible exactly when its

column vectors are linear independent. �

We focus therefore on eigenvectors. Geometrically we are seeking vectors that
under the linear transformation A remain parallel to themselves. It is not at all clear
that such vectors exist, except for diagonalizable matrices, of course.

Since we hope to build a whole basis of eigenvectors, we require them to be
non-zero. The zero vector will always satisfy A(0) = λ0 for any λ. In fact, the set
consisting of 0 and all the eigenvectors associated to a fixed eigenvalue is obviously
a subspace of Fn .

For example, this set associated to the eigenvalue 1 of the identity matrix is the
whole space as I (v) = v for all v ∈ Fn .

Proposition 3.8.4 Eigenvectors of an n × n-matrix associated to distinct eigenval-
ues are linear independent.

Proof We proceed by induction on the number of eigenvectors with distinct eigen-
values. Any single eigenvector is non-zero and thus linear independent. Suppose the
proposition holds for m − 1 eigenvectors with distinct eigenvalues, and say

c1v1 + · · · + cmvm = 0,

where A(vi ) = λivi with vi �= 0 and distinct λ’s. Applying A − λ1 I to the left hand
side, we get

c2(λ2 − λ1)v2 + · · · + cm(λm − λ1)vm = 0.

Thus c2 = · · · = cm = 0, and c1v1 = 0 forces also c1 = 0. �

The following result is now immediate.

Corollary 3.8.5 Any n × n-matrix with n distinct eigenvalues is diagonizable.

Example 3.8.6 Consider (x, y)T as a vector in F2 with coordinates x and y. Then
the matrix

A =
(
0 1
1 0

)

sends (x, y)T to (y, x)T , so it reflects arrows in the xy-plane across the line y = x .
Clearly the vector v1 = (1, 1)T remains fixed under such a reflection, so it is an
eigenvector of A with eigenvalue 1; as is any rescaling of v1 to another non-zero
vector. Whereas the vector v2 = (1,−1)T perpendicular to the reflection line, will
when subject to the action of A, end up pointing in the opposite direction and is
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otherwise unaltered, so it is an eigenvector with eigenvalue −1. Since we have two
distinct eigenvalues, we know that A is diagonalizable and A = PDP−1 with P =
(v1, v2). We also see directly that {v1, v2} is a basis for F2. ♦

This examplemade it possible either by geometric intuition or by simple algebraic
considerations to find a basis of eigenvectors. But how do we proceed for a general
n × n-matrix A? To solve the system A(v) = λv involves n + 1 unknown quantities,
and a possible solution is going to involve at least one free parameter since we are
flexible within eigenvector spaces. Here determinants come to our rescue.

We want to find v �= 0 such that (A − λI )(v) = 0 for some scalar λ. Such a v

exists precisely when A − λI is not invertible, or in other words, when

det(A − λI ) = 0.

This is an nth degree algebraic equation in the unknown λ, and it does not involve the
eigenvectors at all. We have separated the unknown coordinates of v from λ, which
we can find by solving an algebraic equation, known as the characteristic equation of
A. Of course, this is easier said than done, and existence of solutions depends on the
field F . However, as soon as we have a solution λ, we can easily find an associated
eigenvector v by solving (A − λI )(v) = 0 using Gauss-Jordan elimination.

Example 3.8.7 Let

A =
⎛
⎝1 2 2
0 3 2
0 0 4

⎞
⎠ .

Then |A − λI | = 0 gives (1 − λ)(3 − λ)(4 − λ) = 0, so the eigenvalues are λ1 = 1,
λ2 = 3 and λ3 = 4. Gauss-Jordan eliminating the augmented matrix of A − I to
reduced echelon form gives

⎛
⎝0 2 2 0
0 2 2 0
0 0 3 0

⎞
⎠ ∼r

⎛
⎝0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎠

with solutions {(t, 0, 0)T | t ∈ F}. Thus one eigenvector for λ1 is v1 = (1, 0, 0)T .
Similarly, an eigenvector forλ2 is v2 = (1, 1, 0)T , and an eigenvectorwith eigenvalue
λ3 is v3 = (2, 2, 1)T . ♦

Here are two examples that illustrate the relevance of the field F in questions
about eigenvalues.

Example 3.8.8 The characteristic equation of the matrix

A =
(
0 2
1 0

)
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is λ2 = 2, which has no solutions in the field F = Q. But it has two real solutions
±√

2. So A is diagonizable as a matrix over F = R, but not as a matrix over the field
of rational numbers. ♦
Example 3.8.9 The linear transformation of the matrix

A =
(
0 −1
1 0

)

rotates a vector (x, y)T in the real plane 90 degrees counter clockwise. So as a matrix
overR it cannot have any eigenvectors. This is alsomanifest in its characteristic equa-
tion λ2 = −1, which has no real solutions. But this equation has complex solutions
±i , and A is therefore diagonazible over F = C. ♦

We should stress that the eigenvectors of a matrix do not in general form a basis.
In many cases there are simply not enough of them.

Example 3.8.10 The matrix

A =
(
0 1
0 0

)

over any field is not diagonizable. To see this consider its characteristic equation
λ2 = 0,whichonly produces the eigenvalue 0.This gives the eigenvectorv = (1, 0)T ,
and every other eigenvector is clearly proportional to v. ♦

3.9 Jordan Canonical Form

In general we cannot diagonalize a quadratic matrix. For matrices over the complex
numbers the closest we get is to write it in what we shall call its Jordan canonical
(or normal) form.

Given a complex quadratic matrix A. Suppose we have a non-zero vector v0 that
satisfies (A − λI )nv0 = 0 for some λ ∈ C and n ∈ N, but that (A − λI )n−1v0 �= 0.
Set vk = (A − λI )kv0. Then vn−1 is an eigenvector of A with eigenvalue λ, and
we call v0, . . . , vn−1 a chain of generalized eigenvectors of A of length n. An easy
induction argument shows that the elements vi are linear independent.

We have the following fundamental result.

Theorem 3.9.1 Let A be a complex quadratic matrix with m eigenvalues λi

and corresponding chains vi
0, v

i
1, . . . , v

i
ni−1 of generalized eigenvectors such that

v1
n1−1, . . . , v

m
nm−1 are linear independent and span the subspace of 0 and all the

eigenvectors of A. This can always be arranged, and then the complex matrix

P = (v1
0, v

1
1, . . . , v

1
n1−1, v

2
0, v

2
1, . . . , v

2
n2−1, . . . , v

m
0 , vm

1 , . . . , vm
nm−1)
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is quadratic and invertible, and A = P J P−1, where J = diag(J1, . . . , Jm) is called
the Jordan canonical form of A with Jordan blocks defined as the quadratic matrices

Ji =

⎛
⎜⎜⎜⎜⎝

λi 0 · · · · 0
1 λi · · · · 0
· · · · · · ·
0 · · · · · 0
0 0 · · · 1 λi

⎞
⎟⎟⎟⎟⎠

of size ni . The Jordan canonical form is unique up to similarity and reordering of
Jordan blocks.

Proof Allwe need to show is that the n-dimensional vector space V which thematrix
A acts on has a basis consisting of generalized eigenvectors. With respect to such a
basis, say with P as in the theorem, the equality AP = P J is then easily verified
on the standard basis. We assume the theorem holds for all matrices of size less than
n, the case n = 1 being trivially true. Let λ be an eigenvalue of A, which exists in
the complex numbers. Replacing A by A − λI , we may assume that λ = 0. Since
ker A is non-trivial, we know by the rank-nullity theorem that dim(imA) < n. By
the induction hypothesis, the matrix obtained by restricting the action of A to the
invariant subspace imA has the appropriate chains {v j

i } numbered by j . Let u j ∈ V
be preimages of v

j
0 belonging to the, say k, chains with associated eigenvalue 0. Let

wl be any basis of the subspace of ker A that meets imA only at {0}. All in all we
have then dim(imA) + k + dim(ker A) − k = n generalized eigenvectors v

j
i and u j

and wl of A.
We claim that these vectors are linear independent. Assume there are scalars a j

i
and b j and cl such that

∑
i, j

a j
i v

j
i +

∑
j

b j u j +
∑
l

clwl = 0.

Applying A to both sides yields an equation where only the vectors v
j
i occur, and

such that the coefficient of v
j
0 with associated eigenvalue 0 is b j . Hence all b j = 0

as the vectors v
j
i for all i and j are linear independent. But then all a j

i = 0 = cl as
imA and the vector space spanned by the wl’s intersect only at {0}.

Concerning the uniqueness statement, it is easily checked that two Jordan canon-
ical forms of A with unmatched sizes of Jordan blocks all having the same scalar
along the diagonal cannot possibly be similar. �

The statement that a matrix A is similar to a Jordan canonical form J in essentially
a uniqueway is true over anyfieldprovided it contains all the roots of the characteristic
equation of A. The proof of the above theorem evidently works also in this case. This
low tech direct proof will be replaced by amore refined and natural one in the context
of polynomials, see Corollary 9.13.2.
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Notice that AT is similar to J T , and that the latter has Jordan type blocks with 1’s
on the superdiagonal rather than on the subdiagonal. Both conventions occur in the
literature.

With A and J as in the theorem we see that

det(A − λI ) = det(J − λI ) = (λ1 − λ)n1 · · · (λm − λ)nm .

Hence the multiplicity of an eigenvalue in the characteristic equation of A is the
sum of the sizes of the Jordan blocks with that eigenvalue along the diagonal. In
particular, no chain of generalized eigenvectors associated to an eigenvalue is longer
than the multiplicity of that eigenvalue in the characteristic equation.

Example 3.9.2 The matrix

A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−2 2 −3 1
2 −2 1 −3

⎞
⎟⎟⎠

has characteristic equation λ(λ + 2)3 = 0, so λ1 = 0 and λ2 = −2 are eigenvalues
of multiplicity 1 and 3, respectively. Then v1

0 = (1, 1, 0, 0)T is an eigenvector for λ1,
whereas the eigenvector space V , with 0 included, of λ2 is spanned by (1, 0,−2, 0)T

and (0, 1, 0,−2)T , which brings us one dimension short; one says that λ2 has defect
one. So there must be exactly one chain of generalized eigenvectors for λ2 of length
two. Solving (A + 2I )2v2

0 = 0 gives v2
0 = (0, 0, 1,−1)T , which is determined up to

a scalar. Set v2
1 = (A + 2I )v2

0 = (1,−1,−2, 2)T . Let v3
0 be any vector in V that is

linear independent of v2
1 ∈ V . Then {v1

0, v
2
0, v

2
1, v

3
0} is a basis of generalized eigen-

vectors for A. Letting P have these as column vectors in the order listed, we get
A = P J P−1 with J = diag(J1, J2, J3), where J1 = (0) and J3 = (−2) and

J2 =
(−2 0

1 −2

)
.

One can also directly verify that

J = P−1AP =

⎛
⎜⎜⎝
0 0 0 0
0 −2 0 0
0 1 −2 0
0 0 0 −2

⎞
⎟⎟⎠ .

♦
The following important result is known as the Cayley-Hamilton theorem, and

will be reproved later in a more general context.
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Corollary 3.9.3 Let A be a complex quadratic matrix. In the characteristic equation
det(A − λI ) = 0 we may replace λ by A and each scalar by I times the scalar to
obtain an algebraic equation of the same type.

Proof Let A and J be as in the theorem. Then it suffices to check that

(J − λ1 I )
n1 · · · (J − λm I )

nm = 0

as A = P J P−1. But this is clear since the i th block of the matrix on the left hand
side involves the factor

(Ji − λi I )
ni =

⎛
⎜⎜⎜⎜⎝

0 0 · · · · 0
1 0 · · · · 0
· · · · · · ·
0 · · · · · 0
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠

ni

= 0.

�

Example 3.9.4 Since

A =
(
1 1
1 2

)

has characteristic equation λ2 − 3λ + 1 = 0, the Cayley-Hamilton theorem tells us
that A2 − 3A + I = 0, so A−1 = 3I − A. ♦

When A is a quadratic matrix with real entries, one seeks perhaps a Jordan type
decomposition into matrices with real entries. To this end note that if v is a complex
eigenvector of A with complex eigenvalue λ, then v̄ is an eigenvector of A with
eigenvalue λ̄, as is seen by taking complex conjugation on both sides of Av = λv.
So eigenvalues and eigenvectors come in complex conjugate pairs. Let Rev and Imv

denote the vectors obtained by taking real and imaginary parts, respectively, of the
entries of v.

Corollary 3.9.5 Suppose A is a quadratic matrix with real entries. Then A =
P J P−1 for matrices P and J with real entries, where J is block diagonal with
blocks described as follows: For each real eigenvalue of A we use an ordinary Jordan
block with that eigenvalue along the diagonal, whereas for each non-real complex
conjugate pair a ± ib of eigenvalues the block is double the size of the Jordan block
of a + ib, and is of the form

⎛
⎜⎜⎜⎜⎝

C 0 · · · · 0
I C · · · · 0
· · · · · · ·
0 · · · · · 0
0 0 · · · I C

⎞
⎟⎟⎟⎟⎠ wi th C =

(
a −b
b a

)
.
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Proof Take the basis of generalized complex eigenvectors of A described in the the-
orem. Replace the vectors from two chains corresponding to a ± ib by the sequence
Rev0, Imv0, . . . ,Revk, Imvk , where {v0, . . . vk} is the chain associated to a + ib.
This way one gets a new basis forming the columns in P , and one gets blocks of
the form C associated to a ± ib since the linear map that sends a complex number
z = x + iy = (x, y)T to ((a + ib)z)T = (ax − by, bx + ay)T is given by thematrix
C in the standard basis. �

Later we shall see that matrices over any field are similar to Jordan canonical
forms with so called generalized Jordan blocks.

The following cumbersome result is straightforward.

Proposition 3.9.6 Let V = ⊕m
i=1Vi be a finite direct sum of vector spaces. Given

Bi j ∈ End(Vj , Vi ), define ⊕Bi j ∈ End(V ) by

(⊕Bi j )(v1, . . . , vm) = (
∑
j

B1 jv j , . . . ,
∑
j

Bmjv j ).

The canonical inclusions ιi : Vi → V and projections πi : V → Vi are linear maps
that satisfy

∑
ιiπi = ι and πi ι j = δi j ι. For any linear maps satisfying these relations

for any vector space V and any finite family {Vi } of vector spaces, the map

End(V ) → ⊕i, j End(Vi , Vj )

which sends A to (π j Aιi ) is a linear isomorphism, and under the isomorphism
V ∼= ⊕Vi the map A becomes ⊕π j Aιi ∈ End(⊕Vn).

If V is a vector space and {Ei } is a finite subset of End(V ) such that
∑

i Ei = ι

and Ei E j = δi j ι, then E2
i = Ei , and πi = Ei : V → Vi ≡ EiV together with the

inclusions ιi : Vi → V satisfy
∑

ιiπi = ι and πi ι j = δi j ι. Any such family {Ei } is
called a complete family of orthogonal idempotents.

In the theorem above let V be the linear span of the basis

v1
0, v

1
1, . . . , v

1
n1−1, v

2
0, v

2
1, . . . , v

2
n2−1, . . . , v

m
0 , vm

1 , . . . , vm
nm−1

and define Ek ∈ End(V ) by Ek(
∑

c j
i v

j
i ) = ∑

i c
k
i v

k
i , so

Ei = diag(0, . . . , 0, I, 0, . . . , 0)

with the (ni × ni )-identity matrix I at the i th diagonal block and with zeroes
elsewhere. Obviously {Ei } is a complete family of orthogonal projections that satisfy

Ei J = J Ei = diag(0, . . . , 0, Ji , 0, . . . , 0)

with Ji at the i th diagonal block. Under the isomorphism V ∼= ⊕EiV the map J
sends (v1, . . . , vm) to (J1v1, . . . , Jmvm), so Ji = πi J ιi and J = ⊕Ji .
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As for the matrix A in the theorem, let Ni = (0, . . . , 0, Ji − λi I, 0, . . . , 0) be
the matrix with a block at the i th place along the diagonal which has only ones
on the subdiagonal and otherwise only zeroes. Then clearly A = As + An , where
As = ∑m

i=1 λi Ẽi and An = ∑m
i=1 Ñi with Ẽi = PEi P−1 and Ñi = PNi P−1. The

family {Ẽi } is a complete set of orthogonal idempotents with members that commute
with the mutually commuting matrices Ni .

The matrix As is certainly diagonalizable and commutes with An , which is nilpo-
tent, meaning that some power of it vanish. The decomposition A = As + An is
known as the Jordan-Chevalley decomposition of A, and As and An are uniquely
determined by these properties. We will return to this later, where we also work over
more general fields.

We consider now a decomposition of A that is in general different from the
one above. Say A has all in all q distinct eigenvalues λ1, . . . , λq . This gives the
decomposition V = ⊕ ker(A − λi I )ki , where the index ki is the size of the largest
Jordan block with eigenvalue λi . In other words, the subspace ker(A − λi I )ki is
spanned by all generalized eigenvectors associated to λi , so ki is the least natural
number such that

ker(A − λi I )
ki = ker(A − λi I )

l

for all l ≥ ki . Glob together the Jordan blocks of A that have the same eigenvalue,
say λi , along the diagonal, and form Pi just as we formed Ei with respect to these in
general larger blocks. This gives a complete orthogonal family {Pi } of idempotents
that commute with A and where Pi projects onto the component ker(A − λi I )ki in
the above decomposition of V .

We can describe these projections in a different way. Namely, write the character-
istic polynomial f (x) = det(x I − A) of A as f (x) = ∏

i (x − λi )
mi , where for the

precise definition of a polynomial over a field, we refer to later chapters. Performing
a partial fraction decomposition of 1/ f , we get polynomials ai such that

1

f (x)
= a1(x)

(x − λ1)m1
+ · · · + aq(x)

(x − λq)
mq

.

Multiplying up with f (x), we get 1 = ∑
pi , where pi is the polynomial

pi (x) = ai (x)
∏
j �=i

(x − λ j )
m j .

Since pi p j for i �= j contains f as a factor, it is immediate from Cayley’s theorem
that {pi (A)} is a complete family of orthogonal idempotents that commute with A.
In the same vain we see that the matrices pi (A)(A − λi I ) mutually commute and
are nilpotent with vanishing mi th power, so the Jordan-Chevalley decomposition of
A is clear from

A =
∑

(λi pi (A) + pi (A)(A − λi I )).
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In fact, as pi (A) contains the factor (A − λ j I )m j when i �= j , we see that pi (A)v j =
0 for v j ∈ ker(A − λ j I )m j . Since I = ∑

pi (A), we therefore also get pi (A)vi = vi ,
so we get pi (A) = Pi .

3.10 Dual Spaces, Inner Products and Tensor Products

For a vector space V over a field F , the dual space V ∗ of V consists of all linear
maps V → F . We regarded it as a vector space over F under pointwise operations.

Proposition 3.10.1 Suppose V is finite dimensional with a linear basis {vi }. Define
xi ∈ V ∗ by xi (v j ) = δi j . Then {xi } is a basis for V ∗, called the dual basis of {vi },
so dim V ∗ = dim V . We have a linear isomorphism V → V ∗∗ ≡ (V ∗)∗ given by
v �→ fv , where fv(x) = x(v) for v ∈ V and x ∈ V ∗.

Proof Any x ∈ V ∗ can be written uniquely as a finite sum x = ∑
x(vi )xi , which is

checked by evaluating at each v j .
Clearly fv is linear on V ∗ by definition of the vector spaces operations on V ∗. It

is also evident that v �→ fv is linear by definition of the vector spaces operations on
V ∗∗. To see that the map is injective, say x(v) = 0 for all x ∈ V ∗, and observe that
any v ∈ V can be written as v = ∑

xi (v)vi . As dim V ∗∗ = dim V , the map is also
surjective. �

The trace Tr on V = M(n, F) belongs to V ∗. When A ∈ V is diagonalizable, its
trace is the sum of the eigenvalues of A counted with multiplicities.

Recall that a metric on a set X is a map d : X × X → [0,∞〉 such that
d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ X , and which sat-
isfies d(x, y) = 0 if and only if x = y. The distance between x and y is then
d(x, y).

For instance, the arc length between two points on a circle defines a metric on the
circle, and so does the length of the straight line between any two points. Another
metric on any set, for that sake, is the function that is always one on distinct points.
We won’t be discussing metric spaces in great detail here, we will only focus on
metrics that come from norms on vector spaces. Say V is a vector space over a field
F with an absolute value. Then a norm on V is a map ‖ · ‖ : V → [0,∞〉 such that
‖av‖ = |a|‖v‖ and ‖u + v‖ ≤ ‖u‖ + ‖v‖, and finally such that ‖w‖ = 0 implies
w = 0. Then clearly d(u, v) = ‖u − v‖ defines a metric on V . For example, the
usual Euclidean distance between points in the complex plane is the metric coming
from the norm defined as the absolute value |a + ib| = (a2 + b2)1/2, or length, of
an arrow a + ib ∈ C written in normal form.

In fact, we will limit ourselves to consider norms coming from inner products,
of which the latter case above is an example. An inner product on a complex vector
space V is a map (·|·) : V × V → C that is linear in the first variable, satisfies
(u|v) = (v|u) for u, v ∈ V , and such that (w|w) = 0 implies w = 0. This means
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that the inner product is conjugate linear in the second variable, often referred to as
being a sesquilinear form. The associated norm of an inner product is defined to be
‖v‖ ≡ (v|v)1/2.

The inequality

|a|2‖v‖2 + 2Re a(v|w) + ‖w‖2 = ‖av + w‖2 ≥ 0

for any vectors v,w and numbers a shows that the Cauchy-Schwarz inequality

|(v|w)| ≤ ‖v‖‖w‖

and the triangle inequality ‖v + w‖ ≤ ‖v‖ + ‖w‖ hold, so the associated norm of an
inner product is indeed a norm. Note that equality in the Cauchy-Schwarz inequality
holds if and only if v and w are linear dependent. Also, the proof of this inequality
did not use the property that (w|w) = 0 only holds for w = 0.

Example 3.10.2 The complex vector space C
n has an inner product, called the

standard inner product, defined as (v|w) = ∑n
i=1 vi w̄i forv = {vi }, w = {w j } ∈ C

n .
The associated norm is given by ‖v‖ = (

∑n
i=1 vi v̄i )

1/2 = (
∑n

i=1 |vi |2)1/2. Note that
the standard inner product on C

n restricts to an inner product on R
n , and the distance

given by the associated norm is the usual Euclidean distance. ♦
For any inner product on a complex vector space the polarization identity

4(v|w) =
3∑

n=0

i n‖v + i nw‖2

and the parallelogram law

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2

are easily seen to hold for the associated norm. Conversely, if the parallelogram law
holds for a norm, then one checks that the first of these formulas defines an inner
product having the norm as the associated one. This holds also for real vector spaces
except that the polarization identitymust be replaced by 4(v|w) = ‖v + w‖2 − ‖v −
w‖2. The parallelogram law has an obvious geometric significance in the Euclidean
case. The polarization identities obviously hold without requiring that (w|w) = 0
only for w = 0.

Two vectors v,w are orthogonal with respect to an inner product if (v|w) = 0.
For a subset X of an inner product space denote by X⊥ the subset of those vectors
that are orthogonal to all the vectors of X . We also write X ⊥ Y to say that every
element of X is orthogonal to every element of Y .

Example 3.10.3 Given a finite family of inner product spaces Vi , we define an
inner product on their algebraic direct sum by (v|w) = ∑

(πi (v)|πi (w)). Each Vi is
a subspace of ⊕Vi , and they are mutually orthogonal.
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For norms associated to inner products Pythagoras’ identity

‖v + w‖2 = ‖v‖2 + ‖w‖2

holds for mutually orthogonal vectors v and w.

Definition 3.10.4 An orthonormal basis in a finite dimensional complex vector
space with an inner product is a family of orthogonal vectors of norm one that
span the whole space.

Note that an orthonormal basis is automatically a linear basis. In fact, if {vi }
is an orthonormal basis in V , then V is the finite orthogonal sum of the one-
dimensional subspaces spanned by each vi . Any v ∈ V can obviously be expanded
as v = ∑

(v|vi )vi in terms of the Fourier coefficients (v|vi ) of v. Then the Parseval
identity

‖v‖2 =
∑

|(v|vi )|2

holds by an inductive application of Pythagoras’ identity.
Every finite dimensional complex vector space V with an inner product has an

orthonormal basis. Indeed, a concrete way of producing an orthonormal basis {vn}
from a linear basis {wn} is the followingGram-Schmidt orthonormalization process,
which sets v1 = w1/‖w1‖ and defines inductively vn to be the normalization of the
componentwn − ∑n−1

m=1(wn|vm)vm ofwn that is orthogonal to span{v1, . . . , vn−1} =
span{w1, . . . , wn−1}. So if W is a subspace of V , then V is isomorphic to W ⊕ W⊥.
Note also that xn = (·|vn) form a dual basis for V ∗, so maps of the form (·|v) for
v ∈ V exhaust the dual space of V .

The tensor product of two vector spaces V ,W over the same field F is a vector
space V ⊗ W and a bilinear map h : V × W → V ⊗ W such that any bilinear map
f : V × W → U into another vector space U factorizes as f = gh for a unique
linear map g : V ⊗ W → U . The tensor product is unique up to isomorphism of
vector spaces because if U was another one we would get maps V ⊗ W → U and
U → V ⊗ W that by uniqueness of the factorization would be inverses to each other.
Wewon’t prove existence carefully here, and it is not important exactly how the tensor
product is constructed, as long as we know its characterizing properties.

Let us nevertheless say a few words about existence. To this end we need to use
two notions that will be define later. Consider the semigroup algebra over F of the
free semigroup generated by V × W . Divide out by the ideal generated by elements
of the type

(a1v1 + b1w1)(a2v2 + b2w2) − a1a2v1v2 − a1b2v1w2 − b1a2w1v2 − b1b2w1w2

for scalars ai , bi and vi ∈ V and wi ∈ W , to get V ⊗ W with h as the quotient map
restricted to V × W .
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We denote h(v,w) by v ⊗ w and call the latter an elementary tensor. Thus every
element of V ⊗ W is a finite linear combination of elementary tensors. Such a linear
combination is in general not unique.

Given linear maps fi : Vi → Wi between vector spaces over F , we form their
tensor product f1 ⊗ f2 : V1 ⊗ V2 → W1 ⊗ W2 as the unique map in the factorization
of the bilinear map V1 × V2 → W1 ⊗ W2 which sends (v1, v2) to f1(v1) ⊗ f2(v2)
for vi ∈ Vi . In particular, when all Wi are 1-dimensional, we can use this to show
that {vi ⊗ w j } is a linear basis of V ⊗ W whenever {vi } and {w j } are linear bases of
V and W , respectively. Thus every element of V ⊗ W can be written as a finite sum∑

u j ⊗ w j for unique u j ∈ V .
The flip is the linear isomorphism V ⊗ W → W ⊗ V given by the factorization

of the bilinear map (v,w) �→ w ⊗ v for v ∈ V and w ∈ W . In the same vain we
have an isomorphism V1 ⊗ (V2 ⊗ V3) → (V1 ⊗ V2) ⊗ V3 for vector spaces Vi .

If V,W are finite dimensional complex vector spaces that come with inner prod-
ucts, we get a well-defined inner product on V ⊗ W by setting (v1 ⊗ w1|v2 ⊗ w2) =
(v1|v2)(w1|w2) for vi ∈ V and wi ∈ W . We certainly get a sesquilinear map, and
if (u|u) = 0 then u = 0 because if u = ∑

vi ⊗ wi with the wi ’s orthonormal, then
‖u‖2 = ∑ ‖vi‖2, so all vi = 0. Note that ‖v ⊗ w‖ = ‖v‖‖w‖. If {vi } is an orthonor-
mal basis of V and {w j } is an orthonormal basis of W , then {vi ⊗ w j } is an
orthonormal basis of V ⊗ W .



Chapter 4
Groups

A semigroup is the simplest algebraic object one can think of in the sense that it is
a non-empty set with only one binary associative operation called multiplication. If
in addition you require that there should be a unit element and an inverse to each
element, then you have a group. The fact that groups are easy to define does not mean
that they are easy to study. On the contrary, to understand something well, the more
structure you are handed from the outset, the better. In any case, groups are versatile
and extremely important in mathematics.

Their axioms were set down at the beginning of the twentieth century, although
they were used prolifically centuries before. Of course, one can say that even the
Pythagoreans used groups in that they dealt with numbers, but their focus was on the
numbers themselves and not on the entire collection of them with its multiplicative
or additive structure.

Then again, the important thing about groups is not the groups themselves but the
way they act as bijective maps on other sets. This is perhaps one of the reasons why
the notion of a group was not pinned down very accurately earlier. Philosophically,
one can say that groups rule aesthetics in mathematics. They tell us what we should
focus on, or what beauty in a mathematical landscape really is. Loosely speaking,
beauty is manifested through the invariants associated to the group. Invariants are
quantities that are left unchanged under the action of a group, or in other words,
appear the same for every element of the group. Within a group of observers these
quantities represent truth, something all the observers can agree on. And indeed,
geometry, according to the Erlangen program, is the study of invariants of groups.
This is also the reason why groups are so important in physics. It suffices to mention
Noether’s theorem, covariance and gauge theories.

Early on therefore, we talk about actions of groups. Prior to this we introduce sub-
groups and show how new groups can be obtained as quotient spaces by subgroups.
A subgroup of a group is just a subset which is a group under the multiplication
inherited from the original group. When the order of the elements in a product does
not matter, we talk about abelian groups, coined after the Norwegian mathematician
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Niels Henrik Abel. A quotient set G/H of a group G with respect to a subgroup H
consists of the equivalence classes in G with equivalence relation ∼ given by a ∼ b
if ab−1 ∈ H . The quotient sets of subgroups of abelian groups are always groups
with multiplication (aH)(bH) = abH . Simple examples of abelian groups are the
cyclic ones, named so because of their action on the circle. By definition they are
groups generated by only one element. We say that a group is generated by a subset
if every group element is a finite product of elements from this subset.

The process of forming quotients of groups with respect to subgroups is funda-
mental in group theory. For quotient sets to be groups in the non-abelian setting the
subgroup must be normal, that is, closed under conjugation by any element of the
enveloping group, meaning that the product aba−1 must belong to the subgroup for
any element a of the group and any element b of the subgroup. Groups are com-
pared by means of homomorphisms, that is, maps between them that preserve the
products. And two groups are considered the same if the homomorphism is bijective,
then called an isomorphism. The fundamental isomorphism theorem tells us that the
kernel of a homomorphism, which is the subset of those members that hit the unit,
is a normal subgroup with a quotient group isomorphic to the subgroup which is
the image of the homomorphism. The second and third isomorphism theorems are
similar in spirit to the first one.

Understanding the structure of subgroups of a group amounts to understanding
all actions of the group. This is due to a basic result which sets up a correspondence
between the orbits (or minimal invariant subsets) of an action and an isotropy group,
which is a subgroup whose maps fix an element of the set. There is such a subgroup
for every element of the set, and elements belonging to the same orbit have conjugate
isotropy groups, so there is some reduction. The orbits are then identified with the
quotient sets of the group by the isotropy groups.

In this chapter we look at examples of Lie groups (named after the Norwegian
mathematical Sophus Lie) and their actions on spheres andGrassmannianmanifolds.
This is normally done in courses on geometry and algebraic topology, but I feel it is
unsatisfactory to talk about groups and actions without dealing at least superficially
with these examples that are so crucial also in advanced group theory.

The formation of a quotient set partitions the group and leads to Lagrange’s
theorem, which tells us that the order, i.e. the number of elements, of a subgroup
divides the order of the group. This is a special case of the theorem on orbits of
actions, which leads to the class formula. This formula says that you can count the
number of elements in a group by first counting the orbits, and then the number of
members in each orbit, and the collection of orbits can be regarded as a quotient group
by an isotropy group of the original group. Using this, the Norwegian mathematician
Peter Sylow showed how to unravel the structure of subgroups having order equal
to some power of a prime number. The techniques of Sylow, focusing mainly on the
order of the groups, can be taken surprisingly far.

It is desirable to decompose a group into simpler ones. For instance, finite dimen-
sional vector spaces are copies of the ground field, and each of these copies are
additive subgroups of the vector space. For finitely generated abelian groups one has
something similar. They are direct products of simpler ones, namely of cyclic groups.
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But most cyclic groups can by decomposed further although not as a direct product
of simpler ones. Non-trivial groups having no proper normal subgroups are called
simple. Any non-trivial finite group can be decomposed into such groups, but then
in terms of composition series. A normal series is a chain of descending subgroups
that are only required to be normal in their immediate larger subgroups, as opposed
to subproducts of factors in a direct product, which are normal in the entire group.
A composition series is a normal series with simple quotient groups. Such series
are gotten by filling in all possible normal subgroups till the chain is so long that
the quotient groups are simple. The Jordan-Hölder theorem tells us that the quotient
groups of such series are unique up to isomorphisms and rearrangements, so one is
talking about a property of the group. In this sense, the theory of groups is said to be
reduced to that of simple groups. Up to isomorphism, the simple abelian groups are
easily shown to be either Z or Zp, where p is a prime number.

A natural thing to do then is to classify all finite simple groups. After two decades
with intense research this was considered completed in the 1980’s. The proof, yet to
be written up in its entirety and in a coherent way, amounts tomore than 10 000 pages
of relentless mathematics. The classification of the finite simple groups is a landmark
in mathematics. The theorem says that every finite simple non-abelian group is either
an alternating group (see the paragraph below), or it is of Lie group type over certain
finite fields, and these are categorized in four infinite series, plus some exceptional
ones, or it is one of the 26 sporadic simple groups, and among them is the monster
group consisting of more than 1053 elements.

At the opposite extreme are the solvable groups, being groups with normal series
having abelian quotient groups. You also have the more restricted class of nilpotent
groups with normal series of groups produced by successive formation of centers of
quotient groups. The center of a group is the normal abelian subgroup consisting of
all elements that commute with any other element. The origin of the prefix ‘solvable’
is due to Abel and Galois, who considered permutations associated to an algebraic
equation. Both realized that such equations can be solved in terms of radicals, that is,
by extracting roots, if these permutations form a solvable group. The reason why an
algebraic equation of fifth order in general is not solvable by radicals, is because the
even permutations on five elements form a simple non-abelian group, known as the
alternating group, which prevents the group of all permutations from being solvable.
We prove simplicity of alternating groups on more than four elements in this chapter,
and leave the part concerning algebraic equations to Chap.8, where we discuss the
theory of Galois.

Many groups can be given in terms of generators and relations that completely
specify the multiplication table of the group. To define groups this way is more subtle
than it seems at first. For a start, how dowe identify a relation? Such questions lead to
the notion of a free group. By definition such groups possess no auxiliary restraining
relations.All other groups are quotients of suchgroups,where the auxiliary constrains
are packed into the normal subgroup the quotient group is formed with respect to.We
end the chapter with an informal discussion of various groups occurring in algebraic
topology. This sketchy section is not self-contained, and required preferably some
background in general topology.
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4.1 Groups and Semigroups

Definition 4.1.1 A group is a setG with a binary operation · that is associative, i.e. so
that a(bc) = (ab)c for a, b, c ∈ G, with a unit element e, meaning that ae = a = ea
for all a, and which for each element a has an inverse element, i.e. an element b such
that ab = e = ba. A group is abelian or commutative if ab = ba for all its elements
a and b. The order of a group G is its cardinality |G|.

We wrote ab instead of a · b. Due to associativity, we often skip parentheses.
There is only one unit element in a group because if also f is a unit, then e =

e f = f . In this argument it suffices that e is a left unit (ea = a) and that f is a right
unit (a f = a). We talk about the unit, and it makes sense to have assigned a symbol
to it.

Similarly, each element has only one inverse because if both a and b are inverses
of c, then a = ae = a(cb) = (ac)b = eb = b. For this argument it suffices that a is
a left inverse of c and that b is a right inverse of c.

We write a−1 for the inverse of an element a. Clearly, if b is an inverse of a, then
a is an inverse of b, so (a−1)−1 = a. Also (ab)−1 = b−1a−1 for all elements a and
b.

For abelian groups we often talk about addition + rather than multiplication to
stress the abelianess of the binary operation. We talk then of an additive group.

If we dispensewith the existence of inverses all together, we are left with amonoid.
A semigroup is a non-empty set with an associative binary operation, so a monoid
is a semigroup with unit. We also talk about abelian semigroups and monoids. The
order of a monoid or a semigroup is defined as for groups.

Proposition 4.1.2 A semigroup is a group if it has a left unit and left inverses for
all its elements.

Proof Let a be a left inverse of a left inverse b of c, so ab = e and bc = e. Then
cb = ab(cb) = a(bc)b = a(eb) = ab = e, so b is also a right inverse of c. But then
ce = cbc = ec = c, so e is also a right unit, and we have a group. �

Let n ∈ N and let a be an element of a semigroup. By an (or na in additive
notation), we mean a multiplied with itself n-times. If the semigroup is a monoid
with unit e, then a0 ≡ e, and if we have a group, then a−n means (a−1)n .

Example 4.1.3 The integers Z is a group under addition + with unit 0 and inverse
−a for a ∈ Z. But Z is only a monoid under multiplication, with unit 1.

The rational numbers Q is a group under addition, and is a monoid under mul-
tiplication, and Q ≡ Q\{0} is a group under multiplication. The same is true for R

and C, or any field F , and we denote the multiplicative group F\{0} by F∗.
The natural numbers N is a monoid under addition and multiplication, but lacks

inverses in both cases. The finite set X = {1, . . . , n} is not a semigroup under addition
nor multiplication, but N\X is a semigroup under both operations.
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The odd integers is a monoid under multiplication, while the even integers is a
group under addition and a semigroup under multiplication. All objects considered
in this example are abelian, and none are finite. ♦
Example 4.1.4 Let n ∈ N. Consider the set Zn of congruence (or residue) classes
in Z modulo n, that is, equivalence classes in Z with respect to the relation
a ≡ b (mod n), which as we recall, means that a − b divides n. We can add such
classes by saying that [a] + [b] should be the equivalence class [a + b] of a + b. This
is well-defined because if c ∈ [a] and d ∈ [b], then c − a = nk and d − b = nl, and
therefore (c + d) − (a + b) = n(k + l), so [c + d] = [a + b]. This additive opera-
tion turns Zn into a group with unit 0 = [0] = [n] and with −[a] = [−a]. We have
constructed a finite abelian group of order n. ♦
Proposition 4.1.5 A semigroup is a group if and only if ax = b = ya have solutions
x, y for all a and b.

Proof If we have a group, then x = a−1b and y = ba−1 are solutions.
Conversely, suppose we always have solutions in a semigroup. Pick any a. Then

there exists y = e such that ea = a. Write any b as b = ax for some x that we know
exists. Then eb = eax = ax = b, so e is a left unit. By assumption for any b, there
is a y such that yb = e, so y is a left inverse of b. Hence the semigroup is a group
by the proposition above. �

Corollary 4.1.6 A finite semigroup is a group if and only if the cancellation property
holds, that is, if ax = ax ′ implies x = x ′ and if ya = y′a implies y = y′ for all a.

Proof The semigroup satisfies the cancellation properties if and only if the maps
x �→ ax and y �→ ya are injective for all a. On a finite set this holds if and only if
these maps are surjective, which says that ax = b = ya have solutions x, y for all a
and b. �

4.2 Subgroups

Definition 4.2.1 A non-empty subset H of a group G is a subgroup, and we write
H < G, if the multiplication on G restricts to a multiplication on H and turns H
into a group. If H is different from G and the trivial subgroup, which consists of the
unit alone, we say that H is a proper subgroup.

The unit f of a subgroup is the same as the unit e of the group, because if f −1 is
the inverse of f in the group, then e = f f −1 = f f f −1 = f e = f . The inverse of an
element in a subgroup equals the inverse of the same element in the group because
both are inverses in the group and there is only one such element.

Proposition 4.2.2 Any non-empty subset H of a group G is a subgroup if and only
if ab−1 ∈ H for all a, b ∈ H.
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Proof From what we have just said, the forward implication is clear.
For the opposite direction, pick any element c in the non-empty set H . Then the

unit e = cc−1 of G belongs to H . Hence if a, b ∈ H , then b−1 = eb−1 ∈ H , and
thus ab = a(b−1)−1 ∈ H . �

Example 4.2.3 The circle T = {z ∈ C | |z| = 1} is a subgroup of the multiplicative
group C\{0} because if z, w ∈ T, then |zw−1| = |z||w|−1 = 1. ♦

The following result shows that finite semigroups of groups are automatically
subgroups.

Proposition 4.2.4 Any non-empty finite subset H of a group is a subgroup if ab ∈ H
for all a, b ∈ H.

Proof The semigroup H has the cancellation property thanks to the enveloping
group, so the result follows from Corollary 4.1.6. �

If A, B are subsets of a semigroup, we define AB to be the set of all elements ab
with a ∈ A and b ∈ B. The following result is easy to prove.

Proposition 4.2.5 Suppose H and K are subgroups of a group G. Then HK < G
if and only if HK = K H.

Thus, if G is an abelian group with subgroups H and K , then HK is a subgroup
of G.

4.3 Generators

By Proposition 4.2.2 the intersection of any non-empty family of subgroups of a
group is again a subgroup. So the following definition makes sense.

Definition 4.3.1 Let X be a subset of a group G. The subgroup 〈X〉 of G is the
smallest subgroup that contains X , and is called the subgroup generated by X . If G
is generated by some finite subset X , it is said to be a finitely generated group, and
we write 〈x1, . . . , xn〉 for 〈X〉, where x1, . . . , xn are the members of X , called the
generators of G. A cyclic group is a group generated by one element.

In a similar fashion we can define subsemigroups and submonoids, and such
objects generated by subsets, including cyclic versions.

Note that a group generated by X consists of all finite products of elements
of X and their inverses. Thus finitely (or even countably) generated groups are at
most countable. In particular, a cyclic group 〈a〉 generated by an element a equals
{an | n ∈ Z}, and is clearly abelian. Any non-trivial group has a non-trivial cyclic
subgroup gotten by considering 〈a〉 for any element a that is not a unit. Since cyclic
groups are at most countable, the real numbers R have proper cyclic subgroups, and
Z is one such subgroup, but there are many more.
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Example 4.3.2 The set nZ is a cyclic subgroup of Z generated by a non-negative
integer n. These are all the subgroups ofZ. To see this, suppose H < Z is proper, and
let n be the least natural number in H . Then H = nZ. Otherwise there is a number
a ∈ H that is not in nZ. By the division algorithm, we can write a = nq + r for
integers q and 0 ≤ r < n. But r = a − qn ∈ H , so r = 0 as n is the least natural
number in H . Thus a = nq ∈ nZ, which is a contradiction. So all subgroups of Z

are cyclic and of the form nZ, and they are infinite, except when n = 0.
By the same reasoning, we see that nZ < mZ if and only ifm divides n, and these

are all the subgroups of mZ. ♦
Example 4.3.3 The group Zn is cyclic with generator [1]. In fact, any element [a]
with a and n relatively prime, will serve as a generator, and these are all the single
generators. This is true because gcd(a, n) = 1 if and only if ak + nl = 1 for integers
k and l if and only if k[a] = [1] for some integer k.

Again by the division algorithm, the subgroups ofZn are of the form 〈[m]〉, where
m divides n. ♦
Definition 4.3.4 The order of an element a in a group, is the least natural number
o(a) such that ao(a) = e, where e is the unit of the group. If no such number exists,
then a is said to be of infinite order.

Using the division algorithm, it is easy to check that o(a) = |〈a〉| for any element
a of finite order in a group G. Also, if am = e for some m, then o(a) divides m. If
G is finite, then for the product n over G of all o(a), we obviously get bn = e for all
b ∈ G. But this is an overkill, evidently already b|G| = e, so o(b) divides |G|.

This can be generalized.

4.4 Cosets and Lagrange’s Theorem

Definition 4.4.1 Suppose H is a subgroup of a group G. The coset of H determined
by a ∈ G is the set aH , and the collection of cosets is denoted by G/H . The index
[G : H ] of H < G is the order ofG/H . Similarly, the set H\G denotes the collection
of right cosets Ha.

The map G/H → H\G given by aH �→ Ha−1 is well-defined and bijective, so
[G : H ] = |H\G|.

The (left) cosets of H < G form a partition of G with respect to the equivalence
relation ∼ on G given by b ∼ a if b ∈ aH . Also the map H → aH sending b to ab
is a bijection, so |H | = |aH |. This proves Lagrange’s theorem.
Proposition 4.4.2 The order of any subgroup of a finite group divides the order of
the group. In fact, if K < H < G and [G : K ] < ∞, then

[G : K ] = [G : H ][H : K ].
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Proposition 4.4.3 The intersection of two subgroups of finite index is of finite index.

Proof Say H and K are subgroups of G with finite indices. Trivially

a(H ∩ K ) = aH ∩ aK ,

and there can be only finitely many such subsets. �

We will need the following result later.

Proposition 4.4.4 If Hi are subgroups of a group G and ai j ∈ G are such that

G = ∪m
i=1 ∪n

j=1 ai j Hi ,

then some Hi is of finite index in G.

Proof We proceed by induction on the number m of subgroups Hi . The case m = 1
is obvious. Assume that the result holds for any number less than m, and consider
m ≥ 2. If all the indices are finite we are done, so by interchanging the Hi ’s we may
assume that [G : H1] is infinite. Since all cosets form a partition of G at least one
coset, say bH1, must be disjoint from ∪n

j=1a1 j H1. Hence by assumption

bH1 ⊂ ∪m
i=2 ∪n

j=1 ai j Hi .

Left multiplication by a1kb−1 gives

a1k H1 ⊂ ∪m
i=2 ∪n

j=1 a1kb
−1ai j Hi .

So G is covered by cosets of H2, . . . , Hm . By the induction hypothesis one of these
has finite index in G. �

4.5 Morphisms

Definition 4.5.1 A homomorphism from a group G to another group H is a map
f : G → H such that f (ab) = f (a) f (b) for all a, b ∈ G. If f is injective (sur-
jective) it is called a monomorphism (epimorphism). If it is bijective, then it is an
isomorphism, and we write G ∼= H . A monomorphic image of a group G in H is
said to be an embedding of G in H . If G = H , we say that f is an endomorphism,
and it is an automorphism if in addition it is an isomorphism. The kernel of f is the
subgroup ker f ≡ {a ∈ G | f (a) = e} of G.

The relation of being isomorphic is an equivalence relation. The kernel of a homo-
morphism is trivial if and only if the homomorphism is a monomorphism. The image
im f ≡ f (G) of a homomorphism f : G → H is a subgroup of H .
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The trivial homomorphism sends all elements in a group to the unit of another
group. The identity map on a group is an automorphism.

Example 4.5.2 The exponential function is an epimorphism from the additive group
C to the multiplicative group C\{0}. ♦
Example 4.5.3 We have seen that nZ is a subgroup of Z. But the map nZ → Z

given by nm �→ m is an isomorphism, so nZ ∼= Z, and yet the set Z/nZ has n
members. ♦
Definition 4.5.4 The direct product of groups Gi is the direct product

∏
Gi of the

sets Gi with multiplication defined pointwise.

Then the projection map πi : ∏
G j → Gi given by πi ( f ) = f (i) is an epimor-

phism with kernel consisting of those f ∈ ∏
G j such that f (i) = ei , where ei is the

unit of Gi .

Proposition 4.5.5 Let H and K be subgroups of a group G such that H ∩ K is
trivial and HK = G and with hk = kh for all h ∈ H and k ∈ K. Then the map
H × K → G given by (h, k) �→ hk is an isomorphism.

Proof The map is obviously an epimorphism. To see that it also is injective, assume
that (h, k) maps to the unit e. Then hk = e, or h = k−1, so both h and k belong to
H ∩ K = {e}. �

4.6 Normal Subgroups

Definition 4.6.1 A subgroup H of a group G is a normal subgroup of G, and we
write H � G, if aHa−1 ⊂ H for a ∈ G.

It is easy to check that H � G if and only if a−1Ha = H for a ∈ G. So the left-
and right cosets of an element in a normal subgroup coincide.

Clearly any subgroup of an abelian group is normal.

Proposition 4.6.2 Let H be a normal subgroup of a group G. Then G/H is a
group, called the quotient group of G by H, with multiplication (aH)(bH) = abH
for a, b ∈ G.

Proof Multiplication is well-defined because if x, y ∈ H , then

(axH)(byH) = axbyH = ab(b−1xb)H = abH,

where we twice absorbed elements of H into H . Clearly this binary operation is
associative. The unit is H and (aH)−1 = a−1H . �
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Definition 4.6.3 Let H be a normal subgroup of a groupG. The epimorphismG →
G/H which sends a to aH is called the quotient map.

Example 4.6.4 Let n ∈ N. Then nZ is a normal subgroup of the additive group Z,
and we can consider the quotient group Z/nZ. On the other hand we have the group
Zn of congruence classes [m] modulo n. The map [m] �→ mnZ is an isomorphism
from Zn to Z/nZ. ♦

We have arrived at the first isomorphism theorem.

Theorem 4.6.5 Let f : G → H be a homomorphism of groups. Then ker f � G,
and the map g : G/ker f → H given by

a ker f �→ f (a)

is a monomorphism such that f = gh, where h : G → G/ker f is the quotient map.
Hence im f ∼= G/ker f .

Proof Let a ∈ G and b ∈ ker f . Then aba−1 ∈ ker f because f (aba−1) =
f (a) f (b) f (a−1) = f (a)e f (a−1) = f (aa−1) = e, so ker f is a normal subgroup of
G.

If x ∈ ker f , then ax ker f �→ f (ax) = f (a) f (x) = f (a)e = f (a), so g is well-
defined. Clearly it is a homomorphism. It is injective since f (a) = e means that
a ∈ ker f , so a ker f = ker f , which is the unit in the quotient group.

Thus g is an isomorphism onto its image im f . �

Definition 4.6.6 A simple group is a non-trivial group that has no proper normal
subgroups.

4.7 Cyclic Groups

Let us begin with an example, where we utilize the first isomorphism theorem.

Example 4.7.1 Let n ∈ N. The map

en : θ �→ exp(
2π iθ

n
) ≡ cos(

2π iθ

n
) + i sin(

2π iθ

n
)

is clearly a homomorphism from the additive group R to the group C∗. Its image is
the circle T and the kernel is nZ. Hence T ∼= R/nZ.

Restrict en to the subgroup Z of R. Then its image is the cyclic subgroup of T

generated by exp( 2π in ), and the kernel is still nZ. Hence

〈exp(2π i
n

)〉 ∼= Z/nZ ∼= Zn.
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The n numbers exp( 2π imn ) for m ∈ {0, 1, . . . , n − 1} are placed around the circle at
equal distance, and are obtained by multiplying the generator exp( 2π in ), which is an
n-root of 1, with itself m times, thus moving counter clockwise around the circle.
Hence the terminology cyclic.

Drawing straight lines between these n points on the circle one gets a regular
n-polygon. For instance, the group Z4 corresponding to {±1,±i} form a square with
sides

√
2 and with one vertex at 1. ♦

We have a complete classification of cyclic groups.

Theorem 4.7.2 Every cyclic group is either finite and is isomorphic to Zn for some
n ∈ N, or it is infinite and isomorphic to Z.

Proof If 〈a〉 is infinite, then m �→ am is an isomorphism from Z to 〈a〉. Injectivity
must hold, otherwise 〈a〉 would be finite.

If 〈a〉 is finite, then m �→ am is an epimorphism from Z to 〈a〉. Its kernel is nZ

where n = o(a), so by the first isomorphism theorem, we see that 〈a〉 ∼= Z/nZ. �

So cyclic groups of the same order are isomorphic.

Corollary 4.7.3 Homomorphic images of cyclic groups are cyclic, and subgroups
of cyclic groups are cyclic.

Proof The first statement is trivial as the homomorphic image of a generator is a
generator.

The second statement is immediate from the theorem and the two examples from
Sect. 4.3. �

All proper subgroups of an infinite cyclic group G are isomorphic to G. This
follows from the theorem above as the only cyclic subgroups of Z are nZ for some
integer n.

Proposition 4.7.4 There is at most one subgroup of a given order of a finite cyclic
group.

Proof Any cyclic subgroup of a finite cyclic group 〈a〉 is cyclic, and is of the form
〈am〉 for some m. Let d be the greatest common divisor of m and the order n of
〈a〉. Then 〈am〉 = 〈ad〉 because d divides m, so the inclusion ⊂ holds. The opposite
inclusion holds because d = rm + sn for some r, s ∈ Z, so ad = arm .

But 〈ad〉 has order n/d. So if two subgroups have generators with different such
d’s, their orders are also different. In other words, two subgroups of the same order
have a common generator and must coincide. �

If G is a finite cyclic group, there is exactly one subgroup of G for each divisor
m of |G|, and the order of this subgroup is |G|/m, and moreover, these are all the
subgroups. This is clear from the theorem above and the proposition above.

In particular, the simple cyclic groups are those of prime order. This suggests that
simple groups should be thought of as building blocks for groups.
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Proposition 4.7.5 If G and H are finite cyclic groups with relatively prime orders.
Then G × H is cyclic of order |G||H |.
Proof Let |G| = m and |H | = n, so |G × H | = mn. Say a and b are generators of
G and H , respectively. Now (a, b)mn = (amn, bmn) = (e, e), so d ≡ o(a, b) divides
mn. But as (a, b)d = (e, e), we see that both m and n divide d. Thus mn also
divides d as m and n are relatively prime. So d = mn. Thus (a, b) is a generator
for G × H . �

4.8 Normalizers and Centralizers

Definition 4.8.1 The normalizer of a subset X of a group G is the subgroup N (X)

of G given by
N (X) = {a ∈ G | aXa−1 = X}.

The reason why N (X) < G is that (ab−1)X (ab−1)−1 = ab−1bXb−1ba−1 for
a, b ∈ N (X).

We write N (a) when X consists of a single element a.

Proposition 4.8.2 A subgroup H of a group G is a normal subgroup of N (H), and
N (H) is the largest subgroup of G in which H is normal.

If K < N (H) for a subgroup H of a group G, then K H < G and H � K H.

Proof As aHa−1 = H for a in a group H , we see that H � N (H), and it is also
clear that N (H) is the largest possible subgroup of G that contains H as a normal
subgroup.

As for the second statement, notice that every element a ∈ K < N (H) satisfies
aHa−1 = H , so K H = HK . By Proposition 4.2.5 we conclude that K H is a group,
and clearly H � K H . �

We can generalize normalizers of single elements in another direction.

Definition 4.8.3 The centralizer of a subset X of a group G is the subgroup Z(X)

of G defined as
Z(X) = {a ∈ G | ax = xa for all x ∈ X}.

The center of a group are the elements in the group that commute with every other
element of the group, so it is the centralizer of the group as a subset of itself.

Indeed Z(X) < G, because Z(X) is obviously a monoid, and it contains inverses
of its elements since ax = xa ⇔ xa−1 = a−1x for a, x ∈ G.

The following proposition is straightforward.

Proposition 4.8.4 An abelian subgroup H of a group G is a subgroup of Z(H), and
any abelian subgroup of G that contains H is a subgroup of Z(H).

The center of a group G is a normal subgroup of G. A group G is abelian if and
only if Z(G) = G.
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4.9 Correspondences

The correspondence theorem relates subgroups of groups connected by a homomor-
phism.

Theorem 4.9.1 Let f : G → H be a homomorphism between two groups. Then
the map K �→ f (K ) is a bijection between subgroups of G containing ker f and
subgroups of im f such that normal subgroups correspond to normal subgroups.

Proof We have seen that f (K ) < im f for K < G, and clearly f (K ) � im f if K
is normal.

If ker f ⊂ K < G, then K = f −1( f (K )) since trivially K ⊂ f −1( f (K )), and
if a ∈ f −1( f (K )), then f (a) ∈ f (b) for some b ∈ K , so ab−1 ∈ ker f ⊂ K and
a ∈ K .

Hence, if f (K1) = f (K2) for subgroups K1 and K2 of G containing ker f , then
K1 = f −1( f (K1)) = f −1( f (K2)) = K2.

If L < im f , then ker f ⊂ f −1(L) < G, with f −1(L) normal if L � im f , and
f ( f −1(L)) = L as L ⊂ im f . �

Here is an important application.

Corollary 4.9.2 Suppose H � G. To any L < G/H there is a unique K < G such
that L = K/H, and K is normal if and only if L is normal.

Proof Apply the theorem to the quotient map G → G/H . �

Definition 4.9.3 A normal subgroup H of a group G is maximal if H �= G and if
H is not properly contained in a proper normal subgroup.

The existence of a maximal normal subgroup in a group G is a simple application
of Zorn’s lemma to the family of normal subgroups ofG different fromG and ordered
under inclusion.

Corollary 4.9.4 Let H be a proper normal subgroup of a group G. Then H is
maximal if and only if G/H is simple.

4.10 More Isomorphism Theorems

The following result, known as the diamond isomorphism theorem, will prove useful.

Theorem 4.10.1 If H and K are subgroups of a group G with HK = K H, then

f : H → HK/K ; f (a) = aK

is an epimorphism with ker f = H ∩ K, so H/H ∩ K ∼= HK/K. In particular, this
holds for any H, K with H < G and K � G.
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Proof Note that HK < G and K � HK , and that f is the usual quotient map. The
result is then immediate from the first isomorphism theorem. �

If H, K are subgroups of a group, and HK = K H is finite, then this theorem
shows that

|HK |/|K | = |H |/|H ∩ K |.

In fact, this holds for any subgroups H and K of a finite group.
To see this, define an equivalence relation∼ on H × K by (a, b) ∼ (a′, b′) if a′ =

ac and b′ = c−1b for some c ∈ H ∩ K . Then c �→ (ac, c−1b) is clearly a bijection
from H ∩ K to the equivalence class [(a, b)], so |[(a, b)]| = |H ∩ K |. Thus

|H | |K | = |H × K | = |(H × K )/ ∼ | |H ∩ K |,

so we are done if we can show that HK ∼= (H × K )/ ∼. But [(a, b)] �→ ab is such
an isomorphism. It is well-defined as (ac)c−1b = ab, it is obviously surjective, and
it is injective because if ab = a′b′ with a, a′ ∈ H and b, b′ ∈ K , then c = a−1a′ =
b(b′)−1 ∈ H ∩ K and a′ = ac and b′ = c−1b, so [(a′, b′)] = [(a, b)].

The third (or double quotient) isomorphism theorem shows that forming quotient
groups is transitive.

Theorem 4.10.2 Let H and K be normal subgroups of a group G with K ⊂ H.
Then

f : G/K → G/H ; f (aK ) = aH

is a well-defined epimorphism with ker f = H/K, so (G/K )/(H/K ) ∼= G/H.

Proof Themap is well-defined because if aK = bK for a, b ∈ G, then b−1a ∈ K ⊂
H , so aH = bH . It is obviously a homomorphism by definition of the product in
quotient groups.

Surjectivity is clear, and ker f = {aK | aH = H} = {aK | a ∈ H} = H/K , so
the result follows from the first isomorphism theorem. �

4.11 Permutation Groups

In all our examples so far we have only dealt with abelian groups. Let us now consider
non-abelian groups.

Definition 4.11.1 The permutation group Perm(X) of a set X consists of all bijec-
tions X → X , or permutations of X , with multiplication given by composition of
maps. Any subgroup of Perm(X) is also called a permutation group.

The unit of a permutation group is the identity map, and the inverse of a
permutation is the inverse map.
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In Sect. 3.6 we studied permutations of a finite set, and worked with the symmetric
group Sn ≡ Perm({1, . . . , n}) without considering it a group at the time.

We saw that every element in Sn can be written as a product of disjoint non-trivial
cycles, and that such a product is unique modulo order of factors. Also we saw that
each cycle can be written as a product of transpositions.

Now Sn is a finite group of order n!, and each cycle generates a cyclic subgroup
Zm , where m ∈ {1, . . . , n} is the length of the cycle. Apart from S1, and S2, which
is isomorphic to Z2, the symmetric groups are non-abelian.

To see this, first notice that when m ≤ n, the group Sm can be embedded into Sn
and recognized as those elements that permute only the firstm elements and leave the
rest fixed. Then consider the following example, which shows that S3 is non-abelian.

Example 4.11.2 The cycle σ = (
1 2 3

)
and the transposition τ = (

2 3
)
generate

S3, and S3 = {e, σ, σ 2, τ, στ, σ 2τ }. In fact, we have the relations

σ 3 = e = τ 2, τσ = σ 2τ,

which completely specify the multiplication. ♦
We have the following more general result.

Proposition 4.11.3 The symmetric group Sn is generated by
(
1 2 · · · n)

and(
n − 1 n

)
.

Proof LetG be the subgroup of Sn generated by σ ≡ (
1 2 · · · n)

and τ ≡ (
n − 1 n

)
.

It suffices to show that G contains all transpositions since these generate Sn .
Now G contains σmτσ−m , which equals

(
m − 1 m

)
by induction. Since

(
1 2

) (
2 3

) (
1 2

) = (
1 3

)
and

(
1 3

) (
3 4

) (
1 3

) = (
1 4

)
,

and so forth, we see that
(
1 m

) ∈ G, and hence
(
m k

) = (
1 m

) (
1 k

) (
1 m

)
also

belongs to G. �

Wesaw that in the symmetric group, the number of transpositions in any decompo-
sition is either always even or always odd. This gave us the sign function, which can
be regarded as an epimorphism sign : Sn → {±1}. Its kernel An , consisting of even
permutations, is therefore a normal subgroup of Sn , and is known as the alternating
group. By Lagrange’s theorem |An| = n!/2.

The following result is known as Cayley’s theorem.

Proposition 4.11.4 Let G be a group, and let a ∈ G.Defineλa : G → G byλa(b) =
ab. Then themapa �→ λa is amonomorphism fromG toPerm(G).Hence every group
is a permutation group.

Proof Clearly λe is the identity map, and λab = λaλb, so λa is invertible with inverse
λa−1 . �
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4.12 Symmetries

A special kind of permutation group is particularly important in geometry.

Definition 4.12.1 A permutation σ of a space X with a metric d is a symmetry if
d(σ (x), σ (y)) = d(x, y) for all x, y ∈ X .

The set of symmetries is a subgroup, the symmetry group, of Perm(X) because if
σ and τ are symmetries, then

d(τσ−1(x), τσ−1(y)) = d(σ−1(x), σ−1(y)) = d(σσ−1(x), σσ−1(y)) = d(x, y).

Let X be the points in R
2, with the usual distance, that form the perimeter of a

regular n-polygon Pn . Geometrically it is clear that any symmetry of this infinite
subset X of R

2 is uniquely determined by its effect on the vertices of Pn , which we
label as 1, 2, . . . , n. Thus we can consider these symmetries as a subgroup of Sn .

Definition 4.12.2 The dihedral group Dn of degree n ∈ N is the symmetry group
of Pn .

Obviously, an element of Sn is a symmetry of Pn if and only if it takes adjacent
vertices of Pn to adjacent vertices. This happens if and only if the cyclic order
1, 2, . . . , n is preserved or reversed, that is, if and only if the permutation is trivial
or of the form σm , or of the form σmτ , where m ∈ {1, . . . , n − 1} and

σ = (
1 2 · · · n)

and τ =
(
1 2 · · · n
1 n · · · 2

)

.

It is easy to check that τσ = σ n−1τ , which gives the following result.

Proposition 4.12.3 Let n be an integer greater than one. Then the dihedral group
Dn has order 2n with distinct elements σm and σmτ for m ∈ {0, 1, . . . , n − 1}. The
multiplication is completely determined by the relations

σ n = e = τ 2 and τσ = σ n−1τ.

The permutation σ corresponds to a rotation of Pn by an angle 2π/n, and τ

corresponds to a reflection.
We see that Dn is non-abelian for n greater than two. We also see that D3 = S3,

which is consistent with the fact that any two vertices of an equilateral triangle are
adjacent. The optic group D4 is however not isomorphic to S4. We can obtain S4 as
the symmetries in R

3 of the tetrahedron, since there any two vertices are adjacent.
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4.13 Automorphisms

Another permutation group is the set Aut(G) of automorphisms of a groupG. Recall
that f is an automorphism if f is a permutation of G such that f (ab) = f (a) f (b)
for a, b ∈ G, and such maps obviously form a group under composition.

Definition 4.13.1 The inner automorphism Ad(a) of a group G determined by a ∈
G is the map Ad(a) : G → G given by

Ad(a)(b) = aba−1

for all b.

This is indeed an automorphism becauseAd(a)(bc) = aba−1aca−1, soAd(a) is a
homomorphism. Also Ad(a)(b) = e implies b = e, and finally Ad(a)(a−1ba) = b.

Proposition 4.13.2 The set Inn(G) of inner automorphisms of a group G is a normal
subgroup of Aut(G).

Proof Since Ad(a)(Ad(b))−1 = Ad(ab−1) for any a, b ∈ G, we conclude that
Inn(G) is a subgroup of Aut(G), and it is normal because f Ad(a) f −1 = Ad( f (a))

for f ∈ Aut(G) and a ∈ G. �
Definition 4.13.3 The quotient group Out(G) ≡ Aut(G)/ Inn(G) is the outer
conjugacy classes of the group G.

Thus two automorphisms f and g of a group G are equivalent, or conjugate,
if f −1g ∈ Inn(G), or in other words, if there is an element a ∈ G such that g =
f Ad(a). So f and g are conjugate if and only if g = b f (·)b−1 for some b ∈ G.
The following result is obvious.

Proposition 4.13.4 The map a �→ Ad(a) from a group G to Inn(G) is an epimor-
phism with kernel Z(G), so Inn(G) ∼= G/Z(G).

Definition 4.13.5 AgroupG is a complete group if Aut(G) ∼= G, that is, if its center
is trivial and if every automorphism is inner.

Note that the order of an element in a group is the same as the order of its
image under an automorphism. Also any homomorphism from a group is uniquely
determined on any set of generators of the group.

Example 4.13.6 The symmetric group S3 is complete. To see this, consider the
generators σ and τ of S3 from Example 4.11.2. The relations

σ 3 = e = τ 2, τσ = σ 2τ

show that Z(S3) is trivial, so | Inn(S3)| = |S3| = 6. They also show that σ and σ 2

are of order three, whereas τ , στ and σ 2τ are of order 2. So there cannot be more
than 6 automorphism of S3. Hence Aut(S3) ∼= S3. Of course, these are not all the
permutations of S3. The order of Perm(S3) is 6! = 720. ♦
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Example 4.13.7 The order of Aut(G) for a finite cyclic group G is φ(|G|). To see
this first observe that for an integer n, the map a �→ an is an automorphism of a
finite abelian group G if n and |G| are relatively prime. This is also a necessary
condition when G = 〈a〉 is a finite cyclic group, and in this case any automorphism
is uniquely determined on a, and the image of a would be an for some n. Hence
Euler’s φ-function.

4.14 Semidirect Products

Definition 4.14.1 The semidirect product K � H of the groups K and H with
respect to a homomorphism f : H → Aut(K ) is the group which is K × H as a
set but with product given by the formula

(a, b) · (c, d) ≡ (a f (b)c, bd).

It is straightforward to check that the semidirect product K � H is indeed a group
with unit (e, e) and (a, b)−1 = ( f (b−1)a−1, b−1).

Clearly,when f sends every element of H to the identitymapon K , then K � H =
K × H even as groups.

In general we have (a, e)(e, b) = (a, b), whereas (e, b)(a, e) = ( f (b)a, b), so
(e, b)(a, e)(e, b)−1 = ( f (b)a, e) for a ∈ K and b ∈ H . Considering K and H as
subgroups of K � H under the embeddings a �→ (a, e) and b �→ (e, b), respectively,
we see that K is normal, that K � H = K H and that K ∩ H is trivial.

The following straightforward result tells us when a group is isomorphic to a
semidirect product.

Proposition 4.14.2 SupposeG is a groupwith a subgroup H and a normal subgroup
K such that K H = G and H ∩ K = {e}. Then K � H with respect to f : H →
Aut(K ) given by f (b)a = bab−1 is isomorphic to G under (a, b) �→ ab.

Example 4.14.3 The (ax + b)-group G consists of all maps Ta,b : R → R given
by Ta,b(x) = ax + b, where a ∈ R∗ and b ∈ R and with multiplication given by
composition of maps. Since

a(cx + d) + b = (ac)x + (ad + b),

we do get a group this way which has R∗ and R as subgroups under the embeddings
a �→ Ta,0 and b �→ T1,b. It is easy to check that the requirements of the proposition
above hold with K = R and H = R∗. Thus the (ax + b)-group is isomorphic to
the semidirect product R � R∗ with f : R∗ → Aut(R) given by f (a)b = ab as it is
readily verified that Ta,0T1,bT

−1
a,0 = T1,ab. ♦

Remark 4.14.4 In physics one thinks of the (ax + b)-group as the group ofGalilean
transformations related to a particle moving in one dimension. Its trajectory is then
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described by the particles position x = x(t) on the x-axis at the time t . If the particle
is moving freely, then as long as one is referring to an inertial observer, it obeys
Newtons law of motion d2x/dt2 = 0, saying that its acceleration is zero. This law
is covariant with respect to all observers in inertial systems, that is, looks the same
for everybody moving with constant speed with respect to each other, provided the
coordinate transformations between these observers are Galilean transformations.
This means that if the particles motion is described with respect to another inertial
observer, say with coordinate y(s) in his frame at absolute time s = t , then if the
speed of the observer is constantly equal to a and his origin is translated to −b,
the transformation is y(s) = ax(t) + b. As d2y/ds2 = ad2x/dt2 from calculus, we
again get d2y/ds2 = 0. So Newtons law for free motion is covariant; none of the
two observers experience that the particle is accelerating.

Insisting on covariance led Einstein to the theory of relativity [6]. In special
theory of relativity the group of Galilean transformations (in three dimension) was
replaced by the Poincare group of transformations between inertial observers because
Maxwell’s equations are covariant under these transformations, and they described
electromagnetism, which Einstein sought to unify with mechanics. This implied that
the speed of light should be the same with respect to all inertial observers, and came
at the cost of abandoning the concepts of absolute time and rigid objects.

The general theory of relativity allows including observers in accelerated motion
with respect to each other. This was achieved by including gravity; matter curves
spacetime and free motion follows geodesics, or straightest possible lines in space-
time, which well could mean accelerated motion in ordinary space, an effect then
attributed to a gravitational field. The appropriate mathematical language for this
theory is differential geometry [18], which won’t be treated in this book. With this
little digression we just want to point out that groups, playing the role as symme-
try objects in a physical theory, has played an important role in the development of
modern physics, not to mention as gauge groups in the Standard model describing
particle physics [20]. ♦
Example 4.14.5 Let G be a group. Define a homomorphism f : Sn → Aut(Gn) by

f (σ )(a1, . . . , an) = (aσ(1), . . . , aσ(n))

for σ ∈ Sn and ai ∈ G. The corresponding semidirect product Gn
� Sn is known as

the wreath product. ♦
Example 4.14.6 Consider the semidirect productZn � Z2 with respect to the homo-
morphism f : Z2 → Aut(Zn) given by f ([k])([m]) = [(−1)km]. This group is
isomorphic to the dihedral group Dn under the isomorphism ([m], [k]) �→ σmτ k .
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4.15 The General and Special Linear Group

Linear algebra provides many important automorphism groups. Let V be a finite
dimensional vector space over a field F .

Remark 4.15.1 What we in linear algebra called the endomorphisms End(V ) of
V , are the linear maps, and these are obviously homomorphism of V considered as
an additive group. But the converse is not true, there are additive maps that do not
respect multiplication by scalars.

To wit, consider R as a vector space over Q. Then additive maps are uniquely
defined by ascribing arbitrary values on a linear basis for R over Q. This way we
get additive maps R → R that are not continuous. Such maps cannot be linear, since
any linear map from R to R is automatically continuous.

However, if F has characteristic 0, then any additive map will be linear over Q

because
m f (v) = f (mn(1/n)v) = n f ((m/n)v),

for all integersm and n �= 0 and vectors v ∈ V . So if Q is dense in F and F is a field
with continuous operations, which is the case forR, then any continuous additivemap
on V will be linear. This follows because for any a ∈ F , there are rational numbers
an such that a = lim an , and therefore as scalar multiplication is continuous for finite
dimensional vector spaces over F , we get

f (av) = f (lim(anv)) = lim f (anv) = lim an f (v) = a f (v)

for all vectors v.
Likewise, due attention has to be made to Aut(V ), which in the context of linear

algebra means the bijective linear maps on V . These will be automorphisms of V
considered as an additive group, while the converse need not hold.

Consider now the permutation group Aut(V ) of V consisting of bijective linear
maps. Picking a basis for V we get an isomorphism Aut(V ) ∼= GL(n, F), where
n = dim V andGL(n, F) denotes the group of invertible n × n-matriceswith entries
in F . Under this isomorphism composition of linear maps becomes multiplication
of matrices with unit e = In .

Definition 4.15.2 The group GL(n, F) is called the general linear group.

We see that two matrices in GL(n, F) are similar if and only if one of them is the
image of the other one under some inner automorphism.

The map a �→ aIn embeds the group F∗ into GL(n, F).

Proposition 4.15.3 The center of GL(n, F) is F∗. So Inn(GL(n, F)) ∼=
GL(n, F)/F∗, and the latter group is known as the projective group PGL(n, F).
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Proof Consider thematrix units Ei j .Now In + Ei j are all invertiblewith determinant
1 if i �= j and determinant 2 if i = j .

Let A ∈ Z(GL(n, F)). Then in particular A(In + Ei j ) = (In + Ei j )A, or equiv-
alently AEi j = Ei j A, for all i and j . But the matrix AEi j has the i th column of A
as its j th column, and with all other columns containing only zeros. Whereas the
matrix Ei j A has the j th row of A as its i th row, and with all other rows containing
only zeros. These two matrices can only be equal if A is diagonal with aii = a j j for
all i and j . Thus A ∈ F∗. �

The determinant is a unital homomorphism from the monoid Mat(n, F) to
the multiplicative monoid F . The general linear group is the submonoid consist-
ing of those matrices with non-vanishing determinant. Consider the epimorphism
det : GL(n, F) → F∗. Let SL(n, F) denote its kernel, so

GL(n, F)/SL(n, F) ∼= F∗.

Definition 4.15.4 The special linear group SL(n, F) is the normal subgroup of
GL(n, F) consisting of the matrices with determinant 1.

By essentially the same argument as in the proof of Proposition 4.15.3, we see
that also SL(n, F) has trivial center.

Note also that by Proposition 3.7.10, we observe that the matrices in SL(n, F)

with integer entries form a subgroup of SL(n, F), which we denote by SL(n, Z).

4.16 Inner Products and Linear Subgroups

ConsiderC
n with the usual inner product (x |y) = ȳT x of columns vectors x, y ∈ C

n .
Here bar of a matrix means taking complex conjugates of its entries. This inner
product produces the usual distance in C

n , and we can form subgroups of GL(n, C)

consisting of symmetries, or isometries.

Definition 4.16.1 A unitary matrix A ∈ M(n, C) is an isometry of C
n , that is, it

satisfies (Ax |Ay) = (x |y) for all x, y ∈ C
n . The unitary group is the subgroupU (n)

of GL(n, C) consisting of all such isometries.

Since (Ax)T Ay = x̄ T ĀT Ay we infer that

U (n) = {A ∈ M(n, C) | ĀT A = In}.

For any A ∈ U (n), we have 1 = det(In) = det( ĀT A) = | det(A)|2, so the deter-
minant restricts to an epimorphism det : U (n) → T. The kernel SU (n) of this
epimorphism is a normal subgroup of U (n), so

U (n)/SU (n) ∼= T.
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Definition 4.16.2 The group SU (n) = U (n) ∩ SL(n, C) is called the special uni-
tary group.

Example 4.16.3 It is easy to check that

SU (2) = {
(
z −w̄

w z̄

)

| z, w ∈ T with |z|2 + |w|2 = 1 }.

♦
The matrices inU (n)with real entries obviously form a subgroup O(n). Restrict-

ing the inner product on C
n to R

n gives the usual inner product on R
n with the usual

distance.

Definition 4.16.4 An orthogonal matrix A ∈ M(n, R) is an isometry of R
n , that is,

it satisfies (Ax |Ay) = (x |y) for all x, y ∈ R
n . The orthogonal group is the subgroup

O(n) of GL(n, R) consisting of all such isometries.

Clearly
O(n) = {A ∈ M(n, R) | AT A = In}.

Geometrically, the orthogonal groupO(3) is generated by rotations and reflections
inR

3, so vectors that are pairwise orthogonal, or perpendicular, remain so after being
transformed by an orthogonal matrix.

For any A ∈ O(n), we have 1 = det(In) = det(AT A) = det(A)2, so the deter-
minant of an orthogonal matrix is ±1. Denoting the kernel of the epimorphism
det : O(n) → {±1} by SO(n), we get

O(n)/SO(n) ∼= Z2.

Definition 4.16.5 The group SO(n) = On(R) ∩ SL(n, R) is called the special
orthogonal group.

The group SO(3) consists of those orthogonal transformations inR
3 that preserve

orientation, which are the rotations.
The center of SU (2) is ±I2, and it can be shown that SU (2)/Z2

∼= SO(3).

Example 4.16.6 It is easily checked that the map

x + iy �→
(

x y
−y x

)

is an isomorphism from the circle T to SO(2). ♦
Let

J =
(
0 −In
In 0

)

and define the symplectic bilinear form on C
2n by B(x, y) = xT J y.
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Definition 4.16.7 The group Sp(n, C) ⊂ M(2n, C) of isometries of C
2n with

respect to the symplectic bilinear form is called the complex symplectic group.

Hence
Sp(n, C) = {A ∈ M(2n, C) | AT J A = J }.

Note that J 2 = −I2n , so det(A) = ±1 for A ∈ Sp(n, C).
One can also consider the subgroup Sp(n, R) of Sp(n, C) consisting of those

matrices with real entries.

Definition 4.16.8 The group Sp(n) = Sp(n, C) ∩U (2n) is called the symplectic
group.

Some of these groups have non-trivial centers.

Definition 4.16.9 The projective groups PSU (2n), PSO(2n) and PSp(n) for
n ∈ N are quotients of SU (2n), SO(2n) and Sp(n), respectively, by their normal
subgroup {±1}.
Remark 4.16.10 All the groups we have introduced in this section are Lie groups.
These are groups that are also differentiable manifolds and such that the map
(g, h) �→ gh−1 is smooth. The Lie groups we have considered here are known as
the classical groups. There are many more Lie groups, including e.g. spin groups
associated to other scalar products.

We include the following major result.

Theorem 4.16.11 The number n appearing below is assumed to be an integer. The
groups

(A) SU (2n + 1) and PSU (2n) for n ≥ 1,

(B) SO(2n + 1) for n ≥ 2,

(C) PSp(n) for n ≥ 3,

(D) PSO(2n) for n ≥ 4,

are non-abelian and have no proper normal subgroups. What is more important, they
are mutually non-isomorphic.

Remark 4.16.12 In fact, the groups in the theorem are part of an ABCDEFG-
classification of simple Lie groups; a classification that goes via Lie algebras, root
systems and Dynkin diagrams [12, 24].

The Lie groups in the theorem are also connected and compact. The classification
result says that every compact, connected non-abelian Lie group with no proper
normal subgroups is isomorphic to exactly one of the groups listed in the theorem, or
to exactly one of the five versions of compact and connected exceptional Lie groups
E6, E7, E8, F4,G2 with trivial center. We do not introduce these groups here.
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4.17 Actions

Definition 4.17.1 An action of a group G on a set X is a map

G × X → X; (a, x) �→ ax

such that ex = x and a(bx) = (ab)x for a, b ∈ G and x ∈ X . A set with an action
of a group G is called a G-space.

We skip parentheses, and write abx for a(bx).
If X is a G-space and a ∈ G, the map fa : X → X given by fa(x) = ax is a

permutation of X with ( fa)−1 = fa−1 . Moreover, the map G → Perm(X) given by
a �→ fa is a homomorphism.

Conversely, given a homomorphism G → Perm(X); a �→ fa , then the set X is a
G-space under the action (a, x) �→ fa(x).

Examples of actions are supplied by the permutation groupswe have considered so
far.Hence a group acts on itself by leftmultiplication (a, b) �→ ab and by conjugation
(a, b) �→ aba−1, or by more general automorphism groups.

We compare G-spaces according to the following definition.

Definition 4.17.2 A map f : X → Y of G-spaces is equivariant, or a morphism of
G-spaces, if f (ax) = a f (x) for a ∈ G and x ∈ X . If f is bijective, we say that it is
an isomorphism of G-spaces.

Example 4.17.3 If we have an action G × X → X , then G acts on the power set
P(X) by (a,Y ) �→ aY and by conjugation (a,Y ) �→ aYa−1. One can also define
actions on a restricted class of subsets. ♦

If H < G, then G acts on G/H by (a, bH) �→ abH , so G/H is a G-space. As
we shall soon see, this case is quite typical for G-spaces.

Definition 4.17.4 A subset Y of a G-space is an invariant subset of a G-space if
aY ⊂ Y for all a ∈ G. If Y consists of a single point, we say that this point is a fixed
point.

An invariant subset of a G-space is obviously a G-space under the restriction of
the action.

Definition 4.17.5 The orbit of an element x of a G-space X is the subset Gx of X .
The action is transitive if the whole space X is an orbit, and then X is said to be a
homogeneous space.

An action G × X → X is transitive if and only if for any x, y ∈ X , there is an
element a ∈ G such that y = ax .
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The orbits are the smallest invariant subsets of a G-space. To see this, say Y is
an invariant subspace of a G-space that is contained in an orbit Gx . Any y ∈ Y is
of the form y = ax , so x = a−1y ∈ Y since Y is invariant, which yet again implies
that Gx ⊂ Y .

In a G-space we can define an equivalence relation ∼ by saying that x ∼ y if
x ∈ Gy. This is clearly an equivalence relation, and the equivalence classes are the
orbits, so they form a partition of X . We have decomposed the G-space into smallest
blocks, and each one of these blocks carries an action given by restriction. We call
this an orbit decomposition.

Definition 4.17.6 Suppose G acts on the set X . The isotropy (stabilizer) group of
an element x ∈ X is the subgroup of G given by

Gx ≡ {a ∈ G | ax = x}.

The action is a free action if all its isotropy groups are trivial.

Clearly a point x of a G-space is fixed if and only if Gx = G. Hence, if an action
G × X → X is free, then none of the permutations x �→ ax on X for a �= e has fixed
points.

The isotropy group of a coset aH in the G-space G/H is the subgroup aHa−1

of G.
We see that if X is a G-space, then the homomorphism G → Perm(X) given by

a �→ fa has kernel ∩{Gx | x ∈ X}. If this kernel if trivial, that is, if the unit is the
only group element that fixes all members of X , we say that the action is a faithful
(or effective) action. Obviously a free action is faithful.

Clearly, the action of G on a set X is faithful if and only if G < Perm(X). So we
recover Cayley’s theorem by considering the G-space G/H for H trivial.

Proposition 4.17.7 Suppose X is a G-space, and let x ∈ X. Then G/Gx and Gx
are isomorphic as transitive G-spaces with isomorphism

G/Gx → Gx; aGx �→ ax

for a ∈ G.

Proof Both G/Gx and Gx are obviously transitive as G-spaces. The formula
f (aGx ) = ax defines a map f : G/Gx → Gx because if aGx = bGx , then a = bc
for c ∈ Gx , so f (aGx ) = ax = bcx = bx = f (bGx ), so f iswell-defined. It is obvi-
ously equivariant and surjective, and it is injective because if f (aGx ) = f (bGx ),
then ax = bx , so b−1a = c ∈ Gx and aGx = bcGx = bGx . �

This shows that all homogeneous G-spaces are of the form G/H for a subgroup
H of G. And if the action is also free, then the G-space is isomorphic to G with
action given by left multiplication with elements of G.

Of course, for a homogeneous G-space X , the isomorphism G/Gx
∼= X depends

on the chosen element x ∈ X used to form the isotropy group. The following result
shows that the isotropy groups for various choices of x are essentially the same.
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Proposition 4.17.8 In a homogeneous G-space X all isotropy groups are conjugate,
that is, for x, y ∈ X, there is an element a ∈ G such that Gy = aGxa−1.

Proof Pick a ∈ G such that y = ax . If b ∈ Gy , then ax = y = by = bax ,
so a−1ba ∈ Gx and b ∈ aGxa−1. So Gy ⊂ aGxa−1 and Gx ⊂ a−1Gya as
x = a−1y. �

The formula below is known as the orbit decomposition formula.

Proposition 4.17.9 Let X be a finite G-space. Then

|X | =
∑

x∈C
[G : Gx ],

where C is a subset of X containing exactly one element from each orbit.

Proof This is immediate from Proposition 4.17.7 and the fact that the orbits form a
partition of X . �

The formula in the corollary below is known as the class formula.

Corollary 4.17.10 If G is a finite group, then

|G| =
∑

x∈C
[G : N (x)],

where C is a subset of G that contains exactly one element from each conjugacy
class C(a) ≡ {bab−1 | b ∈ G}.
Proof Apply the proposition to the conjugate action of G on itself, and note that the
isotropy group Gx is then the normalizer N (x), whereas the orbits are the conjugacy
classes. �

We can evidently write the class formula for a finite group G as

|G| = Z(G) +
∑

x∈D
[G : N (x)],

where D is a subset of G that contains exactly one element from each non-single
conjugacy class.

The following result, known as Burnside’s theorem, is useful in combinatorics.

Theorem 4.17.11 Let G be a finite group acting on a finite space X. Then the number
n of orbits is

n = 1

|G|
∑

a∈G
|Xa|,

where Xa ≡ {x ∈ X | ax = x}.
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Proof We count the number of ordered pairs (a, x) with ax = x in two ways, fixing
either elements of G or of X in the counting process. This gives

∑

a∈G
|Xa| =

∑

x∈X
|Gx |.

Let C be a subset of G that contains exactly one element from each orbit. As |Gx | =
[G : Gx ] = |G|/|Gx |, and Gy = Gx when x ∈ Gy, we therefore get

∑

a∈G
|Xa| = |G|

∑

x∈X
|Gx |−1 = |G|

∑

y∈C

∑

x∈Gy

|Gx |−1 = |G|
∑

y∈C
1 = n|G|.

�

Note that ∩a∈G Xa are the fixed points of a G-space X .
We can of course do all this for right actions X × G → X as well. They are maps

(x, a) �→ xa for which (a, x) �→ xa−1 is a left action.

4.18 Spheres, Projective Spaces and Grassmannians

We will here study various actions of the classical groups.
The sphere

Sn−1 ≡ {x ∈ R
n | (x |x) = 1}

is obviously an invariant space for the action of O(n) onR
n . It transpires that spheres

with arbitrary radii are the orbits inR
n considered as an O(n)-space. Indeed, the next

result shows that they are all homogeneous space.

Proposition 4.18.1 The action of O(n) on Sn−1 is transitive, and the isotropy group
of the vector en = (0, . . . , 0, 1)T is O(n − 1) when positioned in the upper left
corner of O(n), so O(n)/O(n − 1) ∼= Sn−1 as O(n)-spaces. Similarly, the action of
SO(n) on Sn−1 is transitive, and the isotropy group of en is SO(n − 1) ⊂ SO(n),
so SO(n)/SO(n − 1) ∼= Sn−1 as SO(n)-spaces.

Proof To reach any x ∈ Sn−1 from en , complete {x} to an orthonormal basis for R
n ,

and consider the matrix A with x as the last column and the rest of the basis as the
remaining columns. Then A ∈ O(n) as AT A = In , and x = Aen , so the action is
transitive. The isotropy group of en will obviously consist of all matrices in O(n)

with entry 1 at the lower right corner with zeros above, and hence also to the left,
of it. This subgroup is isomorphic to O(n − 1) under the prescribed embedding, so
O(n)/O(n − 1) ∼= Sn−1 by Proposition 4.17.7.

Transitivity for the action of SO(n) on Sn−1 goes as for O(n) except that one
but the last of the columns of A might have to be multiplied by −1 in order to get
det(A) = 1. The rest is completely analogous. �
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Similarly, we can view spheres as homogeneous spaces in the following way.

Proposition 4.18.2 The group U (n) acts transitively on

S2n−1 = {x + iy ∈ C
n | (x |x) + (y|y) = 1},

and the isotropy group of en is U (n − 1) ⊂ U (n), so U (n)/U (n − 1) ∼= S2n−1

as U (n)-spaces. Likewise, we get SU (n)/SU (n − 1) ∼= S2n−1 under the SU (n)-
equivariant map [A] �→ Aen. In a similar fashion, we see that Sp(n)/Sp(n − 1) ∼=
S4n−1 as Sp(n)-spaces.

These ideas can be generalized, leading to generalizations of the sphere.

Definition 4.18.3 The Stiefel manifold Vk(R
n) consists of all k-tuples of orthonor-

mal vectors in R
n , often referred to as orthonormal k-frames.

The group O(n) acts on Vk(R
n) by A(x1, . . . , xk) = (Ax1, . . . , Axk). This

action is transitive because (y1, . . . , yk) ∈ Vk(R
n) can be reached from p ≡

(en−k+1, . . . , en) by completing {yi } to an orthonormal basis for R
n , and letting

A be the n × n-matrix with yi as the (n − k + i)th column and with the rest of
the basis as the n − k remaining columns. The isotropy group of p is obviously
O(n − k) ⊂ O(n). We have proved the following result.

Proposition 4.18.4 The map [A] �→ Ap is an O(n)-equivariant bijection from
O(n)/O(n − k) to the Stiefel manifold Vk(R

n). Similarly, we get U (n)/U (n − k) ∼=
Vk(C

n) asU (n)-spaces, where Vk(C
n) consists of all k-tuples of orthonormal vectors

in C
n.

Definition 4.18.5 The Grassmannian Gk(R
n) consists of all k-dimensional sub-

spaces of R
n .

The group O(n) acts on Gk(R
n) by sending (A, V ) to A(V ) ≡ {Ax | x ∈ V }.

Since we can reach any orthonormal k-frame from a given one, it is clear that this
action is transitive. Considering R

k as a subspace of R
n with R

k sitting as the top
k-coordinates and with zeros below, we see that the isotropy group of R

k ∈ Gk(R
n)

is the image of O(k) × O(n − k) under the monomorphism

(A, B) �→
(
A 0
0 B

)

.

This proves the following result.

Proposition 4.18.6 We have

Gk(R
n) ∼= O(n)/(O(k) × O(n − k))

as O(n)-spaces. Similarly, we get Gk(C
n) ∼= U (n)/(U (k) ×U (n − k)) as U (n)-

spaces, where Gk(C
n) consists of all k-dimensional subspaces of C

n.
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We can also think of Sp(n)/(Sp(k) × Sp(n − k)) as a Grassmannian of k-planes
in the nth direct product of the quaternion algebra, whichwewill define in the chapter
on rings.

The Grassmannian Gk(C
n) can be though of as a set of projections. Clearly the

groupU (n) acts via the adjoint action on the set of orthogonal projections inM(n, C)

with trace equal to k.

Proposition 4.18.7 We have

{P ∈ M(n, C) | P2 = P = P∗ and Tr P = k} ∼= Gk(C
n)

as U (n)-spaces.

Proof The map P �→ P(Cn) for an orthogonal projection P with trace k identifies
the two spaces because there is only one projection that projects perpendicular onto
a subspace V ∈ Gk(C

n), and that is the one given by

P =
∑

i

(·|xi )xi ,

where {xi } is any orthonormal basis for V . By completing {xi } to an orthonormal
basis for C

n , and calculating the trace of P with respect to this basis, we see that
Tr P = k, as required. The map also respects the two actions (A, V ) �→ A(V ) and
(A, P) �→ APA−1. �

From Proposition 4.18.6 we see that Gk(C
n) ∼= Gn−k(C

n), which reflects the fact
that to every k-plane with projection P , there is a unique orthogonal (n − k)-plane
with projection In − P .

We obviously have similar identifications for Gk(R
n).

The Grassmannians G1(R
n) and G1(C

n) are known as the real and complex pro-
jective spaces, and denoted by RPn−1 and CPn−1, respectively. Since O(1) ∼= Z2,
we see that RPn−1 ∼= Sn−1/Z2. In particular, we get RP2 ∼= S2/Z2, which geomet-
rically means that a line that goes through the origin in 3-space intersects S2 in two
antipodal points, which determines the line, and explains the presence of Z2.

The action of SU (n) on CPn−1 is transitive since SU (n) acts transitively on the
orthonormal 1-frames in C

n . The isotropy group of the line Cen through the origin
is the image of U (n − 1) under the monomorphism

A �→
(
A 0
0 |A|−1

)

,

so CPn−1 ∼= SU (n)/U (n − 1). Similarly, we get RPn−1 ∼= SO(n)/O(n − 1).
The special caseCP1 ∼= SU (2)/U (1) is theHopf-fibration of theRiemann sphere

S2, and is normally though of as S3/S1 ∼= S2 on account of the identificationsU (1) =
S1 and SU (2) ∼= SU (2)/SU (1) ∼= S2·2−1 = S3 and CP1 ∼= S2.
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Note also that except for trivial cases, the isotropygroups are not normal subgroups
and the homogeneous spaces are not groups.

Remark 4.18.8 The objects constructed here are important to topologists, who usu-
ally consider them in the context of fibrations or smooth bundles. Generalizations of
Grassmannians include e.g. flag varieties [17].

4.19 Groups of Prime Power Orders

Definition 4.19.1 Let p be a prime number. A finite group is a p-group if its order
is some positive power of p.

We have the following structure theorem for p-groups.

Theorem 4.19.2 The center Z(G) of any p-group G is non-trivial. Even stronger, if
K is a non-trivial normal subgroup of G, then Z(G) ∩ K is non-trivial. Any proper
subgroup H of G is properly contained in its normalizer N (H). In particular, if
|H | = |G|/p, then H � G.

Proof Let a ∈ D, where D contains exactly one element from each conjugacy class
in G with more than one element. Either C(a) ∩ K = φ. Or C(a) ∩ K �= φ, and
then bab−1 ∈ K for some b ∈ G, so cac−1 = (cb−1)(bab−1)(cb−1)−1 ∈ K for any
c ∈ G as K is normal. Thus C(a) ⊂ K and C(a) ∩ K = C(a). Hence |C(a) ∩ K |
is zero or [G : N (a)].

Since a ∈ D, we know by Lagrange’s theorem that [G : N (a)] is a positive power
of p, and the same is true for |K | as K is non-trivial. Thus p divides |K | and
|C(a) ∩ K | for all a ∈ D.

Now K = G ∩ K is a disjoint union of Z(G) ∩ K and of all C(a) ∩ K , so

|K | = |Z(G) ∩ K | +
∑

a∈D
|C(a) ∩ K |.

Hence |Z(G) ∩ K | must be divisible by p, and Z(G) ∩ K is non-trivial. With K =
G, we see that Z(G) is non-trivial.

Suppose K is a maximal normal subgroup of G with K ⊂ H . The existence of
such a K is a trivial application of Zorn’s lemma to the family of normal subgroups
of G contained in H and ordered under inclusion. Now G/K has positive prime
order, and therefore has a non-trivial center, which by the correspondence theorem
is of the form L/K for L � G. Since L/K is non-trivial, the normal subgroup L is
strictly larger than K , which is a maximal normal subgroup contained in H . Thus
L is not contained in H . However, since L/K is the center of G/K , we see that
abK = baK for a ∈ H and b ∈ L , so b−1ab ∈ H , which shows that L ⊂ N (H).
Hence H is properly contained in N (H).

If H < G and |H | = |G|/p, then |N (H)| = |G| by Lagrange’s theorem, so
H � G. �



4.20 Cauchy’s Theorems and Sylow’s First Theorem 161

Corollary 4.19.3 Every groupwith anorder the square of a primenumber is abelian.

Proof IfG is a non-abelian group with |G| = p2 for a prime p, then by the theorem,
its center Z(G) is non-trivial, and yet Z(G) �= G asG is non-abelian. By Lagrange’s
theorem, we conclude that |Z(G)| = p, and that the normalizer N (a) of any a ∈
G\Z(G) must have order p2 as Z(G) is properly contained in N (a). Hence N (a) =
G and a ∈ Z(G), which is a contradiction. �

Example 4.19.4 There are exactly two non-abelian groups of order eight. If G is
a non-abelian group with |G| = 8, it cannot contain a member of order 8. If each
element is of order two, then it is also abelian because ba = a2bab2 = a(ab)2b = ab
for any a, b ∈ G. Thus G has an element a of order 4. Pick any b ∈ G\〈a〉. Then
the cosets 〈a〉 and b〈a〉 form a partition of G, so b2 ∈ 〈a〉, otherwise b2〈a〉 = b〈a〉
and by cancelling b, we get the contradiction b ∈ 〈a〉. If b2 = a or b2 = a3, then b
has order 8, which is impossible. So b2 = e or b2 = a2. By Theorem 4.19.2, we also
know that 〈a〉 � G, so b−1ab ∈ 〈a〉. Since the order of two conjugate elements are
the same, we therefore get b−1ab = a3 or b−1ab = a, and the latter option would
mean that G is abelian.

Thus we have arrived at two non-isomorphic non-abelian groups; one generated
by a and b with relations

a4 = e = b2, ab = ba3,

and the other one with generators a and b and relations

a4 = e, a2 = b2, ab = ba3.

The one with the first set of relations is isomorphic to D4, and the second one is
known as the quaternion group.

♦

4.20 Cauchy’s Theorems and Sylow’s First Theorem

By further application of the class formula, we can extract considerable information
about a finite group solely on the basis of its order.

The following result is known as Cauchy’s theorem for abelian groups.

Lemma 4.20.1 If a prime number p divides the order of a finite abelian group, then
the group has en element of order p.

Proof Weproceed by induction on the order of the groupG is question, assuming that
the lemma holds for all groups of order less than |G|. Pick any a ∈ G different from
the unit. If p divides 〈a〉, we are done, so assume that it does not. Then by Lagrange’s
theorem and Euclid’s lemma, it must divide G/〈a〉. By our induction hypothesis
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there exists b ∈ G such that the equivalence class [b] has order p. Therefore, if n
is the order of b, then [b]n = [bn] = [e], so n = pr for some integer r , and br has
order p. �

The following result, known as Sylow’s first theorem, provides a criteria for when
a group contains subgroups that are p-groups. It also allows us to generalizeCauchy’s
theorem to non-abelian groups.

Theorem 4.20.2 If p is a prime and pn divides the order of a finite group, then it
has a subgroup of order pn.

Proof We proceed by induction on the order m of the group G in question. The
theorem obviously holds for m = 1. Assume that it holds for all groups of order less
than m.

If |Z(G)| is divisible by p, then by Cauchy’s theorem for abelian groups, the
center contains an element a of order p. Now 〈a〉 � G and G/〈a〉 has order m/p,
which is divisible by pn−1. Thus by the induction assumption and the correspondence
theorem, the group G/〈a〉 contains a subgroup of the form H/〈a〉 with order pn−1.
By Lagrange’s theorem the subgroup H of G has therefore order pn .

If |Z(G)| is not divisible by p, we invoke the class formula

|G| = |Z(G)| +
∑

a∈D
[G : N (a)],

where D contains one element from each conjugacy class in G with more than one
element. As p divides |G| but not |Z(G)|, it cannot divide all the terms in the sum. So
p does not divide [G : N (a)] for some a /∈ Z(G). Since pn divides |G|, we conclude
from Lagrange’s theorem and repeated us of Euclid’s lemma that pn divides |N (a)|,
and |N (a)| < |G| as a /∈ Z(G). By our induction assumption N (a), and hence G,
has a subgroup of order pn . �

Corollary 4.20.3 If a prime number p divides the order of a finite group, then the
group has en element of order p.

Proof By the theorem there exists a subgroup of order p, so any member of this
cyclic subgroup except the unit has order p. �

The following result allows for an alternative definition of p-groups that also
works for infinite groups.

Corollary 4.20.4 A non-trivial finite group is a p-group if and only if the order of
each member is some power of p.

Proof The forward implication is obvious. Conversely, if the order of each member
in a non-trivial group G is some power of p, and |G| is divisible by a prime number
q, then by Cauchy’s theorem for non-abelian groups, the group G has an element of
order q. This is only possible if q = p. �
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The following result shows that the converse of Lagrange’s theorem is true for
abelian groups.

Corollary 4.20.5 If a natural number n divides the order of a finite abelian group,
then the group contains a subgroup of order n which is a direct product of pi -groups
for distinct primes pi . In particular, any finite abelian group is of this form for unique
pi -groups. If the order of the group is square-free, then it is cyclic.

Proof Let n = pm1
1 · · · pmk

k be the prime number decomposition of n. Since n divides
the order of the group, so does pmi

i , and by the theorem, the group has a subgroup
Gi of such an order. Since we are in an abelian setting, the set G1 ∩ (G2 · · ·Gk) is
a subgroup both of G1 and G2 · · ·Gk , so by Lagrange’s theorem their intersection is
trivial. Hence

G1 · · ·Gk
∼= G1 × (G2 · · ·Gk) ∼= · · · ∼= G1 × · · · × Gk

by induction. Uniqueness is clear since Gi consists of all elements of the group
having order some power of pi .

If n is the order of the group, then the group itself is a direct product of the pi -
groups. Finally observe that if all themi ’s are one, then G1 × · · · × Gk is cyclic with
generator (a1, . . . , ak), where ai is a generator for Gi . �

4.21 Sylow’s Second and Third Theorems

Definition 4.21.1 Let p be a prime number. A Sylow p-subgroup of a group G is a
subgroup with order the greatest positive power of p that divides |G|.
Theorem 4.21.2 All Sylow p-subgroups of a finite group are conjugate. Their
number n divides the order of the group, and n ≡ 1 (mod p).

Proof Let C(H) denote the family {aHa−1 | a ∈ G} of subgroups of a finite group
G that are conjugate to a Sylow p-subgroup H . Then p cannot divide |C(H)| =
[G : N (H)] as [G : H ] = [G : N (H)][N (H) : H ] is not divisible by p.

To show that K ∈ C(H) for any Sylow p-subgroup K , consider C(H) as a K -set
under conjugation. Let LK ≡ {aLa−1 | a ∈ K } be the orbit of L ∈ C(H), and note
that these orbits form a partition of C(H). The stabilizer of L under the action of K
is N (L) ∩ K , so

|LK | = [K : N (L) ∩ K ] = pm

for some m ≥ 0 because |K | is a positive power of p.



164 4 Groups

Combining these two observations gives the formula

|C(H)| =
∑

pm,

where we are summing over the orbits. As the left-hand-side is not divisible by
p, one of the terms on the right-hand-side must be one, say |LK | = 1 for some
L ∈ C(H). Then K ∩ N (L) = K , so K ⊂ N (L), which means that K L = LK . By
the second isomorphism theorem we get K L/L ∼= K/K ∩ L with order a power
of p, so K L = L by Lagrange’s theorem since L is a Sylow p-subgroup. Hence
K = L , and K ∈ C(H). This also shows that exactly one term in the sum

∑
pm is

one, so n = 1 (mod p).
The number of conjugate Sylow p-subgroups is |C(H)| = |G|/|N (H)|, so |G|

is divisible by n. �

Corollary 4.21.3 A Sylow p-subgroup of a group is unique if and only if it is normal.

Proof This is clear since a subgroup is normal if it coincides with all its
conjugates. �

Corollary 4.21.4 A normal subgroup H of a finite group G contains all Sylow
p-subgroups of G if [G : H ] and p are relatively prime.

Proof The highest powers of p in |G| and |H | are by assumption the same, so a
Sylow p-subgroup of H will also be a Sylow p-subgroup of G, and by Sylow’s first
theorem, there is at least one Sylow p-subgroup of H , say K .

If L is any Sylow p-subgroup of G, then by Sylow’s second theorem it must be
conjugate to K . Hence there is some a ∈ G such that

L = aKa−1 ⊂ aHa−1 ⊂ H

as H � G. �

Corollary 4.21.5 If all the subgroups of a p-group have different orders, then it is
cyclic.

Proof By Lagrange’s theorem the subgroups of a p-group G are also p-groups, and
by Sylow’s first theorem there is a chain of p-subgroups of all powers of p less than
|G| contained in each other. By assumption these are all the subgroups. Let H be the
largest proper subgroup. Then any a ∈ G\H is a generator forG because if 〈a〉 �= G,
then a ∈ 〈a〉 ⊂ H , which is absurd. �
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4.22 Some Examples

Here we furnish a few examples where we apply Sylow’s theorems.

Example 4.22.1 There is no simple group of order 63. If G is a group of order 63,
then as 63 = 7 · 32, it has at least one Sylow 7-subgroup. The overall number of such
subgroups is of the form 1 + 7n for an integer n such that 1 + 7n divides |G|. This
is only possible if n = 0, so we have only one Sylow 7-subgroup, which then has to
be normal. So G is not simple. ♦
Example 4.22.2 There is no simple group of order 56. If G is such a group, then
as 56 = 7 · 23, it has a Sylow 7-subgroup. The total number of such subgroups is of
the form 1 + 7n for an integer such that 1 + 7n divides 56. This can happen when
n = 0, and then G has a normal subgroup of order 7, so G is not simple, or when
n = 1. In this case the 8 conjugate cyclic subgroups of order 7 have only the unit in
common, since all non-unital elements in such subgroups are generators. Thus there
are 8 · (7 − 1) elements in G of order 7. The remaining 8 elements form a Sylow
2-group, which exists since |G| = 7 · 23. This subgroup is unique since otherwise
there would be elements with both even order and order 7. So it is normal and G is
not simple. ♦
Example 4.22.3 There exists a normal subgroup of order 9 or 27 in a group G of
order 108. Observe that |G| = 22 · 33. The number of Sylow 3-subgroups is of the
form 1 + 3n for an integer n such that 1 + 3n divides |G|. Then either n = 0, and in
this case we have a unique normal Sylow 3-subgroup with order 33 = 27. Or n = 1,
and then we have four Sylow 3-subgroups, and we can pick two distinct ones H and
K . From the discussion after the second isomorphism theorem, we see that

108 = |G| ≥ |HK | = |H ||K |/|H ∩ K | = 27 · 27/|H ∩ K |,

so |H ∩ K | ≥ 27/4, and since H �= K , the subgroup H ∩ K of H has less elements
than H . By Lagrange’s theorem we therefore get |H ∩ K | = 9. By Theorem 4.19.2
we actually know that H ∩ K is a normal subgroup of both H and K , so H and K ,
and hence HK , are contained in the normalizer N (H ∩ K ). Since

|HK | = |H ||K |/|H ∩ K | = 27 · 27/9 = 81,

and HK ⊂ N (H ∩ K ) < G, we conclude by Lagrange’s theorem that N (H ∩ K ) =
G, so H ∩ K is a normal subgroup of G with order 9. ♦
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4.23 Groups with Order the Product of Two Primes

By Corollary 4.19.3 a group of order p2, for a prime number p, is abelian, and later
we shall see that it therefore is isomorphic either to Zp2 or to Zp × Zp.

More generally, if a group has an order that is the product of two distinct primes,
there are also only two possibilities.

Theorem 4.23.1 Say p and q are prime numbers and p < q. A group of order pq
is either cyclic, or if p divides q − 1, then it is isomorphic to the non-abelian group
generated by a and b with defining relations

a p = e = bq , , ba = abn,

where n is any integer such that n p ≡ 1 (mod q) and n �≡ 1 (mod q).

Remark 4.23.2 We will later return to what it means precisely that a group is
presented by generators and relations.

What n we pick is immaterial, as long as it satisfies the stated congruence
equations.

When q = 3 and p = 2, we can for instance pick n = 2. This way we obtain the
relations for the symmetric group S3, which together with the cyclic group Z6 are all
groups of order 6 up to isomorphism.

Proof First notice that the relations determine a group with pq distinct elements
aib j , where i ∈ {0, 1, . . . , p − 1} and j ∈ {0, 1, . . . , q − 1}.

Say G is a group with order pq. It has a Sylow q-subgroup, and the total number
of such subgroups is 1 + mq for an integer m such that 1 + mq divides pq. This
is only possible if m = 0, so there is exactly one Sylow q-subgroup. It is therefore
normal, and since it has prime order, it is cyclic, say 〈b〉 for b ∈ G with order q.

There also exists a Sylow p-subgroup, and the total number of such subgroups is
1 + kp for an integer k such that 1 + kp divides pq. This forces k to be either 0 or
such that 1 + kp = q. In the first case there is only one Sylow p-subgroup, which is
both normal and cyclic, say 〈a〉 for a ∈ G with order p. We claim that ab has order
pq.

To see this, first note that 〈a〉 ∩ 〈b〉 = {e} since any element in the intersec-
tion apart from e has order larger than 1, which by Lagrange’s theorem, divides
both p and q, and this is absurd. Since both 〈a〉 and 〈b〉 are normal subgroups,
we see that a−1bab−1 ∈ 〈a〉 ∩ 〈b〉, so a−1bab−1 = e, or ba = ab. Hence (ab)pq =
(a p)q(bq)p = e and the order d of ab divides pq. Now adbd = (ab)d = e, so
ad = b−d ∈ 〈a〉 ∩ 〈b〉, and ad = e = bd . Hence d is divisible by both p and q,
whence by pq. Thus d = pq.

The other alternative is that the number of Sylow p-subgroups is q, which happens
when q − 1 is divisible by p.

Let 〈a〉 be one such cyclic subgroup, so a ∈ G has order p. Then 〈a, b〉 = G
by Lagrange’s theorem since 〈a, b〉 has subgroups 〈a〉 and 〈b〉 with orders p and
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q, respectively. So a and b generate G. Since 〈b〉 � G, we know that a−1ba = bn

for some integer n. Now n �≡ 1 (mod q) since otherwise ba = ab, and G would be
abelian and 〈a〉 normal, so there would be only one (and not q) Sylow p-subgroups,
yet an absurdity.

The number n does also satisfy np ≡ 1 (mod q). To check this, note that

a−2ba2 = a−1(a−1ba)a = a−1bna = (a−1ba)n = (bn)n = bn
2
,

and by induction we get b = a−pba p = bn
p
, as required. Hence the relations in the

theorem are satisfied.
Since as we have seen a−i bai = bn

i
, the act of replacing n by any other solution

ni for i ∈ {1, . . . , p − 1} of the congruence equations, produces the same group with
an isomorphism that leaves b unaltered but sends a to ai . �

Example 4.23.3 For instance, any group of order 15 is cyclic, and groups of order
10, 14, 21 are either cyclic or non-abelian and of the type described in the theorem.

4.24 Normal Series

Definition 4.24.1 A sequence {Gi }ni=0 of subgroups of a group G is a normal series
if

{e} = G0 � G1 � · · · � Gn−1 � Gn = G.

The quotient groups Gi/Gi−1 are called factors. If all the factors are simple, the
series is called a composition series.

Note that Gi need not be normal in G. Usually this is not the case.

Proposition 4.24.2 Every finite group has a composition series.

Proof Wemay assume that the finite groupG in question is neither simple nor trivial.
Assuming the result holds for all groups with order less than |G|, let H be a maximal
normal subgroup ofG. By the induction hypothesis H has a composition series {Hi }.
But then {Hi } ∪ {G} is a composition series for G as G/H is simple. �

Example 4.24.3 The group Z18 has a composition series

{0} ⊂ {0, 9} ⊂ {0, 3, 6, 9, 12, 15} ⊂ Z18,

which we can also write as {0} � Z2 � Z6 � Z18. The inclusions

{e} ⊂ {e, σ 2} ⊂ {e, σ, σ 2, σ 3} ⊂ D4
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is a composition series for the optic group. Composition series need not be unique.
In fact, the inclusions

{e} ⊂ {e, τ } ⊂ {e, σ 2, τ, σ 2τ } ⊂ D4

is another composition series for the same group. ♦
Definition 4.24.4 Two normal series S = {Gi } and T = {Hi } are equivalent series,
written S ∼ T , if all

Hi/Hi−1
∼= Gσ(i)/Gσ(i)−1

for some permutation σ of the indices.

Evidently ∼ is an equivalence relation on the family of normal series of a group.
Note that equivalent series must be equally long, and repetitions are not allowed for
composition series.

Lemma 4.24.5 The intersection of two distinct maximal normal subgroups of a
group is a maximal normal subgroup of each of the subgroups.

Proof Let H and K be distinct maximal normal subgroups of a group G. Recall the
diamond isomorphism theorem

H/H ∩ K ∼= HK/K ,

and observe that K � HK � G. Since K is maximal, either HK = G or HK = K .
The latter option is impossible because then H ⊂ K , so H = K as H ismaximal. The
first option means that HK/K is simple as K is maximal, and by the isomorphism
above, we see that H ∩ K is a maximal normal subgroup of H . By interchang-
ing the roles of H and K , we also see that H ∩ K is a maximal normal subgroup
of K . �

The following uniqueness result is due to Jordan-Hölder, and reduces in some
sense the study of finite groups to simple ones.

Theorem 4.24.6 Any two composition series of a finite group are equivalent.

Proof Let G be a finite group, and assume that the theorem holds for all groups of
order less than |G|. Consider two composition series of G, say

S : G0 � G1 � · · · � Gm−1 � G

and
T : H0 � H1 � · · · � Hn−1 � G.
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If Gm−1 = Hn−1, then S ∼ T by the induction hypothesis. If Gm−1 �= Hn−1, then
K ≡ Gm−1 ∩ Hn−1 is by the lemma above, a maximal normal subgroup of Gm−1

and Hn−1. By the proposition above, we know that K has a composition series, say
U : K0 � K1 � · · · � Kk−1 � K , which gives two more composition series of G,
namely

V : K0 � K1 � · · · � K � Gm−1 � G

and
W : K0 � K1 � · · · � K � Hn−1 � G.

NowGm−1Hn−1 is a normal subgroup ofG sinceGm−1 and Hn−1 are normal, and it is
also strictly larger thanGm−1, which by assumption ismaximal. HenceGm−1Hn−1 =
G. By the second isomorphism theorem, we therefore see that

G/Gm−1
∼= Hn−1/K and G/Hn−1

∼= Gm−1/K .

Thus V ∼ W with a permutation that interchanges the two last factors. By the
induction hypothesis we also have S ∼ V and T ∼ W . Hence S ∼ T . �

The theorem tells us that the factors of a composition series for a finite group are
unique up to reordering of factors, so this is a property of the group.

Example 4.24.7 Let {Gi } be a composition series for an abelian group G. Then
|Gi/Gi−1| is a prime number, say pi , since the composition factors are simple and
abelian, and thus cyclic of prime order. Hence

|G| =
∏

|Gi/Gi−1| =
∏

pi .

This shows that an abelian group has a composition series if and only if it is
finite. Moreover, the prime factors of |G| determine the composition factors up to
reordering.

The uniqueness part of the fundamental theorem of arithmetic follows from the
Jordan-Hölder theorem because to any two prime factor decompositions

p1 · · · pm = q1 · · · qn
of the same number, there are composition series of cyclic groups with cyclic factors
of orders p1, . . . , pm and q1, . . . , qn , respectively, and these composition factors are
unique up to isomorphism and reordering.
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4.25 The Theorem of Schreier

We need the following result, which is known as the butterfly lemma, due to the
diagram of maps or arrows one might wish to draw.

Lemma 4.25.1 Let U and V be subgroups of a group with further subgroups u �U
and v � V . Then u(U ∩ V ) and (U ∩ V )v are subgroups with normal subgroups
u(U ∩ v) and (u ∩ V )v, respectively, and

u(U ∩ V )/u(U ∩ v) ∼= (U ∩ V )v/(u ∩ V )v.

Proof It is easy to check that u(U ∩ v) � u(U ∩ V ) and (u ∩ V )v � (U ∩ V )v, so
the quotient groups make sense.

To see that they are isomorphic we shall see that both are isomorphic to

(U ∩ V )/(u ∩ V )(U ∩ v).

By the second isomorphism theorem

HK/K ∼= H/(H ∩ K )

with H = U ∩ V and K = u(U ∩ v) and the easily verified facts HK = u(U ∩ V )

and H ∩ K = (u ∩ V )(U ∩ v), we get one of the isomorphisms. The other one is
obtained analogously. �

Definition 4.25.2 A refinement of a normal series is a normal series obtained by
inserting a finite number of subgroups in the original series.

The following theorem is a strengthening of the Jordan-Hölder theorem since
composition series obviously do not have refinements with proper inclusions. Also,
we make no assumptions on the order of the group.

Theorem 4.25.3 All normal series of a group have equivalent refinements.

Proof Say we have two normal series {Gi } and {Hj } of a group G. Let

Gi j = Gi (Gi+1 ∩ Hj ) and Hji = (Gi ∩ Hj+1)Hj .

By the first part of the butterfly lemma, we get two normal series {Gi j } and {Hji } of
G under lexicographic ordering of the double indices, and these series are obviously
refinements of {Gi } and {Hj }, respectively.

By the second part of the butterfly lemma these two refinements are equivalent
because

Gi, j+1/Gi j
∼= Hj,i+1/Hji .

�
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Example 4.25.4 The two normal series {0} ⊂ 8Z ⊂ 4Z ⊂ Z and {0} ⊂ 9Z ⊂ Z of
Z have for instance the equivalent refinements

{0} ⊂ 72Z ⊂ 8Z ⊂ 4Z ⊂ Z

and
{0} ⊂ 72Z ⊂ 18Z ⊂ 9Z ⊂ Z,

respectively.

4.26 Solvable Groups

Definition 4.26.1 The derived group of a groupG is the subgroupG ′ ofG generated
by all commutators [a, b] ≡ aba−1b−1 of a and b in G.

Proposition 4.26.2 The derived group G ′ of a group G is a normal subgroup and
G/G ′ is abelian. In fact, if H � G, then G/H is abelian if and only if G ′ ⊂ H.

Proof Note that c[a, b]c−1 = [cac−1, cbc−1] ∈ G ′ for a, b, c ∈ G, and since
[a, b]−1 = [b, a], every element of G ′ is a product of commutators, so G ′ � G
as Ad(c) is a homomorphism.

Now
aG ′bG ′(aG ′)−1(bG ′)−1 = [a, b]G ′ ⊂ G ′

for a, b ∈ G shows that G/G ′ is abelian.
If G ′ ⊂ H � G, then G/H ⊂ G/G ′, so G/H is abelian. Conversely, if G/H is

abelian, then [a, b]H = aH(aH)−1bH(bH)−1 = H , so [a, b] ∈ H andG ′ ⊂ H .�

Definition 4.26.3 The nth derived group of a group G is the subgroup G(n) of G
defined inductively G(n) = (G(n−1))′ with G(0) = G. A group G is solvable if G(n)

is trivial for some natural number n.

Obviously any abelian group is solvable as its derived group is trivial.

Proposition 4.26.4 Subgroups and homomorphic images of solvable groups are
solvable. If H is a normal subgroup of a group G, and H and G/H are solvable,
then so is G.

Proof If H < G, then H (n) ⊂ G(n), so H is solvable if G is solvable.
If f : G → H is a surjective homomorphism, then f ([a, b]) = [ f (a), f (b)], so

H (n) = f (G(n)) by induction, and H is solvable if G is solvable.
If H � G and H (m) and G(n)H/H = (G/H)(n) are trivial for somem and n, then

G(n) ⊂ H and G(m+n) ⊂ H (m) = {e}, so G is solvable. �
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Theorem 4.26.5 A group is solvable if and only if it has a normal series with abelian
factors. A finite solvable group has a composition series with cyclic factors of prime
orders. The simple solvable groups are exactly the cyclic groups of prime order.

Proof If G is solvable with G(n) trivial, then

G(n) ⊂ G(n−1) ⊂ · · · ⊂ G(1) ⊂ G

is a composition series for G with abelian factors G(i−1)/G(i).
Conversely, if G has a normal series {Hi }ni=0 with Hi/Hi−1 abelian, then by

Proposition 4.26.2, we see that H ′
i ⊂ Hi−1, so G ′ = H ′

n ⊂ Hn−1 and by induction
G(n) = Hn−n = {e}.

IfG is a finite solvable group, then bywhat we have already shown, it has a normal
series {Hi }ni=0 with Hi/Hi−1 abelian. Since Hi/Hi−1 is finite, it has a composition
series, and since it is abelian, the factors must be cyclic and of prime order. Inserting
the corresponding subgroups of Hi between the terms Hi−1 and Hi in the normal
series, we get a composition series with the desired properties.

Any composition series of a simple solvable group G has only two terms, so G
is abelian, and thus cyclic of prime order. The converse is obvious. �

So in some sense simplicity and solvability are two opposite extremes.

Example 4.26.6 The dihedral group Dn is solvable with normal series

{e} ⊂ {e, σ, . . . , σ n−1} ⊂ Dn

consisting of abelian factors.

Example 4.26.7 Let T and D denote the subgroups of GL(n, F) of matrices with
zero’s below and off the diagonals, respectively. Then f : T → D given by f (A) =
diag(A) is an epimorphism with kernel I + N , where N consists of matrices with
zero entries on and below the diagonal. Set Tn = T and Ti = I + Nn−i for i ∈
{0, . . . , n − 1}. Then {Ti }ni=0 is a normal series of T with Ti/Ti+1

∼= Fi , so T is
solvable.

4.27 Nilpotent Groups

Given a group G, the center of G/Z(G) is a normal subgroup of the quotient group,
and corresponds to a unique normal subgroup Z2(G) of G such that Z2(G)/Z(G) =
Z(G/Z(G)).

Definition 4.27.1 The nthcenter of a group is the normal subgroup Zn(G) of G
defined inductively by Zn(G)/Zn−1(G) = Z(G/Zn−1(G)) with Z0(G) = {e}.
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Clearly Z1(G) = Z(G) and

Zn(G) = {a ∈ G | [a, b] ∈ Zn−1(G) for b ∈ G}

by the correspondence theorem. The ascending series

Z0(G) ⊂ Z1(G) ⊂ · · · ⊂ Zn(G) ⊂ · · ·

of normal subgroups of G is called the upper central series of G.

Definition 4.27.2 A group is nilpotent if it coincides with its nth center for some n.
The smallest n for which this holds is the class of nilpotency of the group.

A non-trivial abelian group is nilpotent with class of nilpotency equal to one.

Proposition 4.27.3 Nilpotent groups are solvable.

Proof By theorem 4.26.5 a group is solvable if it has a normal series with abelian
factors, and the upper central series is such a series. �

Clearly, any non-trivial group with trivial center cannot be nilpotent, so S3 is not
nilpotent. But S3 is solvable as S

(2)
3 is trivial, which shows that the converse of the

proposition fails.

Proposition 4.27.4 Any p-group is nilpotent, and hence solvable.

Proof The structure theorem for p-groups tells us that they have non-trivial center. If
G is a p-group, then G/Z1(G) is by Lagrange’s theorem either trivial, or a p-group
with non-trivial center and |Z2(G)| > |Z1(G)|. We can continue this till |Zn(G)| =
|G|. �

Theorem 4.27.5 A group G is nilpotent if and only if it has a normal series {Gi }
such that Gi/Gi−1 ⊂ Z(G/Gi−1).

Proof IfG is nilpotent, then the upper central serieswill terminate at nwith Zn(G) =
G, and it is the required normal series as Zi (G)/Zi−1(G) = Z(G/Zi−1(G)).

Conversely, if G has a normal series {Gi }ni=0 with Gi/Gi−1 ⊂ Z(G/Gi−1), then
G1 ⊂ Z(G). AsG2/G1 ⊂ Z(G/G1), then if a ∈ G2, we have aG1bG1 = bG1aG1,
and hence [a, b] ∈ G1, for b ∈ G. Thus [a, b] ∈ Z1(G), so a ∈ Z2(G) and G2 ⊂
Z2(G). Continuing this, we see that G = Gn ⊂ Zn(G), so G is nilpotent. �

Proposition 4.27.6 Subgroups, quotients and finite direct products of nilpotent
groups are nilpotent.

Proof If H < G, obviously H ∩ Z(G) ⊂ Z(H). As [a, b] ∈ Z(G) for a ∈ Z2(G)

andb ∈ G,weget fora ∈ H ∩ Z2(G) andb ∈ H , that [a, b] ∈ H ∩ Z(G) ⊂ Z1(H).
Hence a ∈ Z2(H) and H ∩ Z2(G) ⊂ Z2(H). By induction, H ∩ Zn(G) ⊂ Zn(H)

for every natural number n. Thus if G is nilpotent, then so is H .
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Suppose we have an epimorphism f : G → H between two groups. We know
that [a, b] ∈ Z(G) for a ∈ Z2(G) and b ∈ G, so

[ f (a), f (b)] = f ([a, b]) ∈ f (Z(G)) ⊂ Z(H)

and f (a) ∈ Z2(H). So f (Z2(G)) ⊂ Z2(H). By induction, f (Zn(G)) ⊂ Zn(H) for
every natural number n. This shows that H is nilpotent ifG is, and therefore quotient
groups of nilpotent groups are nilpotent.

As for finite direct products it suffices to show that G × H is nilpotent if G and
H are. But this is immediate from Zn(G × H) = Zn(G) × Zn(H), which we leave
to the reader to check. �

Definition 4.27.7 The lower central series of a group G is the descending series
G ⊃ G(1) ⊃ G(2) ⊃ · · · of subgroups G(n) defined inductively by

G(n+1) = [G(n),G] ≡ 〈{[a, b] | a ∈ G(n), b ∈ G}〉.

Clearly G(1) is a normal subgroup of G, and if G(n) is assumed to be a normal
subgroup ofG, thenG(n+1) is a normal subgroup ofG. By inductionwe conclude that
allG(n) are normal subgroups ofG. So we can form the quotient groupsG(n)/G(n+1),
and these are obviously abelian. In fact, we see that G(n)/G(n+1) is in the center of
G/G(n+1), hence central series.

By induction we also see that G(n) ⊂ G(n). The following result explains the
terminology upper and lower.

Proposition 4.27.8 If m is the class of nilpotency of a nilpotent group G, then
G(n) ⊂ Zm−n(G). Hence G(m) = {e}.
Proof We have G(0) ≡ G = Zm(G). Assuming G(n) ⊂ Zm−n(G), we get G(n+1) ⊂
[Zm−n(G),G] ⊂ Zm−(n+1)(G), so the result follows by induction. �

Proposition 4.27.9 Let G be a group with a normal subgroup H and quotient map
f : G → G/H. Then (G/H)(n) = f (G(n)).

Proof We have (G/H)(1) = [ f (G), f (G)] = f ([G,G]) = f (G(1)), and if
(G/H)(n) = f (G(n)), then

(G/H)(n+1) = [(G/H)(n),G/H ] = [ f (G(n)), f (G)] = f ([G(n),G]) = f (G(n+1)),

so the result follows by induction. �
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4.28 Simplicity of the Alternating Group

The alternating group An is non-abelian for n ≥ 4 because we can pick distinct
numbers a, b, c, d ∈ {1, . . . , n} and then

(
a b c

) (
a b d

) = (
a c

) (
b d

) �= (
a d

) (
b c

) = (
a b d

) (
a b c

)
.

Observe that A1 and A2 are trivial, and that A3 = {e, (1 2 3
)
,
(
1 3 2

)} is cyclic.
Lemma 4.28.1 The alternating group An is generated by the 3-cocycles in Sn.

Proof Every 3-cocycle is a product of two transpositions, and so is even and belongs
to An .

On the other hand, the elements of An are even products of transpositions. The
product of two neighboring transpositions is the identity or a 3-cocycle, or they are
disjoint, say σ = (

a b
)
and τ = (

c d
)
, and then στ = (

a b c
) (
b c d

)
. �

Cycles of the same length are conjugate in Sn because

σ
(
1 2 · · · m)

σ−1 = (
σ(1) σ (2) · · · σ(m)

)

for σ ∈ Sn .
When n ≥ m + 2, all m-cocycles are conjugate within An because if σ ∈ Sn is

not even, replace it by στ , where τ is a transposition that leaves {1, . . . ,m} fixed.
Then στ ∈ An and

στ
(
1 2 · · · m)

(στ)−1 = (
σ(1) σ (2) · · · σ(m)

)
.

Lemma 4.28.2 The derived group of Sn is An.

Proof Commutators are obviously even, so S′
n ⊂ An .

Both S′
n and An are trivial for n = 1 and n = 2. Say n ≥ 3. Then

(
1 2 3

) = (
1 2

) (
1 2 3

) (
2 1

) (
3 2 1

) ∈ S′
n,

and as S′
n is normal in Sn , and all 3-cocycles are conjugate, we see that S′

n contains
all 3-cocycles, so S′

n = An by the previous lemma. �

Theorem 4.28.3 The group An is simple and Sn is not solvable for n ≥ 5.

Proof We claim that any non-trivial normal subgroup H of An with n ≥ 5 contains
a 3-cocycle. Let σ ∈ H be a non-trivial permutation that moves the least number of
numbers in {1, . . . , n}. Now σ cannot be a cycle of even length as such cycles are not
even. So σ is either a 3-cocycle, and we are done, or it has a disjoint decomposition
of the form (

a b c · · ·) · · ·
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or (
a b

) (
c d

) · · ·

for distinct numbers a, b, c, d ∈ {1, . . . , n}.
In the first case, since σ cannot be a 4-cocycle, it must move two more numbers,

say d and f . Let τ = (
c d f

)
. As H � An , the permutation σ−1τ−1στ belongs to

H , and fixes a but also every element that is fixed by σ since any such number cannot
belong to {a, b, c, d, f }. Thus we have an element of H that moves fewer elements
than σ , which is a contradiction.

In the second case, we can pick a number f ∈ {1, . . . , n} distinct from a, b, c, d,
and define τ as before. Then σ−1τ−1στ belongs to H , and fixes a and b but also
every element that is fixed by σ and different from f since any such number cannot
belong to {a, b, c, d, f }. Again we have an element of H that moves fewer elements
than σ , which is a contradiction.

So we have a 3-cocycle σ ∈ H . As noted prior to this theorem, all the 3-cocycles
in An for n ≥ 5 are conjugate within An , and as H � An , we get H = An , so An is
simple for n ≥ 5. �

Corollary 4.28.4 The alternating group An is the only proper normal subgroup of
Sn when n ≥ 5.

Proof Say H is a proper normal subgroup of Sn and n ≥ 5. If H ∩ An is non-trivial,
then as H ∩ An � An , we get H ∩ An = An , so An ⊂ H . Then |Sn/H | ≤ |Sn/An| =
2, so H = An by Lagrange’s theorem.

If H ∩ An is trivial, then 1
2 |H |n! = |H An| ≤ n!, so |H | = 2, say H = {e, σ }. As

H � Sn , we must have τστ−1 = σ for all τ ∈ Sn , which is impossible as Z(Sn) is
obviously trivial. �

It is easy to check that A4 has exactly one proper normal subgroup. This subgroup
has order four, and is therefore abelian. So A4 is not simple, and it is solvable since
it has a normal series with abelian factors. We also see that A4 cannot contain any
subgroup of order 6 as such a subgroup has index 2 and would have to be normal;
if H < G with [G : H ] = 2 and aH �= Ha, then either aH = H or Ha = H , so
a ∈ H and H �= H . Therefore the converse of Lagrange’s theorem does not hold for
non-abelian groups.

4.29 Transfer Homomorphisms

In this section we introduce a peculiar map that will be needed later.
Let G be a group with a subgroup H of finite index. A transversal X of H in G

is a collection of representatives of the cosets of H in G, that is, a set consisting of
exactly one member from each coset. So G = ∪a∈XaH is a disjoint union. Notice
that aX for any a ∈ G is evidently again a transversal of H in G.
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For any two transversals X,Y of H in G and any homomorphism g from H to
an abelian group K , define

{X |Y } =
∏

g(a−1b),

where the product is over all pairs (a, b) ∈ X × Y such that a−1b ∈ H . Since K is
abelian the order in the product above does not matter, so {X |Y } is well-defined.

Clearly {X |Y }−1 = {Y |X}, {X |Y }{Y |Z} = {X |Z} and {aX |aY } = {X |Y }, so

{aX |X} = {aX |aY }{aY |Y }{Y |X} = {X |Y }{Y |X}{aY |Y } = {aY |Y }.

Hence the map f : G → K that sends a to {aX |X} is well-defined, that is,
independent of the chosen transversal. It is a homomorphism since

{abX |X} = {abX |bX}{bX |X} = {aX |X}{bX |X}

by well-definedness.

Definition 4.29.1 The map f above is called a transfer homomorphism.

Proposition 4.29.2 Let G be a group with a subgroup H of finite index, and let g
be a homomorphism from H to an abelian group K . For a ∈ G consider the action
of 〈a〉 on G/H by left multiplication, and let bi ∈ G be a representative of any coset
in an orbit with ni cosets. Then the transfer homomorphism f : G → K is given by

f (a) =
∏

i

g(b−1
i a−ni bi ).

In particular, for a ∈ Z(G) we get f (a) = g(a−[G:H ]).

Proof The orbits of the action partitions the set G/H . In the definition of f
we accordingly use as a transversal for H in G, the set X = ∪i Xi , where Xi =
{bi , abi , . . . , ani−1bi }. The contribution from Xi to the defining product for f is
g(b−1

i a−ni bi ) since (ac)−1d = b−1
i a−1bi for each c, d ∈ Xi , and one must multiply

such elements with each other ni -times, using that g is a homomorphism.
The last result uses the fact that

∑
i ni equals the number [G : H ] of cosets since

we have a partition of orbits. �

Let H ′ be the commutator subgroup of H . One often considers the quotient
map g from H to the abelianization H/H ′ in the results above. For H = Z(G) the
commutator subgroup H ′ is trivial, so g is then the identity map on Z(G).

Corollary 4.29.3 Let G be a group with a center of finite index n. With respect to the
identity map g on Z(G) the transfer homomorphism f : G → Z(G) is then given
by f (a) = a−n for a ∈ G. Hence G is n-abelian, meaning that (ab)n = anbn for all
a and b.
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Proof By the proposition above we know that f (a) = g(a−[G:Z(G)]) = a−n .
For the last assertion use that f is a homomorphism. �

If we had taken H to be a subgroup of Z(G) instead, we would have gotten
f (a) = a−[G:H ]. Working with right cosets would have given positive powers of a
in the previous proposition and corollary.

Definition 4.29.4 A group is a torsion-free group if it has no element of finite order.

Corollary 4.29.5 Any torsion-free group such that each element has only finitely
many distinct conjugates is abelian.

Proof Since subgroups of such groups satisfy the same hypothesis, we may assume
that the group G in question is generated by the two elements a and b which one
wants to show commutes. Since the center ofG consists of all elements that commute
with a and b, it has finite index n in G. By the corollary above (a−1b−1ab)n = e,
and since we have no torsion, we get a−1b−1ab = e. �

Given a group G, the subset H ≡ {a ∈ G | [G : N (a)] < ∞} is a subgroup of G
because if a, b ∈ H , then c(ab)c−1 = (cac−1)(cbc−1) can take only finitely many
values in G. By definition every element in H has only finitely many distinct con-
jugates. It is easy to see that H is a normal subgroup. In fact, it is a characteristic
subgroup of G, meaning that it is invariant under any automorphism of G.

Characteristic subgroups include commutator subgroups and centers. They are
obviously normal, but not all normal subgroups are characteristic subgroups. For
instance the factors of a non-trivial direct product groupG × G are normal subgroups
that are not invariant under the automorphism that sends (a, b) to (b, a).

4.30 Finitely Generated Abelian Groups

In this section we provide a complete classification of finitely generated abelian
groups. This comes down to finite direct sums of cyclic groups, which are obviously
finitely generated and abelian.

We have seen that Zm1 × · · · × Zmn
∼= Zm1···mn if and only if the natural numbers

mi are relatively prime. For instance, we see that Z3 × Z5 is cyclic of order 15,
whereas Z2 × Z2 and Z4 are not isomorphic. This points to the general pattern when
we decompose the order of a finite abelian group into prime factors.

Lemma 4.30.1 Suppose G is a finitely generated abelian group. Then there are
cyclic groups Hi such that

G ∼= H1 × · · · × Hn,

where |Hi | is finite and divides |Hi+1| for i less than some k, and with the remaining
cyclic groups having infinite order.
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Proof We consider G as an additive group, and prove the lemma by induction on the
least number n of generators for G. It obviously holds for n = 1. Assume it holds
for n − 1.

If there is a generating set {ai }ni=1 for G such that
∑

xiai = 0 implies that all the
integers xi vanish, we can define a map f : G → Z

n by

f (
∑

xiai ) = (x1, . . . , xn),

which clearly is an isomorphism.
If no such generating set exists, let m1 be the least positive number among all

integers xi ’s such that
∑

xiai = 0 for all possible generating sets {ai }ni=1 of G.
The xi ’s cannot all be negative as

∑
xiai = 0 if and only if

∑
(−xi )ai = 0. Upon

rearranging terms, we can assume that

m1a1 + x2a2 + · · · + xnan = 0

for a generating set {ai } and integers xi .
By the division algorithm we can write xi = qim1 + ri , where ri are non-negative

integers less than m1. Then

m1b1 + r2a2 + · · · + rnan = 0,

where b1 ≡ a1 + q2a2 + · · · + qnan . Since also b1, a2, . . . , an generate G, then by
theminimal property ofm1,wemust have r2 = · · · = rn = 0, som1b1 = 0, and H1 ≡
〈b1〉 has orderm1, again on account of minimality ofm1. Let K be the subgroup ofG
generated by a2, . . . , an . ThenG ∼= H1 × K because x1b1 /∈ K for any non-negative
integer x1 less than m1, on account of minimality of m1.

By our induction hypothesis, we can write K ∼= H2 × · · · × Hn , where |Hi | is
finite and divides |Hi+1| for i larger than 1 and less than some k, and with the
remaining cyclic groups having infinite order.

If H2 is finite and of order m2, then by the division algorithm, we may write
m2 = qm1 + r , where r is a non-negative integer less than m1. Let bi be a generator
of Hi for i ≥ 2. Then

m1(b1 + qb2) + rb2 + 0b3 + · · · + 0bn = m1b1 + m2b2 = 0,

and as b1 + qb2, b2, . . . , bn generateG, again by theminimality ofm1, we get r = 0.
Hence m1 divides m2. �

The following result is known as the fundamental theorem for finitely generated
abelian groups, and furnishes a complete classification of such groups.



180 4 Groups

Theorem 4.30.2 Every finitely generated abelian group is of the form

Zm1 × · · · × Zmk × Z
n

for unique integers n and mi ≥ 2 such that mi divides mi+1.

Proof That every finitely generated abelian group is isomorphic to a group of the
stated form is immediate from the lemma.

The integer n is unique since if the group is isomorphic to another one of the
prescribed form with n replaced by n′ �= n, then upon removing min(n, n′) factors
ofZ fromboth products, one has two isomorphic groupswhere one is infinitewhereas
the other is finite, and this is absurd.

Removing the equal number of factors of Z, we are left with

Zm1 × · · · × Zmk
∼= Zn1 × · · · × Znl

for some integers ni ≥ 2 such that ni divides ni+1.
Since every element of these groups have order not greater thanmk , we must have

nl ≤ mk . By the same argument, we get mk ≤ nl , so mk = nl .
Now

mk−1Zmk
∼= mk−1Zm1 × · · · × mk−1Zmk

∼= mk−1Zn1 × · · · × mk−1Znl

forces |mk−1Zni | = 1 for i ≤ l − 1 as nl = nk . So in particular, the integer nl−1

divides mk−1. By symmetry mk−1 = nl−1, and mk−i = nl−i by induction. Since
m1 · · ·mk = n1 · · · nl , we get k = l and mi = ni for all i . �

The number n in the theorem is called the rank of the group, and the product of
the remaining factors is called the torsion part of the group. The tuple (m1, . . . ,mk)

is called the type of the torsion part. The theorem tells us that the rank and the type
of a finitely generated abelian group is a complete invariant. Finite abelian groups
are obviously finitely generated, and in this case one speaks of the type of the group
since there is only torsion.

Example 4.30.3 The types of abelian groups of order 360 are (360), (3, 120),
(2, 180), (6, 60), (2, 2, 90), (2, 6, 30), so there are 6 non-isomorphic abelian groups
of order 360.

To find the types of a finite group can be somewhat cumbersome, so we will look
at things slightly differently. By Corollary 4.20.5 any finite abelian group is a direct
product of p-groups for distinct primes, which in general are not cyclic of course.
This was a corollary of Sylow’s first theorem, and can also be proved using the
fundamental theorem of finitely generated abelian groups. Alternatively we could
use this corollary to reduce the proof of the fundamental theorem to the special case
of abelian p-groups. Anyway, being in favor of proving things only once, we might
as well use this theorem to classify abelian p-groups in terms of certain partitions.
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Definition 4.30.4 A partition of a natural number k is a tuple (k1, . . . , k j ) of natural
numbers such that k = ∑

ki and ki ≤ ki+1. Let P(k) denote the number of partitions
of k.

Corollary 4.30.5 The number of non-isomorphic abelian groups of order n is

m∏

i=1

P(ni ),

where n = pn11 · · · pnmm is the prime number decomposition of n.

Proof By Corollary 4.20.5 such groups are of the form G1 × · · · × Gm with |Gi | =
pnii , so it suffices to show that the number of non-isomorphic abelian groups of
order pk is P(k). But the types of such groups are exactly (pk1 , . . . , pk j ), where
(k1, . . . , k j ) is a partition of k. �

Example 4.30.6 Returning to the abelian groups of order 360 = 23 · 32 · 51, there
are P(3)P(2)P(1) = 3 · 2 · 1 = 6 non-isomorphic ones, and they are:

Z2 × Z2 × Z2 × Z3 × Z3 × Z5
∼= Z2 × Z6 × Z30

Z2 × Z2 × Z2 × Z9 × Z5
∼= Z2 × Z2 × Z90

Z2 × Z4 × Z3 × Z3 × Z5
∼= Z6 × Z60

Z2 × Z4 × Z9 × Z5
∼= Z2 × Z180

Z8 × Z3 × Z3 × Z5
∼= Z3 × Z120

Z8 × Z9 × Z5
∼= Z360,

where we have also indicated the types.

Another way of looking at the fundamental theorem of a finitely generated abelian
group G is to pick generators {ai }ri=1 of the group and define an epimorphism
f : Z

r → G by
f (x1, . . . , xr ) =

∑

i

xi ai .

Then G ∼= Z
r/ ker f by the first isomorphism theorem. The non-triviality of ker f

causes the torsion. In much the same way as we proved the fundamental theorem
one can show that there are integers mi ≥ 2 such that mi divides mi+1 and

ker f ∼= m1Z × · · · × mkZ × {0}n,

where n = r − k. The quotient will therefore be of the form prescribed in the
fundamental theorem.
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4.31 Free Groups

We have seen that groups often are presented in terms of generators and relations.
We will be more precise what is meant by this. First we need to talk about groups
with generators freed of any relations between them apart from those imposed by
the axioms of a group, like aa−1 = e. At first, the following definition seems rather
ad hoc.

Definition 4.31.1 The free group generated by a set X is a group F together with
a map f : X → F such that for any map g : X → G into any group G, there is a
unique homomorphism h : F → G satisfying h f = g.

For the moment we do not know whether there is anything like a free group.
However, given that they do exist, we have the following uniqueness result.

Proposition 4.31.2 Up to isomorphism there is only one free group generated by
sets of the same cardinality. Conversely, any two generator sets of isomorphic free
groups have the same cardinality.

Proof Say we have two free groups Fi generated by sets Xi with accompanying
maps fi : Xi → Fi .

If there is a bijection j : X1 → X2, there are homomorphism h : F1 → F2 and
h′ : F2 → F1 such that h f1 = f2 j and h′ f2 = f1 j−1, so h′h f1 = f1. By uniqueness,
we see that h′h is the identity map on F1. Similarly, we conclude that hh′ is the
identity map on F2. So h′ = h−1 and F1

∼= F2.
Conversely, the subgroup Hi of Fi generated by all squares of members of Fi

is clearly a normal subgroup of Fi . From the discussion after Corollary 4.31.6, we
see that [Fi : Hi ] equals 2|Xi | if Xi is finite, and equals |Xi | if Xi is infinite, which
implies Xi × Xi

∼= Xi and ∪n Xn
i

∼= Xi . Hence |X1| = |X2| if F1
∼= F2. �

We first prove existence in the following simple setting.

Lemma 4.31.3 There is a free group for every single generator x, namely, the
additive cyclic group Z with f : {x} → Z given by f (x) = 1.

Proof Given amap g : {x} → G, define h : Z → G by h(n) = g(x)n . Then h f (x) =
h(1) = g(x), so h f = g, and h is the only map with this property as h is uniquely
determined on 1. �

Next we form a certain product of groups that imposes no further auxiliary rela-
tions between the group members. Again, the actual construction of such a group
will be carried out after we have stated the properties that uniquely characterize it.

Definition 4.31.4 Given a family of homomorphism fi : Gi → G, we say that G is
the free product of the groups Gi , if for any family of homomorphisms gi : Gi → H ,
there is a unique homomorphism h : G → H such that h fi = gi .
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The free product is unique up to isomorphism. For suppose the second family in the
definition above has the same property as the first. Then there is a homomorphism
h′ : H → G such that h′gi = fi . Hence h′h fi = fi , and by uniqueness h′h is the
identity map on G. Similarly, we see that hh′ is the identity map on H , so H ∼= G.
We denote the free group of the Gi ’s by ∗Gi .

Theorem 4.31.5 The free product of any collection of groups exists.

Proof Suppose we have a collection of groups Gi . A word of length n is an n-
tuple (a1, . . . , an) of non-unit elements from the collection of groups, and where no
successive coordinates belong to the same group. Let Wn be the set of such words,
and let W = ∪Wn , where W0 consists of the empty word.

The groups Gi act on W in an obvious way. For b ∈ Gi and (a1, . . . , an) ∈ Wn

define b · (a1, . . . , an) ∈ W to be:

(b, a1, . . . , an) if a1 /∈ Gi and b �= e, or (a1, . . . , an) if a1 /∈ Gi and b = e,

or

(ba1, . . . , an) if a1 ∈ Gi and ba1 �= e, or (a2, . . . , an) if a1 ∈ Gi and ba1 = e

with the obvious understanding concerning the empty word. It is straightforward to
check that this is a faithful action of Gi on W , so we can consider Gi ⊂ Perm(W ).
Let G be the subgroup of Perm(W ) generated by the groups Gi , and let fi : Gi → G
be the inclusion maps. We claim that G is the free product of the groups Gi .

To this end, first note that every non-unit element of G is a finite product of
members from the groups Gi , and we can of course assume that two consecutive
factors belong to different groups; the element is then in reduced form. Such a form
is unique because if

a1 · · · an = b1 · · · bm
for two reduced expressions, then their action on the empty word in W is

(a1, · · · , an) = (b1, · · · , bm),

so n = m and ai = bi .
Now given any family of homomorphisms gi : Gi → H into any group H , define

a map h : G → H by h(e) = e and

h(a1 · · · an) = gi1(a1) · · · gin (an)

for a1 · · · an ∈ G in reduced form with a j ∈ Gi j . Clearly h is a homomorphism, and
it is the unique one such that h fi = gi . �

Corollary 4.31.6 The free group generated by any set exists.
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Proof Given any set X = {xi } consider, as prescribed in the lemma, the free group
Fi = Z of each single generator xi with maps fi . Then F ≡ ∗Fi is the free group
generated by X because if we have a map g : X → G, then g restricts to maps gi
on single elements xi , so there is a unique homomorphism h : F → G such that
h fi = gi , or in other words, such that h f (xi ) = g(xi ) by definition of f . �

We see that the uniqueness requirement in the definition of a free group F is
equivalent to requiring that f (X) generates F as a group. Also it is clear from the
construction above that f is injective.

We have also seen that every non-unit element of a free group F generated by a
set X can be written uniquely as

xn11 · · · xnmm
for non-zero integers ni and distinct elements xi ∈ X , and where we have suppressed
the injection f : X → F . Multiplication is by juxtaposition of such expressions with
possible cancellations, and with the unit being the empty expression. It is easy to see
that any groupwith a subset X such that all group elements can be written uniquely in
the above fashion, is automatically free by the characterizing property of free groups.

Clearly, free groups on more than one generator are non-abelian with trivial cen-
ter, but we can abelianize them by considering the derived subgroup generated by
commutators. We define the free abelian group generated by a set as we did for
free groups but with all groups involved in the definition replaced by abelian ones.
Uniqueness up to isomorphism holds as before. The following existence result is
also obvious.

Proposition 4.31.7 Let F be a free group generated by X with f : X → F. Then
F/F ′ is a free abelian group generated by X with respect to the map q f , where
q : F → F/F ′ is the quotient map.

Free abelian groups are therefore direct sums of copies of Z.

Proposition 4.31.8 Any group is the homomorphic image of a free group.

Proof Given any groupG, form the free group F generated by X ≡ G with f : X →
F . Then there is a unique homomorphism h : F → G such that h f is the identity
map on G. Hence G = h(F). �

Similarly, any abelian group is the homomorphic image of a free abelian group,
and thus of some direct sum of Z.

Clearly we can define free (abelian) monoids as we did for groups, and then get
the result above with groups replaced by monoids everywhere.
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4.32 An Example of a Free Product

The group SL(2, R) acts on the complex upper half plane

H ≡ {z ∈ C |Imz > 0}

by fractional linear transformations

(
a b
c d

)

· z = az + b

cz + d

for z ∈ H . The fraction belongs to H due to the easily verified fact that

Im
az + b

cz + d
= Imz

|cz + d|2 .

It is easily checked that we indeed have an action. Moreover, this action is transitive,
and the isotropy group of i ∈ H is

(
cos θ sin θ

− sin θ cos θ

)

for θ ∈ R, which is evidently isomorphic to the circle. So one can identify H and
SL(2, R)/T as SL(2, R)-spaces.

It is natural to look at the action restricted to various subgroups of SL(2, R). One
such is the modular group SL(2, Z) consisting of the matrices with integer entries.
The matrices

A =
(
0 −1
1 0

)

and C =
(
1 1
0 1

)

of themodular group act on H as z �→ −1/z and z �→ z + 1, respectively. It turns out
that these two transformations generate all possible fractional linear transformations
coming from the modular group. In fact, we have the following result.

Lemma 4.32.1 The modular group is generated by A and B ≡ AC.

Proof If A and B do not generate all of SL(2, Z), we can pick an element

D ≡
(
a b
c d

)

∈ SL(2, Z)\〈A, B〉

with |a| + |c| minimal. The elements



186 4 Groups

(AB)nD =
(
a + nc b + nd

c d

)

and (BA)−mD =
(

a b
c + ma d + mb

)

obviously also belong to the complement of 〈A, B〉.
We cannot have ac �= 0 because if |a| ≥ |c|, we can pick an integer n such that

|a + nc| + |c| < |a| + |c|, and if |a| < |c|, we can pick and integer m such that
|a| + |c + ma| < |a| + |c|, so the matrices above will contradict the choice of D.

We are left with the possibilities a = 0 or c = 0. In the first case D must be

(
0 1

−1 d

)

or

(
0 −1
1 d

)

,

and thesematrices can bewritten as BA2(AB)−d−1 and (AB)d−1, respectively,which
is impossible. In the second case D must be (AB)b or A2(AB)−b, which again is
impossible. �

Now observe that A2 = −I2 = B3, so considered as linear fractional transfor-
mations, or as elements [A] and [B] of PSL(2, Z) ≡ SL(2, Z)/{±}, both [A]2 and
[B]3 are the unit. This gives rise to two homomorphism gi : Zi+1 → PSL(2, Z)with
g1([1]) = [A] and g2([1]) = [B], and hence a unique homomorphism

h : Z2 ∗ Z3 → PSL(2, Z)

such that h f1([1]) = [A] and h f2([1]) = [B]. Since [A] and [B] generate PSL(2, Z),
we see that h is surjective. The funny things is that it is also injective.

Proposition 4.32.2 We have an isomorphism PSL(2, Z) ∼= Z2 ∗ Z3.

Proof We content that the epimorphism h defined above is injective. Denote the
generators f1([1]) and f2([1]) of Z2 ∗ Z3 by a and b, respectively. Then any element
c ∈ Z2 ∗ Z3 is a product of ab’s and ab−1’s with a possible initial b±1 and a possible
final a. Now

(AB)n =
(
1 n
0 1

)

and (AB−1)m = (−1)m
(
1 0
m 1

)

,

so a product of such elements cannot contain both positive and negative entries.
However, if c ∈ ker h, some such products would have to equal ±A or ±B±1 or
±B±1A or the unit, and apart from this last case, all these products have entries with
mixed signs. Thus c must be the unit. �

Remark 4.32.3 The modular group is of great importance in complex function
theory and in the study of Riemann surfaces, modular forms and elliptic curves. The
work of Andrew Wiles on Fermat’s last theorem is related to this [4].
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4.33 Generators and Relations

We have seen that if we pick a generating subset X of the group G. Then for the
free group F generated by X , there is a unique epimorphism h : F → G such that
h f = g, where g : X → G is the inclusionmap. By a relation between the generators
of X wemean a non-unital element r in the kernel of h. The subtle point to bemade is
that we have created a place, namely the free group, for a ’relation to live in’ because
in the group G itself it collapses to the unit.

Definition 4.33.1 A presentation for a group G is a pair 〈X, R〉 of two sets such
that if F is the free group generated by X , and if N is the normal subgroup of F
generated by R ⊂ F , thenG ∼= F/N . The presentation is a finite presentation if both
X and R are finite.

By abuse of language it is customary to regard the elements of X as generators for
G and the elements of R as the actual relations between the generators. One tends
to write

{a, b | an = e = b2, bab = a−1}

both for the presentation 〈{a, b}, {an, b2, baba}〉 and the corresponding group.

Example 4.33.2 The group F/N of the presentation 〈X, R〉 right above is actually
isomorphic to the dihedral group Dn . To deduce this, first observe from the previous
discussion that we have a unique epimorphism h : F → Dn such that h(a) = σ

and h(b) = τ . Since R ⊂ ker h due to the relations between σ and τ , we have an
epimorphism h : F/N → Dn such that h(a) = σ and h(b) = τ , where we have kept
the symbols h and a, b. From the relations between a and b, we see that every element
in F/N is of the form ambk for integers m < n and k < 2, so there are maximum 2n
elements in F/N . Since h maps onto a set Dn with 2n elements, it therefore has to
be injective.

If we drop the relation an = e above, we get the infinite dihedral group

D∞ ≡ {a, b | b2 = e, bab = a−1}.

This group has also the following presentation {c, d | d2 = e = c2}. To see this we
know that there are unique epimorphisms f and g between these two groups such
that f (a) = c−1d and f (b) = c and g(c) = b and g(d) = ba. As f g and g f fix the
generators, we conclude that f −1 = g.

In fact, the infinite dihedral group is isomorphic to the semidirect product Z � Z2

formed with respect to the homomorphism Z2 → Aut(Z), where [k] ∈ Z2 sends
m ∈ Z to (−1)km ∈ Z. To see this first note that (m, [0]) and (0, [1]) satisfy the
same relations as a and b, respectively, so there is an epimorphism D∞ → Z � Z2

that respects these generators. By the relations between a and b, any element of
D∞ can be written as ambk for m ∈ Z and k ∈ {0, 1}, which under the epimorphism
corresponds to (m, [k]) ∈ Z � Z2. But (m, [k]) is trivial only ifm = 0 and [k] = [0],
so ambk = e and the kernel of the epimorphism is trivial. ♦
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Given a presentation 〈X, R〉, it is by no means obvious to decide by an algorithm
whether two elements of the free group F represent the same elements in F/N , in
other words, whether an element of F belongs to the normal subgroup generated
by R. This is known as the word problem. The conjugacy problem asks when two
elements of F are conjugate in F/N , and the isomorphism problem is that of deciding
when two finite presentations have isomorphic groups. Such problems are central in
combinatorial group theory.

Example 4.33.3 Consider the transposition τi = (
i i + 1

) ∈ Sn . We know that
every permutation is a product of transpositions. But every transposition is also
a product of adjacent transposition as is seen by repeated use of the identity

(
i j + 1

) = τ j
(
i j

)
τ j

for i < j . So Sn = 〈τ1, . . . , τn−1〉. It is also easy to see that the transpositions τi
satisfy the same relations as the generators ai in the so Coxeter presentation

G ≡ {a1, . . . , an−1 | a2i = e = (aiai+1)
3 and (aia j )

2 = e if |i − j | > 1}

of Sn . Let us prove that there is an isomorphism between these two groups.
From what we have said we already know that there is a unique epimorphism

h : G → Sn such that h(ai ) = τi . As for injectivity, remember that |Sn| = n!, so it
suffices to show that |G| ≤ n!. This again follows by induction if we can show that
[G : H ] ≤ n, where H ≡ 〈a1, · · · , an−2〉. To this end consider the n cosets

a1 · · · an−1H, a2 · · · an−1H, . . . , an−1H, H

of G. As [G : H ] is the number of disjoint cosets aH in G, and the elements a j

generate G, it it enough to show that left multiplication of the listed cosets by any
a j permutes these cosets, since then the list contains all the cosets, so [G : H ] ≤ n.
Let us show that we just get such permutations.

If j < i − 1, then aia j = (aia j )
−1 = a−1

j a−1
i = a jai , so

a jai · · · an−1H = ai · · · an−1a j H = ai · · · an−1H

as a j ∈ H . The cases j = i − 1 and j = i are evident from a2i = e.
Finally, if j > i , then again as ak and a j commute for | j − k| > 1, we get

a jai · · · an−1H = ai · · · a j−2(a ja j−1a j )a j+1 · · · an−1H.

From (a j−1a j )
3 = e, we get a ja j−1a j = a j−1a ja j−1, and inserting this gives

a jai · · · an−1H = ai · · · a j−2(a j−1a ja j−1)a j+1 · · · an−1H = ai · · · an−1a j−1H,

which equals ai · · · an−1H as a j−1 ∈ H . ♦
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4.34 Ordered Groups

Definition 4.34.1 A group is (partially) ordered if there is a (partial) order < on it
as a set such that ac < bc and ca < cb whenever a < b. An order homomorphism
between two (partially) ordered groups is a group homomorphism f such that f (a) <

f (b) when a < b.

Clearly subgroups of ordered groups are ordered groups with the induced order.

Example 4.34.2 The positive real numbers R+ is an order group under multiplica-
tion and the usual order.

The additive groups Z, Q and R are ordered groups with the usual ordering, and
the exponential map a �→ ea is an order isomorphism from R to R+. ♦

IfG is a partially ordered group and X is a set, thenGX is a partially ordered group
under pointwise operations and partial order. The free abelian group Z

n of rank n is
an ordered group under the lexicographical order, which means that (a1, . . . an) <

(b1, . . . bn) if am < bm for some m such that ai = bi for i < m.
If G is an ordered group, then P = {a ∈ G | e < a} satisfies the following

definition.

Definition 4.34.3 A positive cone for a group G is a subset P ofG such that P · P ⊂
P and P ∪ {e} ∪ P−1 is a disjoint union of G and aPa−1 ⊂ P for a ∈ G.

The following trivial result shows that ordered groups can equivalently be
described in terms of positive cones.

Proposition 4.34.4 A group G with a positive cone P is an ordered group with order
defined by a < b if ba−1 ∈ P, and its positive cone {a ∈ G | e < a} will be P.

Notice that if P is a positive cone for a group, then so is P−1.

Example 4.34.5 Consider Z
2 with positive cone consisting of those elements in the

integer lattice that belong to one side of a straight line through the origin with irra-
tional slope. Thus Z

2 is an ordered group for uncountable many different orderings,
one for each such slope.

Proposition 4.34.6 Ordered groups are torsion-free.

Proof If e < a, then e < a < a2 < · · · and if e > a, then e > a > a2 > · · · , so no
power of a �= e can be e. �

Thus since −1 has order two, the multiplicative group F∗ of a non-trivial field F
cannot be turned into an ordered group.

Not all torsion-free groups can be turned into ordered groups.
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Example 4.34.7 Let G be the group generated by a and b subject to the relation
aba−1 = b−1. Then every element of the group can evidently be written as ambn for
some m, n ∈ Z. If ambn = e, then by applying Ad(a) to both sides n times, we get
am = e. This is impossible because

a �→ A = 1

2

(
0 1
1 0

)

and b �→ I =
(
1 0
0 1

)

is a well-defined homomorphism from G to the multiplicative group M2(Q), and
Am �= I for all m ∈ Z. Hence G is torsion-free. But G has no positive cone P
because if b ∈ P , then b−1 = aba−1 belongs to both P−1 and P , which is absurd.
As the homomorphism G → M2(Q) given by a �→ I and b �→ 2A shows, the case
b = e is no option either. So G cannot be turned into an ordered group. ♦

However, we have the following result.

Theorem 4.34.8 A group can be turned into an ordered group if it is torsion-free
and abelian.

Proof SupposeG is torsion-free and additive. Let X be a set of representatives of the
orbits of the action of Z on G given by (n, a) �→ na. Let H be the additive subgroup
of Z

X under pointwise addition of functions that are non-zero for only finitely many
elements of X . Pick an order on X by Zorn’s lemma, see the preliminaries. Obviously
H is an ordered group with order g < h if there is some x ∈ X such that g(y) = h(y)
for y < x and g(x) < h(x).

Define G → H by a �→ fa , where fa(x)x = a for all x ∈ X . Since the orbits
form a partition of G such an integer fa(x) exists, and it is uniquely determined by a
and x since G has no torsion. Clearly a �→ fa is additive and injective, and provides
an order on G inherited from H . �

4.35 Groups in Algebraic Topology

Topological spaces are sets where one can talk about convergence and continuity by
declaring what should be the neighborhoods of points [23]. If you are not familiar
with the definition, think of a subset of the Euclidean spaceR

3 with convergence from
calculus defined in terms of gradually smaller balls playing the role of neighborhoods.
Bijections between topological spaces that are continuous in both directions are called
homeomorphisms, and we identify topological spaces up to homeomorphisms. This
means that we are not concerned about distinguishing spaces that can be continuously
deformed into each other, say by stretching. Quantities that are insensitive to this are
called topological invariants; they remain the same for spaces that are homeomorphic.
Note that we do not allow tearing, as this is not a continuous operation. We are
particularly interested in invariants that can distinguish topological spaces, and that
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can be computed. In algebraic topology [5] one looks for such notions in the realm
of algebraic objects. Here we will consider topological invariants that are groups.

Let us first explain what the fundamental group of a topological space is. A coffee
cup and a doughnut can be deformed into each other. The crucial topological feature
they have in common is the hole in the doughnut, which is also found in the handle of
the coffee cup. A loop around either of these holes cannot be shrunk to a point without
leaving the subset at hand. This way such holes can be detected, and it suggests that
topological insight might be gained by studying loops, which essentially constitute
the elements of the fundamental group.

Recall that a loop in a topological space X at a distinguished point ∗ ∈ X is a
continuousmap f : [0, 1] → X such that f (0) = ∗ = f (1). A homotopy from such a
loop f to another g is a continuous map H : [0, 1] × [0, 1] → X such that H(0, ·) =
f (·) and H(1, ·) = g(·) and H(s, 0) = ∗ = H(s, 1) for all s ∈ [0, 1]. Intuitively, this
means that the loops can be deformed into each other within X , keeping the point
∗ fixed. It is not hard to see that homotopy is an equivalence relation between the
loops at the point ∗. We can form the product [ f ][g] of the equivalence classes
of f and g by letting [ f ][g] = [ f g], where f g is the loop with ( f g)(t) given by
f (2t) when t ∈ [0, 1/2], and is equal to g(2t − 1) when t ∈ [1/2, 1]. It can then
be checked that this is a well-defined product turning these equivalence classes into
a group π1(X, ∗) known as the fundamental group of X at ∗. The unit element
has as a representative the constant loop, while [ f ]−1 has a representative given by
f −1(t) = f (1 − t). We say that X is arcwise connected if any two points x, y ∈ X
can be connected by a continuous path, i.e. a continuous map h : [0, 1] → X with
h(0) = x and h(1) = y. Loops are of course special cases of such paths, and we
can obviously extend the definition of homotopy to continuous paths. For arcwise
connected spaces the fundamental groups corresponding to two distinguished points
are clearly isomorphic, and we simply write π1(X). One finally shows that it is a
topological invariant, and indeed a quite useful one. The space X is said to be simply
connected if π1(X) is the trivial group, which equivalently means that any loop can
be shrunk to a point.

Let us see how it can be computed in cases where X can be approximated homeo-
morphically by a polyhedron. Such a geometric object is composed of simpler build-
ing blocks, namely simplexes that are nicely fitted together. For instance, a solid
tetrahedron 〈p0 p1 p2 p3〉 is composed of four triangular faces 〈p0 p1 p2〉, 〈p0 p2 p3〉,
〈p0 p1 p3〉, 〈p1 p2 p3〉, six straight edges 〈p0 p1〉, 〈p0 p2〉, 〈p0 p3〉, 〈p1 p2〉, 〈p1 p3〉,
〈p2 p3〉 and four vertices 〈p0〉, 〈p1〉, 〈p2〉, 〈p3〉. These are examples of 3-,2-, 1-,
0-simplexes associated to the points 〈pi 〉 = pi ∈ X . Let us say what it means that
these pieces are nicely fitted together. Any finite set K of simplexes in R

n is called a
simplicial complex if any face of a simplex also belongs to K , and if the intersection
of any two simplexes is either empty or belongs to K . Their union |K | is then by
definition a generalized polyhedron, and any homeomorpism |K | → X is called a
triangulation of X . In this sense simplexes are building blocks for many topological
spaces. For instance, any homeomorphism from a triangle to the circle is a triangu-
lation of the circle. But you can also build a square using two triangles, and this way
get another triangulation of the circle, so we do not have uniqueness.
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A triangulation of X by a simplicial complex K opens up for a combinatorial
approach to finding π1(X) ∼= π1(|K |), which goes as follows:

(1) find an arcwise connected and simply connected subcomplex L of K that
contains all the vertices pi of K ;

(2) assign a generator gi j to each 1-simplex 〈pi p j 〉 of K\L with i < j ;
(3) impose a relation gi j g jk = gik if there is a 2-simplex 〈pi p j pk〉 in K such that

i < j < k. Moreover, if two of the vertices pi , p j , pk form a 1-simplex of L , the
corresponding generator should be set to be the unit;

(4) the group with generators gi j satisfying the relations from (3) is isomorphic
to π1(X).

Rather than proving this well-known result, let us illustrate how it works in
concrete cases.

Example 4.35.1 Consider a solid disk D ⊂ R
2. It can be triangulated by a solid

triangle, which is already simply connected, so we can choose L = K , yielding
π1(D) = {e}. The same argument shows that the solid ball has trivial fundamental
group. A hollow tetrahedron gives a triangulation |K | → S2 of the 2-sphere, and we
obtain a subcomplex L by removing one of the 2-faces of the tetrahedron. This gives
three generators, corresponding to the edges of the removed 2-simplex, and all of
them are set to be the unit. So once again we get π1(S2) = {e}. ♦

Here is a more elaborate example.

Example 4.35.2 An n-bouquet is defined to be the one-point union, or the wedge
product, of n circles. Taking the common point p0 as the distinguished point, a
triangulation is obtained by considering a star with center p0 and arms, or edges,
leading to vertices p1, p2, . . . , p2n ordered counterclockwise. This gives the complex
L , while K is formed by adding the edges 〈p1 p2〉, 〈p3 p4〉, . . . , 〈p2n−1 p2n〉. Clearly
L is arcwise connected and simply connected. It is an example of a tree, indeed a
maximal one. One associates the generators g12, g34, . . . , g(2n−1)2n to the outer edges,
and there are no relations between these. So the fundamental group of the n-bouquet
is the free group on n generators. In particular, we get π1(T) = Z as the free group
on one generator is Z. The fundamental group of the figure symbolizing the number
eight, or infinity, is a free group on two generators. Topologically these generators
correspond to the two loops a, b running, say counterclockwise, around the upper
and lower part, respectively, of the figure eight. Clearly the loop aba−1 cannot be
continuously deformed into the loop b. ♦

Here is perhaps a topologically more important case.

Example 4.35.3 Just like the circle can be obtained from an interval by identifying
its endpoints, we can produce the torus T

2 by identifying opposite points of a solid
square, working then with the quotient topology on the collection of equivalence
classes thus obtained. Geometrically this means that upon identifying the opposite
points on the two horizontal lines on a square sheet of paper, we first get a cylinder,
and next, upon identifying the opposite points on the two vertical lines, we glue the
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ends of the cylinder together. This way we obviously get a torus in ordinary space
R

3. When it comes to triangulation, it is easier to work with the 2-dimensional sheet,
keeping in mind that certain points are identified with each other, when we make the
triangulation.We draw a chessboard on the square consisting of nine smaller squares,
and we divide these up in triangles by drawing diagonals. This gives K , while L can
be chosen to consist of the four squares (with their triangles) gathered in one corner
of the bigger square. This gives eleven generators and ten relations, which in the end
reduces to two generators a, b and one relation aba−1b−1 = e, or ab = ba. This is
just the free abelian group on twogenerators.Henceπ1(T

2) = Z × Z. Geometrically,
the generators a, b correspond to one loop around the cylinder, and another around
the hole in the doughnut having the torus as its surface. It is instructive to make a
drawing to convince oneself that the loop aba−1b−1 can indeed be shrunk (within
the torus) to a point.

We can generalize all this to a closed surface �g in R
3 having genus g, that is,

a surface with g holes in it. Then the fundamental group of �g is seen to have 2g
generators ai , bi correspond to obvious loops, and they satisfy the single relation∏g

i=1 aibia
−1
i b−1

i = e. So for g > 2 we do not get an abelian group.
Note that the torus T

2 is the direct product of two circles T, each having fun-
damental group Z. Now, forming fundamental groups respects in general products.
Hence π1(T

2) = π1(T) × π1(T) = Z
2 once again. ♦

The two linked loops a, b in the torus can in a sense be seen as a topological
abelianization of the 2-bouquet. Such a type of abelianization can be obtained in
much greater generality. Namely, we can attach finitely generated abelian groups to
simplicial complexes having an orientation (to be explained shortly). These are the
homology groups of the space, and they are also topological invariants. If K is such
a simplicial complex, then the first homology group H1(|K |) is actually isomorphic
to the quotient group of π1(|K |) by its commutator subgroup, rendering H1(|K |) an
abelianization of π1(|K |).

An orientation of K means that for every simplex there is a preferred order of its
vertices.We identify simplexes that differ by an even permutation of the vertices, and
denote the equivalence class of the n-simplex 〈p0 p1 · · · pn〉 by (p0 p1 · · · pn).We con-
sider the free abelian groupCn(K ) generated by the oriented n-simplexes, and regard
−(p0 p1 · · · pn) as the class (with opposite orientation) obtained from 〈p0 p1 · · · pn〉
by an odd permutation of its vertices. We call Cn(K ) the group of n-chains of K ,
and define a Z-linear boundary operator ∂n : Cn(K ) → Cn−1(K ) on such chains by
∂n((p0 p1 · · · pn)) = ∑n

i=0(−1)i (p0 p1 · · · p̂i · · · pn), where pi is understood to be
omitted. For instance, we can think of (p0 p1) as a directed line segment traversing
from p0 to p1, and its boundary is ∂1((p0 p1)) = p1 − p0. Simplexes for which the
boundary operator vanishes are called cycles. A hollow triangle oriented counter-
clockwise is therefore a cycle. It is easy to check that ∂n∂n+1 = 0, which allows us
to define the homology group of K as the quotient group Hn(K ) = ker ∂n/im ∂n+1.
Different triangulations of the same space X yield isomorphic homology groups, so
we can speak of the homology group of X obtaining this way a topological invariant
that is a finitely generated abelian group, but no longer necessarily free. We have a
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family of such groups indexed by n ∈ {0, 1, 2, . . . }. Note that Hn(X) = 0 when n is
larger than the dimension of the space X ; the dimension then being the dimension
of the largest simplex in K .

Example 4.35.4 Let K = {p0, p1, (p0 p1)}. Clearly H1(K ) = ker ∂1 = 0 as
∂1(m(p0 p1)) = mp1 − mp0 = 0 forces the integer m to be zero. Now Hn(K ) = 0
for n > 1, while for n = 0, we get the quotient group

{mp0 + m ′ p1 |m,m ′ ∈ Z}/{m ′′(p1 − p0) |m ′′ ∈ Z},

which is isomorphic to Z, signifying that |K | is arcwise connected. ♦
Let us consider a triangulation of the circle, and again doggedly compute the

homology groups.

Example 4.35.5 Let K = {p0, p1, p2, (p0 p1), (p1 p2), (p2 p0)}. We obviously get
H1(K ) = ker ∂1 = {m((p0 p1) + (p1 p2) + (p2 p0)) |m ∈ Z} = Z, while H0(K ) is
the quotient group of {mp0 + m ′ p1 + m ′′ p2 |m,m ′,m ′′ ∈ Z} by the subgroup

{∂1(m(p0 p1) + m ′(p1 p2) + m ′′(p2 p0)) |m,m ′,m ′′ ∈ Z}

= {(m ′′ − m)p0 + (m − m ′)p1 + (m ′ − m ′′)p2 |m,m ′,m ′′ ∈ Z}.

Hence H0(K ) = Z. The higher homology groups are all trivial. It is worth checking
that the same result is gotten by considering a triangulation giving a polyhedron
which is a square. ♦

Direct computations show that the homology groups of the disc are all trivial,
except the first one that is isomorphic to Z, while for S2 we get the same, except that
also the second homology group isZ. Usingmore intuition, one can convince oneself
that H1(�g) is generated by the loops that are not boundaries of some area, giving
H1(�g) = Z

2g . As there are no 3-simplexes in a triangulation of�g , one can say that
the surface�g freely generates the second homology group, so H2(�g) = Z. And as
�g is arcwise connected, we get H0(�g) = Z, whereas all the remaining homology
groups are trivial.

One can also define higher homotopy groups πn(X) for any n ∈ N by replacing
loops by n-loops [0, 1]n → X , and considering homotopy classes of such loops.
These topological invariants are related to the homology groups Hn(X) in a less
obvious fashion. In fact, they are already abelian when n > 1, and we just mention
here that πn(Sn) = Z.

In general one could say that homotopy groups contain more information than
homology groups, but they are harder to compute, as they tend to render futile some
of the effective machinery in homological algebra. Much of algebraic topology is
conveniently formulated using the language of category theory [19], but we won’t
discuss this here.

Instead we will look at a nice family of groups appearing in knot theory [1].
Consider the plane R

2 with n distinguished points, and take two horizontal copies
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in R
3 of such a plane together with n non-intersecting smooth paths joining the

distinguished points of the two planes in pairs. We require the tangent vectors never
to be horizontal, and identify any two such stings if they can be deformed into each
other without causing intersections. The braid group Bn on n strands is this set of
equivalence classes with product given by concatenation, deleting the middle plane.
Then the unit is the braid with only vertical strings, and the inverse of a 2-braid
is its mirror image. Let ai ∈ Bn have as representative the string connecting the i th
point in the upper plane to the (i + 1)th point in the lower plane by diagrammatically
crossing over the string that connects the (i + 1)th point in the upper plane to the
i th point in the lower plane, and that otherwise has only vertical strings. Then one
checks that the following braid relations hold:

aiai+1ai = ai+1aiai+1 and aia j = a jai when |i − j | > 1.

A link is obtained from a braid by connecting each point at the top of the braid with
the endpoint directly below it. A link is then a finite union of knots. Assigning to a
braid in Bn the permutation of its endpoints defines a homomorphism from Bn to the
symmetric group Sn . Its kernel is known as the pure braid group. Note that while
Sn is finite, the braid group Bn , being identified with the group having generators ai
satisfying the braid relations, is infinite. Already B1 = Z while |S1| = 1. In general,
we can identify the symmetric group Sn with the group given by the same generators
and relations as Bn , and by adding the relations a2i = e, which renders Sn finite.

Knot invariants can be produced from quantum groups since braid groups occur
in the representation theory of the latter [21]. This profound connection between
quantum groups and knot invariants is beyond the scope of this book, see [11]. We
onlymention that the relevant quantum groups are quantizations of simple Lie groups
in the same way as quantum mechanics is a quantization of classical mechanics [2].
In this strange world one can still talk about homology, or rather cyclic cohomology,
which in some sense are groups dual to homology groups, while homology groups
are better seen as certain K -groups. The pairing between these two types of groups
is known as the non-commutative Chern pairing, which plays a crucial role in index
theory [3].



Chapter 5
Representations of Finite Groups

Groups, given their meager structure as abstract objects, are best studied in action.
Of course groups act on themselves by conjugation, and we have seen that the study
of such actions involves knowing the subgroups of the group. This is quite a task. For
instance, byCaley’s theorem every group of order less than or equal to n is a subgroup
of Sn , which shows that symmetric groups have awfully many subgroups. Linear
spaces and linear transformations are structureswe understandwell. In representation
theory a strong link exists between such structures and groups because one restricts
to actions on vector spaces, thus making the whole business more manageable.

A representation of a group G on a vector space V is a map π which defines
to each group element a ∈ G a linear transformation π(a) : V → V in such a way
that the group product becomes a composition of maps and where the unit element
corresponds to the identity map. So group elements are represented as matrices when
V is finite dimensional, and a linear basis is chosen. Some groups are already defined
as matrix groups, say in M(n, F). They then act on Fn , which says that the identity
map is a representation. Note that the vector space Fn is considerably smaller than
the vector space M(n, F), which the groups also act on (by left multiplication, or
by conjugation). In the first case the dimension of the representation is n, whereas
in the second case it is n2.

There is an obvious notion of an intertwiner between two representations, saying
when they are to be thought of as the same, or equivalent. Finding a rich class of
pairwise inequivalent representations might not be so obvious, especially when the
groups are not from the outset matrix groups. One-dimensional representations can
occur for large groups, notably in the abelian case. Say that we have two groups,
and one of them has a one-dimensional non-trivial representation, while the other
one does not. We can then immediately conclude that the two groups cannot be
isomorphic. Properties of a group can be deduced by studying its representations,
which, as we have said, involves techniques from linear algebra.
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On the other hand, sincemanyphenomena in nature relate to symmetries and linear
structures, representation theory hasmany applications in natural sciences, especially
in quantum physics, not least in particle physics. So also from this point of view it
is important to understand representation theory well [8]. However, a full bodied
theory requires a lot of geometry and analysis, especially operator algebra theory,
which is linear algebra taken to infinite dimensions using techniques from functional
analysis. Groups can also be recasted into the framework of operator algebras as
generalizations of Hopf algebras. One talks then of quantum groups, which are much
more general than groups [22]. All this is beyond the scope of this book. Here we
restrict our study to finite groups and finite dimensional representations, and we
work mainly with complex vector spaces. Although it should be said that with minor
changes many results in this chapter still hold for compact groups.

We show how new representations can be constructed from old ones. In particular,
we define direct sums and tensor products of representations, and we also define the
contragredient representation. Thefinite dimensional representations of a finite group
form what category theorists refers to as a tensor category. One can actually recover
the group entirely from such an abstract category. This shows that the representations
of a group encodes all the information about the group.

A major goal in representation theory is to decompose a representation into irre-
ducible (or indecomposable) ones, and to classify these simpler objects. This requires
that an assembly of matrices can be decomposed, sometimes even diagonalized,
simultaneously, and is achieved in the complex case by a clever averaging procedure
using inner products and the Haar integral, which in this case involves a finite sum
over all elements in the group.

We then discuss the (left) regular representation of the group. This is defined
using left multiplication of the group on itself. It is an important source for producing
representations. In our context it contains all the irreducible ones, and theyoccur in the
decomposition with a multiplicity governed by their dimensions as representations.
The decomposition can also be studied by invoking the linear maps that intertwine
a representation with itself. They are simply the matrices that commute with every
representation matrix. These intertwiners form an algebra. Schur’s lemma tells us
that in the irreducible case, this algebra is just the complex numbers, which cannot be
decomposed any further as an algebra. In general, it will be a direct sum of full matrix
algebras. Taking the matrix elements of the irreducible representations with respect
to a certain orthonormal basis on the representation space, yields an orthonormal
basis with respect to the Haar integral inner product on the space of so called regular
functions on the groups. In this finite dimensional setting the regular functions on the
group happens to be all the complex valued functions on the group. This complete
orthonormal decomposition is often referred to as Peter-Weyl theory.

Another important algebraic object is the group algebra of a group. Think of it as
a linearization of the group with the group elements forming a linear basis for the
vector space, whereas the product in the algebra is a linear extension of the product
in the group. Then any representation of the group extends uniquely by linearity to
a representation, or an algebra homomorphism, of the algebra into the algebra of
endomorphisms of the representation space. This gives a one-to-one correspondence
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between representations of the group and ideals in the group algebra, with ideals
appearing as kernels of the extended representations. This way the representation
spaces become modules over the group ring (two notions that we will return to in
great detail later) and can be studied as such.

We consider one-dimensional representations, so called characters of the group.
Thanks to Schur’s lemma, they are the irreducible representations of abelian groups.
There are plenty of them in this case, equally many as there are group elements.
They capture the whole structure of the finite abelian group, in that they themselves
form an abelian group, and by considering the characters of this group, one recovers
the original group up to a canonical isomorphism. This is known as Pontryagin
duality. We carry classical Fourier analysis to finite abelian groups by considering
group characters. Applying this powerful machinery to cyclic groups, we prove some
number theoretical results, including another proof of quadratic reciprocity.

Taking the trace of the matrices in a representation gives us a scalar valued
function on the group, known as the character of the finite dimensional represen-
tation. They are the closest we get to characters of the group, and enjoy similar nice
properties. Knowing the characters of the representations tells us almost everything
about the representations themselves. We study in detail the characters of irreducible
representations of the symmetric group S3.

In the final sections we study the relation between representations of a group
and those of its subgroups. We study how the intertwiners relate by establishing
two results known as Frobenius reciprocity. We provide a method of inducing up
representations from subgroups of a group to thewhole group, andwe investigate how
the characters of the representations come into play. Againwe study how intertwiners
relate by proving a geometric version of Mackey’s theorem. Then we establish an
algebraic version of the theorem involving double cosets.

5.1 Basic Definitions

Definition 5.1.1 A representation π of a group G on a vector space V over a field
F is a homomorphism π : G → Aut(V ). Or in other words, the vector space V is
a G-space under linear maps x �→ ax ≡ π(a)x . When we talk of vector spaces as
G-spaces we always mean actions by linear maps. A representation is finite dimen-
sional if the associated vector space is finite dimensional. If the representation is a
monomorphism, it is called a faithful representation. An intertwiner between two
representations is a linear G-morphism between their G-spaces. Two representa-
tions are equivalent representations if there is a bijective intertwiner between them.
A non-zero finite dimensional representation is irreducible if it has no proper invari-
ant subspaces. The restriction of a representation to an invariant subspace is called a
subrepresentation.
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To be explicit, given two representations π : G → Aut(V ) and ρ : G → Aut(W ),
then an intertwiner from π to ρ is a linear map A : V → W such that

Aπ(a) = ρ(a)A

for a ∈ G.

Definition 5.1.2 We write Mor(π, ρ) for the vector space of intertwiners from a
representation π to another ρ, and π ∼= ρ means that π and ρ are equivalent.

If A ∈ Mor(π, ρ) and B ∈ Mor(ρ, θ), then AB ∈ Mor(π, θ), so Mor(π, π) is a
unital algebra. If in addition A is bijective, then A−1 ∈ Mor(ρ, π), so the relation of
being equivalent is an equivalence relation.

An irreducible representation has no subrepresentations except itself and the zero-
representation.Wehave reserved the adjective ‘irreducible’ only to finite dimensional
representations.

The trivial representation ε : G → Aut(F) is given by ε(a)r = r for a ∈ G and
r ∈ F .

5.2 Regular Functions

Definition 5.2.1 A matrix representation is a homomorphism G → GL(n, F).

We have seen several examples of matrix representations coming from subgroups
of GL(n, F). Any finite dimensional representation π : G → Aut(V ) is equivalent
to a matrix representation. Indeed, pick a basis {vi } for V to obtain a linear isomor-
phism A : V → Fn . Then the matrix representation ρ : G → GL(n, F) given by
ρ(a) = Aπ(a)A−1 is equivalent toπ with intertwiner A ∈ Mor(π, ρ). The functions
πi j : G → F given by πi j (a) = ρ(a)i j are calledmatrix coefficients of π . Obviously

πi j (ab) =
∑

k

πik(a)πk j (b) and πi j (e) = δi j

for a, b ∈ G. We also have

π(a)v j =
∑

i

πi j (a)vi ,

so πi j (a) = xi (π(a)v j ), where {xi } is a dual basis of {vi }.
Definition 5.2.2 A regular function of a groupG with values in a field F is a function
of the form a �→ x(π(a)v) for a finite dimensional representation π : G → Aut(V )

and elements x ∈ V ∗ and v ∈ V . Let F(G) ⊂ FG denote the set of regular functions
on a group G.
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5.3 New Representations from Old Ones

Definition 5.3.1 The direct sum of representations πi : G → Aut(Vi ) is the repre-
sentation ⊕πi : G → Aut(⊕i V ) given by

⊕πi (a)v = πi (a)v

for a ∈ G and v ∈ Vi .

Each π j is a subrepresentation of ⊕πi as Vj is an invariant subspace of ⊕Vi . To
decompose a representation π : G → Aut(V ) into subrepresentations πi is the same
thing as decomposing V into invariant subspaces Vi , meaning that V = ⊕Vi and
π(G)Vi ⊂ Vi . Letting πi be the restriction of π to Vi we obviously get π = ⊕πi .
We often write the direct sum of n equivalent representations π as nπ .

Definition 5.3.2 The tensor product of representations π : G → Aut(V ) and
ρ : G → Aut(W ) is the representation π ⊗ ρ : G → Aut(V ⊗ W ) given by

(π ⊗ ρ)(a)(v ⊗ w) = π(a)v ⊗ ρ(a)w

for a ∈ G and v ∈ V and w ∈ W .

Proposition 5.3.3 The set F(G) of regular functions on a group G is a unital
subalgebra of FG.

Proof Obviously every regular function is a matrix coefficient of some representa-
tion. The sum and product of two matrix coefficients is a matrix coefficient of the
direct sum and the tensor product, respectively, of the corresponding representations.
The matrix coefficient of the trivial representation ε is the identity. �

Definition 5.3.4 Given a representations π : G → Aut(V ), then its contragredient
representation is the representation π c : G → Aut(V ∗) given by

π c(a)x = xπ(a−1)

for a ∈ G and x ∈ V ∗.

If π : G → Aut(V ) is a finite dimensional representation on V with basis {vi }
and dual basis {x j }, then

π c
i j (a) = vi (π

c(a)x j ) = x j (π(a−1)vi ) = π j i (a
−1),

so π c(a) = π(a−1)T by abuse of language, and the function a �→ π j i (a−1) belongs
to F(G).

Note that π cc ∼= π , and that π is irreducible if and only if π c is irreducible.
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5.4 Decomposition Into Irreducibles

Here we introduce the powerful technique of decomposing a representation into
subrepresentations on orthogonal subspaces, where orthogonality is defined with
respect to a cleverly chosen scalar product.

Lemma 5.4.1 Given a representation π : G → Aut(V ) of a finite group on a finite
dimensional complex vector space with inner product (·|·). Then

〈u|v〉 =
∑

a∈G
(π(a)u|π(a)v)

for u, v ∈ V defines an inner product such that 〈π(b)u|v〉 = 〈u|π(b−1)v〉.
Proof If 〈v|v〉 = 0, then as (π(a)v|π(a)v) ≥ 0, they must all be zero, which for
a = e means (v|v) = 0, so v = 0.

Now

〈π(b)u|π(b)v〉 =
∑

a∈G
(π(ba)u|π(ba)v) =

∑

c∈G
(π(c)u|π(c)v) = 〈u|v〉

for any b ∈ G and u, v ∈ V . In the second step we replaced ba by c and used that
a �→ ba is a bijection in order to replace summation over a by summation over c.
Substituting v by π(b−1)v gives the desired result. �

Definition 5.4.2 An inner product on a finite dimensional complex vector space of
a representation is an invariant inner product if the representation acts by unitary
linear maps.

So the inner product 〈·|·〉 in the lemma above is invariant.

Theorem 5.4.3 Any non-zero representation of a finite group on a finite dimensional
complex vector space can be decomposed into irreducible representations.

Proof Say we have a non-zero representation π : G → Aut(V ) of a finite group on
a finite dimensional complex vector space. Pick any inner product (·|·) on V , and
consider the associated invariant inner product 〈·|·〉.

The theorem obviously holds when dim V = 1. Assume that it holds for all com-
plex vector spaces of dimension less than dim V . By induction it suffices to show
that it holds for V .

Say V has an invariant proper subspace W . Then

W⊥ = {u ∈ V | 〈u|W 〉 = {0} }

is also an invariant proper subspace of V because if u ∈ W⊥, then

〈π(b)u|v〉 = 〈u|π(b−1)v〉 = 0
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for v ∈ W as π(b−1)v ∈ W . Now we are done because V = W ⊕ W⊥, and by
assumption both W and W⊥ can be decomposed into invariant subspaces having
no invariant proper subspaces. �

Definition 5.4.4 The number of copies, i.e. equivalent representations, of an irre-
ducible representation πi in the decomposition of a representation π is called the
multiplicity of πi in π .

5.5 Haar Integral

The invariant inner product in the previous section was obtained by averaging, or
summing, the function f : G → C given by f (a) = (π(a)u|π(a)v) over the group.
This is only possible for finite groups. We used that the average of a positive function
on the group is positive, and that f ∈ C

G and the function fb given by fb(a) =
f (b−1a) have the same average.

Definition 5.5.1 Consider a finite group G and a field F of characteristic zero. The
linear map ϕ : FG → F given by

ϕ( f ) = 1

|G|
∑

a∈G
f (a)

is called the Haar integral of the group G.

Define δa ∈ FG by δa(b) = 1 if a = b and δa(b) = 0 if a �= b. Then {δa} is a
linear basis for FG , so dim(FG) = |G|, and f = ∑

f (a)δa for f ∈ FG .

Proposition 5.5.2 Let G be a finite group. Up to a scalar factor there is only one
linear map ψ : FG → F such that ψ( fb) = ψ( f ) for f ∈ FG and b ∈ G.

Proof We have
ψ( f ) =

∑
f (a)ψ(δa) = ψ(δe)

∑
f (a)

because δa = (δe)a . So ψ = |G|ψ(δe)ϕ. �

Remark 5.5.3 To decompose representations we need Haar integrals. They exists
in great generality, and are vital in representation theory. In the language of measure
theory the Haar integral on a finite group is the integral of the counting measure,
and for R it is the Lebesgue measure. Haar integrals exists even for locally compact
groups, of which the subclass of compact groups are topological generalizations of
finite groups.
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5.6 Regular Representation

Definition 5.6.1 The (left) regular representation of a group G is the representation
λ : G → Aut(FG) given by λ(a) f = fa for f ∈ FG and a ∈ G.

Sinceλ(a)δe = δa for a ∈ G, the regular representation is faithful. Sofinite groups
have a faithful finite dimensional representation. We can regard them as subgroups
of the general linear group GL(n, F), where n is the order of the group.

Proposition 5.6.2 The algebra F(G) of regular functions on a finite group G
coincides with the algebra of all F-valued functions on G.

Proof By Proposition 5.3.3, we only need to verify that any function onG is regular.
Consider the regular representationλ, and let x be the linear functional on FG givenby
x( f ) = f (e), where e is the unit ofG. Then for f ∈ FG , we have f (a) = f (λc(a)x),
so f is regular. �

We could have avoided the contragredient representation in the proof above by
introducing the right regular representationρ : G → Aut(FG); ρ(a) f = f a , where
f a(b) = f (ba), because then f (a) = x(ρ(a) f ).
Note that for a finite group G, we have ϕλ(a) = ϕ = ϕρ(a) for all a ∈ G.

Definition 5.6.3 For a finite group G, the standard inner product on C
G is given by

( f |g) = 1

|G|
∑

a∈G
f (a)g(a).

This inner product is invariant for the regular representation because ( f |g) =
ϕ(h), with h ∈ C

G given by h(a) = f (a)g(a), so (λ(b) f |λ(b)g) = ϕ(λ(b)h) =
ϕ(h).

5.7 Schur’s Lemma

The following result is known as Schur’s lemma, and is used again and again in
representation theory.

Theorem 5.7.1 Given representations π and ρ of a group on a vector space over a
field F, and consider A ∈ Mor(π, ρ). Then ker A and imA are invariant subspaces
forπ andρ, respectively. Hence if both representations are irreducible, there are only
two possibilities: Either A = 0 andMor(π, ρ) = {0}. Or A is bijective and π ∼= ρ. If
in addition the vector space is finite dimensional and complex, thenMor(π, ρ) = CA.

Proof If v ∈ ker A, then Aπ(a)v = ρ(a)Av = 0, so ker A is invariant for π . If
w = Av for some vector v, then ρ(a)w = Aπ(a)v ∈ imA, so imA is invariant for
ρ.



5.8 Characters of Abelian Groups 205

Suppose π ∼= ρ are irreducible and that the vector space is finite dimensional and
complex. If B ∈ Mor(π, ρ) is bijective, let λ be an eigenvalue for A−1B, which does
exist in C by the fundamental theorem of algebra. Then A−1B − λI ∈ Mor(π, π)

and because of the eigenvector, the morphism is not bijective, so B = λA. �

Remark 5.7.2 The last assertion of this theorem is valid for finite dimensional vector
spaces over algebraically closed fields.

For a complex field we can characterize irreducible representations among finite
dimensional representations by their intertwiners.

Corollary 5.7.3 Suppose π is a non-zero representation of a finite group on a finite
dimensional complex vector space. Then π is irreducible if and only ifMor(π, π) =
CI .

Proof The forward implication is part of Schur’s lemma.
Conversely, say π acts on a finite dimensional complex vector space V with an

invariant proper subspace W . Then V = W ⊕ W⊥ with respect to an invariant inner
product for π . Define a linear map P : V → V , the orthogonal projection onto W ,
to be the identity onW and zero onW⊥. Then P /∈ CI , and P ∈ Mor(π, π) because
firstly

Pπ(a)w = π(a)w = π(a)Pw

for w ∈ W , as π(a)w ∈ W , and secondly

Pπ(a)v = 0 = π(a)Pv

for v ∈ W⊥, as π(a)v ∈ W⊥. �

5.8 Characters of Abelian Groups

Definition 5.8.1 An F-valued character of a group G is a homomorphismG → F∗.

When F = C, then by Lemma 5.4.1, we see that χ(a) = χ(a−1) for every
character χ of a finite group G and a ∈ G. So in this case χ : G → T.

When the field F is understood we talk about a character.
Upon identifying Aut(F) with F∗, we see that every character is a 1-dimensional

representation, and that every such representation is a character. Two 1-dimensional
representations are equivalent if and only if their characters are equal.

The characters of a group G form an abelian group under pointwise operations,
i.e. if χ and η are characters of G, then their product χη is the character given by
(χη)(a) = χ(a)η(a) for a ∈ G. The unit of this group is ε.

Definition 5.8.2 Let Ĝ denote the dual group of C-valued characters of an abelian
group G.
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Characters come from irreducible representations as all 1-dimensional non-zero
representations are irreducible. But the converse is not true in general. Every non-
abelian finite group have higher dimensional irreducible representations. To see this,
pick any faithful representation π of the group G on a finite dimensional complex
vector space, and decompose it into irreducibles. If all these were characters, then
π(ab) = π(a)π(b) = π(ba), so ab = ba for all a, b ∈ G.

Proposition 5.8.3 Every irreducible representation of an abelian group on a
complex vector space is 1-dimensional.

Proof Say π is an irreducible representation of an abelian group G on a complex
vector space V . Then π(a) ∈ Mor(π, π) as π(a)π(b) = π(b)π(a) for all b ∈ G. By
Schur’s lemma, we conclude that π(a) ∈ CI for every a ∈ G. Thus all subspaces of
V are invariant, and since π is irreducible, we must have dim V = 1. �

We can obviously form the double dual ˆ̂G, or the bidual of an abelian group G.
The following result is a special case of Pontryagin’s duality theorem.

Theorem 5.8.4 Let G be a finite abelian group. Then the map P : G → ˆ̂G given by
P(a)(χ) = χ(a) for χ ∈ Ĝ and a ∈ G, is a group isomorphism.

Proof Obviously a �→ â is a homomorphism. As for injectivity, say χ(a) =
P(a)(χ) = 1 for all χ ∈ Ĝ. By Theorem 5.4.3 and Propositions 5.8.3 and 5.6.2,
the characters span C

G , so f (a) = f (e) for f ∈ C
G , and a = e.

To see that P is surjective, it is enough to show that |Ĝ| ≤ |G| because any

injective map from G to a set ˆ̂G with no greater cardinality must be surjective. As
|G| = dimC

G , it therefore suffices to show that Ĝ is linear independent in C
G .

Consider the standard inner product (·|·) on C
G . Clearly (χ |χ) = 1 for χ ∈ Ĝ.

Suppose χ, η ∈ Ĝ are distinct. For b ∈ G, we have

χ(b)(χ |η) = 1

|G|
∑

a

χ(ba)η(a−1) = 1

|G|
∑

c

χ(c)η(c−1b) = (χ |η)η(b),

and as χ(b) �= η(b) for at least one b ∈ G, we see that (χ |η) = 0. So the characters
are linear independent; they are in fact orthonormal with respect to (·|·). �

Example 5.8.5 For infinite abelian groups it is no longer the case that the dual group
has cardinality not greater than that of the original group. For instance, observe
that χ(n) = zn is a character of Z for every z ∈ C∗, so C∗ is a subgroup of Ẑ and
|C∗| > |Z|. ♦
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5.9 Fourier Analysis

In the proof of Pontryagin’s duality theorem we showed the following result.

Corollary 5.9.1 The C-valued characters of a finite abelian group G form an
orthonormal basis for C

G with respect to the standard inner product.

This allows us to expand any f ∈ C
G for a finite abelian group G, as a finite sum

f =
∑

χ∈Ĝ
cχ χ,

where cχ = ( f |χ) are the Fourier coefficients of f and (·|·) is the standard inner
product on C

G .

Definition 5.9.2 The Fourier transform of f ∈ C
G for a finite abelian group G is

the function f̂ ∈ C
Ĝ on the Pontryagin dual Ĝ given by

f̂ (χ) = ( f |χ) = 1

|G|
∑

a

f (a)χ(a).

We immediately obtain Plancherel’s formula

|G|( f̂ | f̂ ) =
∑

χ

|cχ |2 = ( f | f )

and the Fourier inversion formula f = ∑
χ f̂ (χ)χ . It is also easy to see that

ˆ̂f (P(a)) = 1

|G| f (−a)

for all a ∈ G. A straighforward application of the Cauchy-Schwarz inequality
|( f |g)|2 ≤ ( f | f )(g|g) for any f, g ∈ C

G shows that the uncertainty principle in
Fourier analysis holds:

|supp( f )| · |supp( f̂ )| ≥ |G|,

where the support of a function is the set where it is non-zero.

Example 5.9.3 Take the finite abelian group Zn , and let w = exp( 2π in ) ∈ T. Define
a character ψk on Zn for k ∈ N by

ψk([m]) = wkm .

It is well-defined, and [k] �→ ψk is a well-defined isomorphism from Zn to Ẑn . This
is clear since the map is injective, and |Zn| = |Ẑn| by Pontryagin’s duality theorem.
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We can now expand f ∈ C
Zn as f = ∑n

k=1 cψk ψk, where

cψk = ( f |ψk) = 1

n

n∑

m=1

f ([m])ψk([m]) = 1

n

∑

m

f ([m])w−km .

Hence

f ([r ]) = 1

n

∑

k,m

f ([m])w(r−m)k

for r ∈ N. For f = δ[s] with s ∈ N, we get the identity δrs = 1
n

∑n
k=1 w(r−s)k . ♦

Let H be a subgroup of a finite abelian group G, and let (CG)H denote the vector
subspace of C

G consisting of those functions that are constant on each equivalence
class in G/H . Let ĜH = Ĝ ∩ (CG)H denote the characters of G that are one on all
elements of H ⊂ G. We then have a well-defined map q : C

G/H → (CG)H given by
q( f )(a) = f (a + H) for a ∈ G, which is clearly a vector space isomorphism, and
which obviously restricts to a group isomorphism Ĝ/H → ĜH .

Moreover, we have the following Poisson summation formula.

Proposition 5.9.4 Let notation be as in the previous paragraph. Then

∑

b∈H
f (b) = |H |

∑

χ∈ĜH

f̂ (χ)

for f ∈ C
G.

Proof Define g ∈ C
G/H by g(a + H) = ∑

b∈H f (a + b) and η ∈ Ĝ/H by η(a +
H) = χ(a) for a ∈ G and f ∈ C

G and χ ∈ ĜH , so q(η) = χ . Then

ĝ(η) = 1

|G/H |
∑

a+H∈G/H

g(a + H)η(a + H) = |H |
|G|

∑

a+H∈G/H

∑

b∈H
f (a + b)χ(a)

= |H |
|G|

∑

a+H∈G/H

∑

b∈H
f (a + b)χ(a + b) = |H |

|G|
∑

a∈G
f (a)χ(a) = |H | f̂ (χ),

so by the Fourier inversion formula g = ∑
η∈Ĝ/H ĝ(η)η, we get

∑

b∈H
f (a + b) = g(a + H) = |H |

∑

χ∈ĜH

f̂ (χ)χ(a)

and the result is obtained by setting a = 0. �
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5.10 Orthogonality Relations

We can generalize Corollary 5.9.1 to all finite groups.
Consider representationsπ andρ of afinite groupG onfinite dimensional complex

vector spaces V andW , respectively. Let (·|·) be an inner product on V and let vi ∈ V
and wi ∈ W . Define a linear map A : V → W by

Av1 =
∑

a∈G
(π(a)v1|v2)ρ(a−1)w1. (5.1)

Then A ∈ Mor(π, ρ) because

Aπ(b)v1 =
∑

a

(π(ab)v1|v2)ρ(a−1)w1 =
∑

c

(π(c)v1|v2)ρ(bc−1)w1 = ρ(b)Av1.

Lemma 5.10.1 If π and ρ are irreducible and not equivalent, their matrix
coefficients are mutually orthogonal.

Proof If this was not the case, we can pick invariant inner products on V andW and
elements vi and wi such that

0 �=
∑

a

(π(a)v1|v2)(ρ(a)w2|w1) =
∑

a

(π(a)v1|v2)(ρ(a−1)w1|w2) = (Av1|w2).

By Schur’s lemma, the non-zero intertwiner A must be an isomorphism. �

What about matrix coefficients from the same representation?

Lemma 5.10.2 Suppose π : G → Aut(V ) is irreducible with an invariant inner
product (·|·) on V . Then there is a positive constant d such that

∑

a

(π(a)v1|v2)(π(a)w2|w1) = d−1(v1|w2)(w1|v2)

for vi , wi ∈ V .

Proof In the identity in the proof of the previous lemma with π = ρ, the map A is
by Schur’s lemma, a constant times the identity, so the right-hand-side of the identity
equals (v1|w2)r , where r is a constant that depends on v2 and w1. The next to the
left-hand-side is unaltered under the substitution a �→ a−1, which gives

(v1|w2)r =
∑

a

(π(a)w1|w2)(π(a)v2|v1) = (w1|v2)s,

where s is a constant that depends on v1 and w2, obtained by repeating the argument
above. This is only possible if the lemma holds, and d is indeed positive; put v1 =
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w2 �= 0 and w1 = v2 �= 0 and observe that everything is positive since vectors are
cyclic under the action of G. �

In Sect. 5.12 we will show that d = (dim V )/|G|. The following result is then
immediate from the two lemmas above.

Theorem 5.10.3 Let {π i } be a collection of pairwise inequivalent irreducible repre-
sentations of a finite group G on complex vector spaces Vi . Assume that the collection
is complete in the sense that every irreducible representation of G on a complex vec-
tor space is equivalent to one of thesemembers. Letπ i

mn denote thematrix coefficients
of π i associated to an orthonormal basis of Vi with respect to an invariant inner
product. Set di = (dim Vi )

1/2. Then {diπ i
mn} is an orthonormal basis for C

G with
respect to the standard inner product.

This theorem, known as the Peter-Weyl theorem, implies that the regular
representation is the mother of all representations.

Corollary 5.10.4 Retain the terminology of the theorem, and consider the regular
representation λ of G. Then

λ ∼=
⊕

(dim Vi )π
i ,

or in other words, there is a copy in the regular representation of every irreducible
representation with multiplicity equalling its dimension. In particular, this means
that

|G| =
∑

(dim Vi )
2.

Proof To be concrete, let {vi } be the orthonormal basis of Vi that the matrix coeffi-
cients π i

mn of π i are defined with respect to. Let Vi,n be the subspace of C
G spanned

by π i
mn for all m. Then λ(a)Vi,n ⊂ Vi,n because

λ(a)π i
mn =

∑

k

π i
mk(a

−1)π i
kn,

which is readily verified. Let λi,n denote the representation gotten by restricting λ(a)

to Vi,n for each a ∈ G. By the theorem it is a subrepresentation of λwith multiplicity
dim Vi , and these representations exhaust λ.

Moreover, the linear map A : Vi → Vi,n given by Avm = π i
mn is an isomorphism,

and A ∈ Mor((π i )c, λi,n) because

A(π i )c(a)vm =
∑

k

(π i )ckm(a)Avk =
∑

k

π i
mk(a

−1)Avk

=
∑

k

π i
mk(a

−1)π i
kn = λ(a)π i

mn = λi,n(a)Avm

for all m. Thus (π i )c ∼= λi,n , so there is a copy of π i in λ with multiplicity dim Vi . �
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5.11 Three Auxiliary Representations

Say π and ρ are finite dimensional representations of a group G on complex vector
spaces V and W , respectively.

Definition 5.11.1 Define representations π × ρc : G × G → Aut(V ⊗ W ∗) and
πρc : G × G → Aut(Hom(W, V )) by

(π × ρc)(a, b) = π(a) ⊗ ρc(b) and (πρc)(a, b)A = π(a)Aρ(b−1)

for a, b ∈ G and A ∈ Hom(W, V ).

The following result, which shows that π × ρc and πρc are equivalent represen-
tations, is straightforward.

Proposition 5.11.2 Define a linear isomorphism T : V ⊗ W ∗ → Hom(W, V ) by

T (v, x)(w) = x(w)v

for v ∈ V and x ∈ W ∗ and w ∈ W. Then T ∈ Mor(π × ρc, πρc).

Let Mπ denote the set of matrix coefficients of π . Then Mπ is a linear subspace
of C(G) and dim Mπ ≤ (dim V )2, with equality if π is irreducible as the matrix
coefficients are then orthogonal and non-zero.

Definition 5.11.3 Define Adπ : G × G → Aut(Mπ ) by

Adπ (a, b) f (c) = f (a−1cb)

for f ∈ Mπ and a, b, c ∈ G.

We are claiming that Adπ (a, b) f ∈ Mπ for f ∈ C
G of the form f (c) = x(π(c)v)

with x ∈ V ∗ and v ∈ V and c ∈ G. This holds as

Adπ (a, b) f (c) = x(π(a−1cb)v) = xπ(a−1)(π(c)π(b)v),

which also proves the following result.

Proposition 5.11.4 The surjective linear map S : V ⊗ V ∗ → Mπ given by

S(v ⊗ x) = x(π(·)v)

for x ∈ V ∗ and v ∈ V belongs to Mor(π × π c,Adπ ). In particular, if π is
irreducible, then S is an isomorphism and ππ c ∼= π × π c ∼= Adπ .
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5.12 Characters of Representations

Definition 5.12.1 Let π be a representation of a group G on a finite dimensional
complex vector space V . The character of π is the element χπ ∈ C(G) given by

χπ = Tr π =
∑

i

πi i .

By the basic property of the trace, we see that characters of equivalent represen-
tations are identical. Also note that χπ(e) = dim V , and that χπ is a character of the
group when π is 1-dimensional. In particular, we see that χε = ε, where ε is the
trivial representation.

Proposition 5.12.2 Let π and ρ be representations of a finite group G on finite
dimensional complex vector spaces V and W, respectively. Then

χπ⊕ρ = χπ + χρ and χπ⊗ρ = χπχρ and χπ c = χπ .

Proof The first two formulas are trivial. As for the last one, note that π(a) is unitary
with respect to an invariant inner product, so it is diagonalisable with eigenvalues λi

having absolute value one. Hence

χπ c(a) = Tr π c(a) = Tr(π(a−1)T ) = Tr π(a−1) =
∑

λ−1
i =

∑
λi = Tr π(a).

�

Definition 5.12.3 Let π be a representation of a group G on a finite dimensional
complex vector space V . The set of G-invariants VG is the subspace of V given by

VG ≡ {v ∈ V | π(a)v = v for a ∈ G}.

Proposition 5.12.4 Let π be a representation of a finite group G on a finite
dimensional complex vector space V . Then

1

|G|
∑

a∈G
χπ(a) = dim VG .

Proof The left-hand-side of the identity in the proposition can be written as (χπ |ε)
with respect to the standard inner product onC(G), so by the orthogonality relations,
we get 1 if π is trivial and 0 if π is irreducible and non-trivial.

Decompose the G-space V into irreducible G-spaces Vi with characters χi . Since
χπ = ∑

χi , the left-hand-side of the identity in the proposition counts the number
of trivial Vi ’s, and the direct sum of these 1-dimensional subspaces is obviously VG ,
which gives the result. �
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Another way to see this, is to observe that the linear map E = 1
|G|

∑
a∈G π(a) is

a projection of V onto VG , in other words, it maps V onto VG and E2 = E . This
follows as π(b)E(v) = E(v) for v ∈ V and b ∈ G, which is gotten by summing over
ba rather than a, and if v ∈ VG , then obviously E(v) = v. Taking the trace of E then
gives the proposition above.

By the basic property of the trace, we see that χπ(aba−1) = χπ(b) for a, b ∈ G,
so characters are constant on conjugacy classes.

Definition 5.12.5 A class function is a function on a group G with values in a field
F that is constant on conjugacy classes.

Theorem 5.12.6 Let G be a finite group. Every class function in C(G) is a lin-
ear combination of characters of irreducible representations on finite dimensional
complex vector spaces.

Proof Say f ∈ C(G) is a class function. Write f = ∑
i fi , where fi are matrix

coefficients of distinct irreducible representations πi on finite dimensional complex
vector spaces Vi . Then

∑

i

fi = f = f (b−1 · b) =
∑

i

Adπi (b, b) fi .

But Adπi (b, b) fi ∈ Mπi and the subspaces Mπi are mutually orthogonal, so fi are
all class functions.

By Schur’s lemma there is up to a scalar, only one intertwiner in End(Vi ), so the
character χπi is up to a scalar, the only class function in Mπi . Hence fi is proportional
to χπi . �

Corollary 5.12.7 Any finite dimensional representation of a finite group on a
complex vector space is completely determined by its character.

Proof If π = ⊕niπi with pairwise inequivalent irreducible representations πi , then
χπ = ∑

niχπi . The functions χπi are linear independent, so the multiplicities ni of
πi in π are fixed by χπ . Hence π is up to equivalence, uniquely determined by χπ .
�

Theorem 5.12.8 Let π and ρ be representations of a finite group G on finite
dimensional complex vector spaces V and W, respectively. Then

1

|G|
∑

a∈G
χπ(a)χρ(a) = dimMor(ρ, π).

So the characters of a complete set of finite dimensional pairwise inequivalent irre-
ducible representations onafinite groupG formanorthonormal basis of the subspace
of class functions in C

G.
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Proof Note that Hom(W, V ) is a G-space under the action a �→ πρc(a, a), and that
Mor(ρ, π) is the space of G-invariants for this action, which by Proposition 5.11.2
is isomorphic to the space of G-invariants for π ⊗ ρc. The dimension of this space
again is given by Proposition 5.12.4, and results in the left-hand-side of the theorem
since the character of π ⊗ ρc is χπχρ in virtue of Proposition 5.12.2.

The last statement follows now by Schur’s lemma combined with the previous
theorem. �

Corollary 5.12.9 Let π be a representation of a finite group on a finite dimensional
complex vector space. Then π is irreducible if and only if (χπ |χπ) = 1.

Corollary 5.12.10 The constant d from Lemma 5.10.2 equals (dim V )/|G|.
Proof Let {vi } be an orthonormal basis of V . Then by the theorem, we get

|G| =
∑

a

|χπ(a)|2 =
∑

i j

∑

a

(π(a)vi |vi )(π(a)v j |v j ) = (dim V )/d.

�

Corollary 5.12.11 The number of pairwise inequivalent irreducible representations
of a finite group G on complex vector spaces equals the number of conjugacy classes
in G.

Proof According to the theorem the characters of a collection of pairwise inequiva-
lent irreducible representations of a finite group G form a linear basis for the space
of class functions on G. This space is evidently isomorphic to the space of functions
on the quotient set of conjugacy classes in G for which the delta functions form a
basis. Hence the result. �

5.13 Group Algebra

Given a group G and a field F . Pick any vector space over F with dimension |G|.
Label a basis (by choosing a bijection toG) in this vector space by the group elements.
So we regard G as sitting inside the vector space as a linear basis; we have linearized
G. We turn this vector space into a unital algebra F[G], the group algebra over F , by
defining the algebra product as a bilinear extension of the group multiplication. The
algebra product is called the convolution product, and is denoted by f ∗ g for f, g ∈
F[G]. It is easy to see that ( f ∗ g)(a) = ∑

b∈G f (ab−1)g(b) for a ∈ G. Clearly,
we have |G| = dim F[G]. It is also evident that G is abelian if and only if F[G] is
commutative.

For a ∈ G define a linear map λ(a) on basis elements b ∈ G by λ(a)b = ab. We
have linearly extended the maps λa in Cayley’s theorem to obtain a faithful repre-
sentation λ : G → Aut(F[G]), and have hereby strengthened that theorem: Every
group is a permutation group by linear maps.
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As the notation suggests, the representation λ is just the regular representation
acting on F[G] rather than FG . Indeed, the linear isomorphism A : F[G] → FG

which sends a ∈ G to δa satisfies

λ(a)Ab = λ(a)δb = δab = A(ab) = Aλa(b) = Aλ(a)b

for all a, b ∈ G, where we in the second step used (λ(a)δb)(c) = δb(a−1c) = δab(c).
Note that A is in general not an algebra homomorphism.

Any representation π : G → Aut(V ) ⊂ End(V ) has a linear extension to a unital
algebra homomorphism π̃ : F[G] → End(V ), which we call a representation of the
algebra F[G] on V . This is a one-to-one correspondence since any representation
of F[G] restricts to a representation of the group and then extends uniquely to the
same representation of F[G].
Remark 5.13.1 The kernel ker π̃ is a two-sided ideal of F[G], which gives a corre-
spondence between representation of the group G and ideals of F[G]. We will later
study the group algebra from the point of view of modules.

Example 5.13.2 Consider a finite abelian group G = {a1, . . . , an}. Then it is easy
to see that f̂ ∗ g = |G| f̂ ĝ for any f, g ∈ C

G .
An integral operator on C

G is an endomorphism � on C
G given by �( f )(a) =∑

b∈G K (a, b) f (b) with kernel K ∈ C
G×G . Clearly �(δa j ) = ∑

i K (ai , a j )δai , so
the matrix of � associated to the basis {δai } of C

G has i j-entry K (ai , a j ). Thus
Tr(�) = ∑

K (ai , ai ).
It is easy to see that �λa = λa� for all a ∈ G if and only if there is g ∈ C

G

such that K (b, c) = g(b − c) for all b, c ∈ G. So in this case Tr(�) = |G|g(0) and
�( f ) = g ∗ f . Hence if χ is a character on G, we see that �(χ) = ĝ(χ)χ . So Ĝ is
a basis for C

G of eigenvectors of � with respective eigenvalues ĝ(χ). Thus we get
the following trace formula |G|g(0) = Tr(�) = ∑

χ∈Ĝ ĝ(χ). ♦
Considering the regular representation λ on C[G] for a finite group G, we get

by Corollary 5.10.4 and Proposition 5.11.4, that λ̃ : C[G] → ⊕End(Vi ) is a faithful
unital representation. Here we have extended each irreducible representation in the
decomposition of λ. As the dimensions ofC[G] and⊕End(Vi ) coalesh, we conclude
that

C[G] ∼=
⊕

End(Vi )

as algebras.
We can also linearise G-spaces.

Definition 5.13.3 The permutation representation of a G-space X is the represen-
tation

P : G → Aut(F[X ])

given by P(a)x = ax for x ∈ X , now with X viewed as a linear basis for the vector
space F[X ] over the field F .
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Proposition 5.13.4 If X is a finite G-space, then χP(a) = |Xa| for a ∈ G, where
Xa ≡ {x ∈ X | ax = x}.
Proof Define a dual basis for X ⊂ F[X ] by x̂(y) = δx,y for x, y ∈ X . Then

χP(a) = Tr P(a) =
∑

x∈X
x̂(P(a)x) =

∑

x∈X
x̂(ax) =

∑

x∈Xa

1 = |Xa|

for a ∈ G. �

Viewing a group G as a G-space, the following result is then immediate.

Corollary 5.13.5 If G is a finite group, then χλ(a) = |G|δa,e for a ∈ G.

We recover the familiar result.

Corollary 5.13.6 Let πi be an irreducible representation of a finite group G on a
complex vector space. Then the multiplicity of πi in the regular representation λ is
(χπi |χλ), where (·|·) is the standard inner product on C

G.

Proof By the previous corollary, we have

(χπi |χλ) = 1

|G|χπi (e)|G| = dim Vi ,

where Vi is the vector space acted upon by πi . �

The Peter-Weyl theorem and Corollary 5.12.11 and the class formula

|G| =
∑

x∈C
[G : N (x)]

for a finite group G, where C consists of one element from each conjugacy class in
G, suggest that [G : N (x)] = (dim V f (x))

2, where f : C → I is a bijection to the
index set of pairwise inequivalent irreducible representation of G on complex vector
spaces.

5.14 Quadratic Reciprocity from Fourier Analysis

We will be somewhat more sketchy here, leaving intermediate steps as exercises to
the reader.

Let χ be a multiplicative character on the group of units on Zn . Sticking with the
notation from Sect. 5.9 we introduce the Gauss sum

τ(χ, a) = nχ̂ (ψ−a) =
n−1∑

k=0

χ([k])wak,
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where we have extended χ to an element of C
Zn by setting χ([k]) = 0 whenever k

and n are not relatively prime. Let now n be an odd prime p, so w = e2π i/p.
If χ ∈ Ẑp is non-trivial, then τ(χ, a) = χ([a])τ (χ, 1) since this clearly holds

when p divides a, and when it does not, we have

τ(χ, a) = χ([a])
p−1∑

k=1

χ([ak])wak = χ([a])
p−1∑

k=1

χ([k])wk

as {[a1], [a2], . . . , [a(p − 1)]} = Zp.
Let χp = (·/p) be the multiplicative character on the group of non-zero elements

in Zp given by the Legendre symbol. Then

τ(χp, a) =
p−1∑

k=1

(k/p)wak = (a/p)τ (p),

where τ(p) = τ(χp, 1) is the classical Gauss sum.

Example 5.14.1 It is easily checked that τ(3) = i
√
3 and τ(χ3, 2) = −i

√
3. ♦

Lemma 5.14.2 If p does not divide a, then

τ(χp, a)2 = (−1)(p−1)/2 p.

If q �= p is another odd prime, then

τ(χp, a)q−1 ≡ (−1)(p−1)(q−1)/4(p/q) (mod q).

Proof Observe that
∑p−1

x=1 wax(1+y) is p − 1 if y ≡ p − 1 (mod p) and is otherwise
−1. Hence

τ(χp, a)2 =
p−1∑

x=1

p−1∑

y=1

(xy/p)wa(x+y) =
p−1∑

x=1

p−1∑

y=1

(xxy/p)wa(x+xy)

=
p−1∑

y=1

(y/p)
p−1∑

x=1

wax(1+y) = (−1/p)(p − 1) −
p−2∑

y=1

(y/p) = (−1/p)p,

which proves the first statement. Using this we get

τ(χp, a)q−1 = ((−1)(p−1)/2 p)(q−1)/2,

which proves the second statement. �
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Theorem 5.14.3 For distinct odd primes p and q, we have

τ(p)q−1(q/p) =
∑

(x1 · · · xq/p),

where we sum over all xi ∈ {1, . . . , p − 1} such that x1 + · · · + xq = q (mod p).

Proof We calculate L = ̂̂χp
q
(P([−q])) with [−q] ∈ Zp in two different ways. On

the one hand we have

L = p−1
p−1∑

x=0

χ̂p
q
(ψx )P([−q])(ψx ) = p−1−q

p−1∑

x=0

τ(χp,−x)qψx ([q])

= p−1−qτ(p)q
p−1∑

x=1

(−x/p)wqx = p−1−qτ(p)q(−q/p)
p−1∑

x=1

(x/p)wx

= p−1−qτ(p)q+1(−q/p) = p−qτ(p)q−1(q/p)

by the last lemma.
On the other hand we have

L = p−q+1 ̂
̂χp ∗ · · · ∗ χp(P([−q])) = p−q(χp ∗ · · · ∗ χp)([q])

and we are done. �

Corollary 5.14.4 The law of quadratic reciprocity holds.

Proof Combining the previous lemma with the theorem and using that the sum in
the theorem is one modulo q, we get

(p/q)(q/p) ≡ (−1)(p−1)(q−1)/4 (mod q)

and we evidently also get equality without taking equivalence classes. �

It is worth while studying the Gauss sum further.

Proposition 5.14.5 We have τ(χp, a) = ∑p−1
x=0 wax2 .

Proof Let R ⊂ {1, . . . , p − 1} be a set of representatives of congruence classes of
quadratic residues modulo p, and let Rc be its complement in {1, . . . , p − 1}. Since
x2 ≡ k (mod p) if and only if (p − x)2 ≡ k (mod p), and since x �≡ 0 (mod p) if and
only if x �≡ p − x (mod p) as p is odd, we may write

p−1∑

x=1

wax2 = 2
∑

k∈R

wak .
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Hence

τ(χp, a) = 2
∑

k∈R

wak −
∑

k∈R∪Rc

wap = 1 + 2
∑

k∈R

wak −
p−1∑

k=0

wak =
p−1∑

x=0

wax2 .

�

Let F be the endomorphismonC
Zp , which is the Fourier transformcomposedwith

the linear map C
Ẑp → C

Zp induced by the group isomorphism [a] → ψa from Zp

to Ẑp. Then F( f )([a]) = p−1 ∑p−1
x=0 f ([x])w−ax and F2( f )([a]) = p−1 f ([−a])

for [a] ∈ Zp and f ∈ C
Zp . With respect to the basis {δ0, . . . , δp−1} of C

Zp the
endomorphims F has matrix with i j-entry p−1w−i j . Hence τ(p) = p Tr(F).

From the lemma above we know that τ(p)2 is p if p ≡ 1 (mod 4) and is −p if
p ≡ 3 (mod 4). To find τ(p) we must therefore determine signs. We will do so by
calculating det(F) in two different ways.

Lemma 5.14.6 We have that det(F) equals (−1)k p−p/2 if p = 4k + 1 and equals
i times the same value if p = 4k + 3.

Proof The i j-entry of the matrix associated to F2 is p−2 ∑p−1
k=0 w−(i+ j)k , which

equals p−1 if i + j ≡ 0 (mod p) and equals zero otherwise. Hence det(F2) =
i p−1 p−p and det(F) = ±i (p−1)/2 p−p/2. To determine the sign, write pp det(F) as a
Vandermonde determinant

pp det(F) =
∏

i< j

(w−i − w− j ) =
∏

i< j

w−(i+ j)/2
∏

i< j

(w−(i− j)/2 − w(i− j)/2)

= w− ∑
i< j (i+ j)/2(−i)p(p−1)/2

∏

i< j

2 sin((i − j)π/p)

= (−i)p(p−1)/2
∏

i< j

2 sin((i − j)π/p)

as ∑

i< j

(i + j)/2 = p(p − 1)2/4 ≡ 0 (mod p).

But
∏

i< j 2 sin((i − j)π/p) > 0, so we must have det(F) = (−i)p(p−1)/2 p−p/2. �

Let c ∈ {2, . . . , p − 1} be a primitive root of p, so [c] generates the multiplicative
group of units in Zp. For c ∈ {0, . . . , p − 1} define a multiplicative character ηb
modulo p by ηb(c j ) = exp(2π ibj/(p − 1)). These characters exhaust the dual of
the abelian group of units in Zp.
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Lemma 5.14.7 We have

pp det(F) = p
p−2∏

b=1

τ(ηb, 1) = (−1)r(r−1)/2 p(p−1)/2τ(p),

where r = (p − 1)/2.

Proof Wewill calculate the determinant of the matrix of F associated to the orthog-
onal basis {δ0, η0, η1, . . . , ηp−2}. It is easy to chech that p F(δ0) = δ0 + η0 and
p F(η0) = (p − 1)δ0 − η0 and

p F(ηb) = (−1)bτ(ηb, 1)ηp−1−b

when b �≡ 0 (mod p − 1), which gives the first equality.
To get the second equality, apply the formula above twice to get

p2 F2(ηb) = τ(ηb, 1)τ (ηp−1−b, 1)ηb

and compare this with the formula gotten from F2(ηb)([a]) = p−1ηb([−a]). This
gives

τ(ηb, 1)τ (ηp−1−b, 1) = p(−1)b.

Hence

p
p−2∏

b=1

τ(ηb, 1) = pτ(p)
r−1∏

b=1

τ(ηb, 1)τ (ηp−1−b, 1) = (−1)r(r−1)/2 p(p−1)/2τ(p).

�

Combining the two last lemmas gives the following signs.

Theorem 5.14.8 The classical Gauss sum τ(p) is
√
p if p ≡ 1 (mod 4) and it is

i
√
p if p ≡ 3 (mod 4).

5.15 The Character Table for S3

Let us find the irreducible representations of S3 on complex vector spaces. Now S3 is
non-abelian, so not all irreducible representations can be 1-dimensional. As |S3| = 6,
and since 22 + 12 + 12 is the only way up to order, of writing 6 as a sum of squares
of natural numbers not all 1, the Peter-Weyl theorem tells us that there are two 1-
dimensional irreducible representations, or group characters, and one 2-dimensional
irreducible representation up to equivalence.

We know of two group characters, the trivial one ε, and sign : S3 → {±1}.
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Toget hold of the 2-dimensional representation consider the permutation represen-
tation P : S3 → Aut(C3) of the S3-space X ≡ {1, 2, 3} given by P(a)ei = ea(i) for
a ∈ S3, where {e1, e2, e3} is the standard basis for C

3. Observe that C(e1 + e2 + e3)
is an invariant subspace, and that P restricted to this is ε. The usual inner product
on C

3 is invariant under the action of S3 via P , so the orthogonal subspace V of
C(e1 + e2 + e3) in C

3 is invariant, and V has a basis {e1 − e2, e1 − e3}.
Consider the usual generators σ = (123) and τ = (23) for S3. We see that

P(τ )(e1 − e2) = e1 − e3, so P restricted to V is irreducible. We call it the standard
representation S of S3. This is the 2-dimensional representation we were looking for.
Note that P ∼= S ⊕ ε.

What about their characters?Now S3 = {e, σ, σ 2, τ, στ, σ 2τ }with relationsσ 3 =
e = τ 2 and τσ = σ 2τ . The conjugacy classes C(a) = {b ∈ S3 | bab−1 } are easily
found to be C(e) = {e} and C(σ ) = {σ, σ 2} and C(τ ) = {τ, στ, σ 2τ }, so they form
a partition of S3. Characters of representations are class functions and are constant
on each of these conjugacy classes.

To compute their values, first note that σ is even, so sign is known. Then observe
that χP(a) = |Xa| with Xe = {1, 2, 3} and Xτ = {1} and Xσ = φ and that χS =
χP − ε as P ∼= S ⊕ ε. This gives the following character table, which we could also
have calculated more directly.

S3 C(e) C(τ ) C(σ )

ε 1 1 1
sign 1 −1 1
χS 2 0 −1

In the first column we can read off the dimension of the representations.
Representations are uniquely determined up to equivalence by their characters.

We can thus use the character table to decompose tensor products of representations.
For instance, the character χ of S ⊗ sign is χSχsign. Thus χ(e) = 2 · 1 = 2 and
χ(τ) = 0 · (−1) = 0 and χ(σ) = (−1) · 1 = −1, so χ = χS and this means that
S ⊗ sign ∼= S, which again can be checked directly by setting up an equivalence.

5.16 Induced Representations

Here we produce representations of a group from representations of subgroups.
Suppose H is a subgroup of G, and let π be a representation of H on a vector

space V over a field F . With the risk of causing confusion, let VG be the vector space
under pointwise operations of all functions f : G → V such that f (ab) = π(a) f (b)
for a ∈ H and b ∈ G.

Definition 5.16.1 The induced representation πG : G → Aut(VG) is given by
(πG(a) f )(b) = f (ba) for a, b ∈ G and f ∈ VG .

Clearly πG is a representation, and we some times denote it by IndGH (π).
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The following result shows that induction is transitive.

Proposition 5.16.2 Let G be a group with H < K < G. Then

IndGK IndKH ∼= IndGH .

Proof Let π be a representation of H on a vector space V . To see that
IndGK(IndKH(π)) ∼= IndGH(π)weneed to set up a bijective linearmap A : (V K )G → VG

that intertwines the representations (π K )G and πG .
That an element f belongs to (V K )G means that a �→ fa ∈ V K and that fba =

π K (b) fa for a ∈ G and b ∈ K . The first condition means that fa(cd) = π(c) fa(d)

and the second one means that fba(d) = fa(db) for c ∈ H and b, d ∈ K and a ∈ G.
Let (A f )(a) = fa(e) for a ∈ G. Then A f ∈ VG because by the conditions above,

we get

(A f )(ca) = fca(e) = fa(ec) = fa(ce) = π(c) fa(e) = π(c)(A f )(a)

for c ∈ H . So we have a linear map A : (V K )G → VG .
This map is injective because A f = 0 means that fa(e) = 0 for all a ∈ G. But

then by the conditions above, we get

fa(b) = fa(eb) = fba(e) = 0

for b ∈ K and a ∈ G, so f = 0.
To see that A is surjective, take any g ∈ VG and let fa(b) = g(ba) for a ∈ G and

b ∈ K . Then fa ∈ V K as

fa(cb) = g(cba) = π(c)g(ba) = π(c) fa(b)

for b ∈ K and c ∈ H . Also f : a �→ fa for a ∈ G satisfies fba = π K (b) fa for a ∈ G
and b ∈ K because

(π K (b) fa)(d) = fa(db) = g(dba) = fba(d)

for d ∈ K . Thus f ∈ (V K )G and (A f )(a) = fa(e) = g(a) for a ∈ G, so A f = g
and A is surjective.

Finally, we have πG(a)A = A(π K )G(a) for a ∈ G since

(πG(a)A f )(a′) = (A f )(a′a) = fa′a(e) = ((π K )G(a) f )a′(e) = (A(π K )G(a) f )(a′)

for f ∈ (V K )G and a, a′ ∈ G, which completes this tedious exercise. �
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5.17 Reciprocity

The following result is known as the first version of Frobenius reciprocity.

Proposition 5.17.1 Let H be a subgroup of G with unit e, and let π and ρ be
representations of H and G on W and V , respectively. Then

Mor(ρ, πG) ∼= Mor(ρ|H, π)

under an isomorphism f that sends A ∈ Mor(ρ, πG) to f (A) ∈ Mor(ρ|H, π),
where f (A)w = (Aw)(e). Moreover, if B ∈ Mor(ρ|H, π), then ( f −1(B)w)(a) =
Bρ(a)w for a ∈ G and w ∈ W.

Proof Now f (A) ∈ Mor(ρ|H, π) since

f (A)ρ(a)w = (Aρ(a)w)(e) = (πG(a)Aw)(e) = (Aw)(ea)

= (Aw)(ae) = π(a)(Aw)(e) = π(a) f (A)w.

for a ∈ H .
Next f −1(B)w ∈ VG because

( f −1(B)w)(ab) = Bρ(ab)w = Bρ(a)ρ(b)w = π(a)Bρ(b)w = π(a)( f −1(B)w)(b)

for a ∈ H and b ∈ G and w ∈ W .
Also f −1(B) ∈ Mor(ρ, πG) since

( f −1(B)ρ(a)w)(b) = Bρ(ba)w = ( f −1(B)w)(ba) = (πG(a) f −1(B)w)(b)

for a, b ∈ G and w ∈ W .
It is straighforward to check that f −1( f (A)) = A and f ( f −1(B)) = B. �
There is also a dual isomorphism, known as the second version of Frobenius

reciprocity.

Proposition 5.17.2 Let π be a representation on V of a subgroup H of a finite
group G, and let ρ be a representation of G on W. Define Av : G → V for v ∈ V by
(Av)(a) = π(a)v if a ∈ H and otherwise 0. Then A : V → VG is H-equivariant,
and

Mor(πG, ρ) ∼= Mor(π, ρ|H)

under an isomorphism g that sends B ∈ Mor(πG, ρ) to g(B) = BA. Moreover, we
have such an isomorphism g if and only if

B f =
∑

[a]∈G/H

ρ(a)g(B) f (a−1)
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for all f ∈ VG.

Proof Note that (Av)(ab) for a ∈ H , equals π(ab)v if b ∈ H , and is zero if b ∈
G\H , so Av ∈ VG . Similar reasoning shows that Aπ(a)v = πG(a)Av for a ∈ H ,
so g(B) ∈ Mor(π, ρ|H).

Next, we claim that
f =

∑

[a]∈G/H

πG(a)A f (a−1)

for f ∈ VG . By definition ofVG and from H -equivariance of A, we see that each term
in this sum is independent of the representative from [a], so the sum is well-defined.
Applying this sum to b ∈ G, then by definition of A, we get

∑
a(A f (a

−1))(ba) =
(A f (b))(e), which indeed equals f (b), so our identity holds.

Applying B ∈ Mor(πG, ρ) to this identity we obviously get the identity in the
proposition, so g is injective.

To see that g is surjective, consider any C ∈ Mor(π, ρ|H). Then

Df ≡
∑

[a]∈G/H

ρ(a)C f (a−1)

for f ∈ VG is well-defined by the same reasons as before. Also D ∈ Mor(πG, ρ)

because

DπG(b) f =
∑

[a]∈G/H

ρ(a)C f (a−1b) =
∑

[ba]∈G/H

ρ(ba)C f (a−1) = ρ(b)Df

for b ∈ G. Finally, by definition of A, we have g(D) = C because

g(D)v = DAv =
∑

[a]∈G/H

ρ(a)C(Av)(a−1) = ρ(e)Cπ(e−1)v = Cv

for v ∈ V . �

5.18 Mackey Theory

The following result is known as the geometric version of Mackey’s theorem, and
gives another description of the morphisms between induced representations.

Theorem 5.18.1 Suppose G is a finite group with subgroups H and K represented
on V and W by π and ρ, respectively. Let X denote the vector space under pointwise
operations of all functions x : G → Hom(V,W ) such that

x(abc) = ρ(a)x(b)π(c)
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for a ∈ K and b ∈ G and c ∈ H. Let x ∈ X and define Ax f ∈ WG for f ∈ VG by
the ‘convolution product’ formula

(Ax f )(a) ≡
∑

[b]∈G/H

x(b) f (b−1a)

for a ∈ G. Then x �→ Ax is a linear isomorphism from X toMor(πG, ρG).

Proof Obviously, the sum above is well-defined; by the definition of X and VG ,
each term is independent of the coset representative.

Next, we see that Ax f ∈ WG as

(ρ(a)Ax f )(c) =
∑

[b]∈G/H

ρ(a)x(b) f (b−1c) =
∑

[b]∈G/H

x(ab) f (b−1c) = (Ax f )(ac)

for a ∈ K and c ∈ G, where we have substituted b by ab in the summation over the
cosets.

So we have a linear map Ax : VG → WG , which is also G-equivariant as the
actions of the induced representations are by right multiplication with elements of
the group G.

To see that the linear map x �→ Ax is bijective, consider B ∈ Mor(πG, ρG) and
let g(B) ∈ Mor(π, ρG |H), where g is dictated by the second version of Frobenius
reciprocity. Define x ∈ X by x(b)v = (g(B)v)(b) for b ∈ G and v ∈ V .

Then g(B)v ∈ WG if and only if x(ab) = ρ(a)x(b) for a ∈ K and b ∈ G, and
g(B) is H -equivariant if and only if x(bc) = x(b)π(c) for b ∈ G and c ∈ H . Hence
we have a linear isomorphism B �→ x from Mor(πG, ρG) to X .

It remains to check that B = Ax . Starting with the identity in the proposition for
the second version of Frobenius reciprocity, we get

(B f )(a) =
∑

[b]∈G/H

(ρG(b)g(B) f (b−1))(a) =
∑

[b]∈G/H

(g(B) f (b−1))(ab)

=
∑

[b]∈G/H

x(ab) f (b−1) =
∑

[c]∈G/H

x(c) f (c−1a) = (Ax f )(a)

for f ∈ VG and a ∈ G. �

Definition 5.18.2 Given two subgroups H and K of a group G, the collection of
double cosets is the set

K\G/H ≡ {KaH | a ∈ G}.

The relation of two group elements belonging to the same double coset is an
equivalence relation, so the double cosets form a partition of the group.

Any function x in the result above is clearly determined by its value on a repre-
sentative of a double coset KaH . Let us look at those supported on a single double
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coset, in which case we say that the corresponding intertwiner is supported on that
double coset.

Proposition 5.18.3 SupposeG is a finite groupwith subgroups H and K represented
on V and W by π and ρ, respectively. Let a ∈ G and consider the subgroup Ha ≡
aHa−1 ∩ K of G with representations πa and ρa given by πa(b) = π(a−1ba) and
ρa(b) = ρ(b) for b ∈ Ha. Then the linear space of all B ∈ Mor(πG, ρG) supported
on KaH is isomorphic to Mor(πa, ρa).

Proof By Mackey’s theorem, there is a unique function x : G → Hom(V,W ) such
that Ax = B, for any B ∈ Mor(πG, ρG) supported on KaH , and

x(a)πa(b) = x(a)π(a−1ba) = x(ba) = ρ(b)x(a) = ρa(b)x(a)

for b ∈ Ha . So h : B �→ x(a) is a linear map from the space of all B ∈ Mor(πG, ρG)

supported on KaH to Mor(πa, ρa). It is injective because x is supported on KaH
and is there determined by x(a).

To see that h is surjective, given any A ∈ Mor(πa, ρa), let x : G → Hom(V,W )

be zero on all double cosets different from KaH , and let x(bac) = ρ(b)Aπ(c) for
b ∈ K and c ∈ H . Then x is well-defined because if b′ac′ = bac with b′ ∈ K and
c′ ∈ H , then

ρ(b−1b′)Aπ(c′c−1) = Aπa(b−1b′)π(c′c−1) = Aπ(a−1b−1b′ac′c−1) = Aπ(e) = A,

so x(b′ac′) = x(bac). By construction x belongs to X as defined in the theorem
above, and obviously h(Ax ) = x(a) = A. �

The extension to more general functions on double cosets is easy, and comprises
what is known as the algebraic version of Mackey’s theorem.

Theorem 5.18.4 Suppose G is a finite group with subgroups H and K represented
on V and W by π and ρ, respectively. Let ai ∈ G be a complete set of representatives
for K\G/H, and let πai and ρai be as in the proposition above. Then

dimMor(πG, ρG) =
∑

i

dimMor(πai , ρai ).

Proof By the previous theorem, any element of Mor(πG, ρG) is of the form Ax

for a unique x ∈ X . Define xi : G → Hom(V,W ) to be zero on the double cosets
different from Kai H and let xi (b) = x(b) for b ∈ Kai H . Then xi ∈ X and Axi is
supported on Kai H . By the previous proposition, the linear space of such intertwiners
is isomorphic to Mor(πai , ρai ), and since x = ∑

xi , the sum being direct, we get
the desired result. �

As the following result shows, the procedure of first inducing and then restricting
produces the same thing as gotten by first restricting and then inducing. We will here
work over the field of complex numbers.
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Corollary 5.18.5 Let K and H be subgroups of a finite group G, and let π be an
irreducible representation of H on a complex vector space V . Let ai be a complete
set of representatives for K\G/H, and let πai = π(a−1

i · ai ) be the representation
of Hai ≡ ai Ha−1

i ∩ K on V , as described in the proposition above. Then

πG |K ∼=
⊕

i

IndK
Hai

(πai ).

Proof Since we are working over the complex field representations are completely
reducible, so it suffices to show that the multiplicity of an irreducible representation
ρ of K in πG |K is the same as the multiplicity of ρ in the direct sum representation
in the corollary.

By the theorem and the first version of Frobenius reciprocity, we see that the
multiplicity of ρ in πG |K is

dimMor(πG |K , ρ) = dimMor(πG, ρG) =
∑

i

dimMor(πai , ρai ),

whereρai is the restriction ofρ to Hai . By the second version of Frobenius reciprocity,
we therefore get

dimMor(πG |K , ρ) =
∑

i

dimMor(IndK
Hai

(πai ), ρ),

as required. �

5.19 Characters of Induced Representations

Let G be a finite group with a subgroup H , and let π and ρ be representations on
finite dimensional complex vector spaces V andW , respectively. By Theorem 5.12.8
and Proposition 5.17.1, we see that

(χπG |χρ) = dimMor(ρ, πG) = dimMor(ρ|H, π) = (χπ |χρ|H ).

For a class function f on a subgroup H of G, define f G : G → C by

f G(a) =
∑

[b]∈H\G
f̃ (bab−1),

where f̃ (c) is f (c) for c ∈ H and is zero for c ∈ G\H . Since f is a class function
on H , the terms in the sum above are independent of the chosen representatives, so
f G is well-defined, and we can write
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f G = 1

|H |
∑

b∈G
f̃ (b · b−1).

We also see that f G is a class function on G.

Theorem 5.19.1 Let π be a representation on a finite dimensional complex vector
space of a subgroup H of a finite group G. Then

χπG = χG
π .

Proof Let ρ be a representation of G on a finite dimensional complex vector space.
The characters of irreducible representations on G form an orthonormal basis for the
space of class functions on G. Since χG

π is a class function, it therefore suffices to
show that (χG

π |χρ) = (χπG |χρ). But

(χG
π |χρ) = 1

|G|
∑

a∈G

1

|H |
∑

b∈G
χ̃π (bab−1)χρ(a)

= 1

|G|
∑

a∈G

1

|H |
∑

c∈H

∑

b∈G,c=bab−1

χπ(c)χρ(a)

= 1

|G|
1

|H |
∑

c∈H

∑

b∈G
χπ(c)χρ(b−1cb)

= 1

|H |
∑

c∈H
χπ(c)χρ(c) = (χπ |χρ|H ) = (χπG |χρ),

where we in the third step counted differently, and in the last step we used the
observation made at the beginning of this section. �

We end with an easy example.

Example 5.19.2 Consider the octic group D4 with generators σ, τ satisfying τ 2 =
e = σ 4 and τστ = σ−1. It has order 8 and five conjugacy classes

C(e) = {e}, C(σ ) = {σ, σ 3}, C(σ 2) = {σ 2}, C(τ ) = {τ, σ 2τ }, C(στ) = {στ, σ 3τ }.

It has four group characters obtained by the four possible values ±1 for σ and τ .
In addition it has a 2-dimensional irreducible representation, say with character χ .
These are all the irreducible representations up to equivalence, since 12 + 12 + 12 +
12 + 22 = 8, and the Peter-Weyl theorem doesn’t allow adding more squares. How
do we get the character χ? Well, note that η(σ ) = eπ i/2 defines a group character
on the cyclic subgroup of D4 generated by σ . Then χ is the character of the induced
representation of η, so by the previous result χ(C(e)) = 2, saying that the induced
representation has indeed dimension two, while χ(C(σ )) = eπ i/2 + e−π i/2 = 0 and
χ(C(σ 2)) = eπ i + e−π i = −2 and χ(C(τ )) = 0 = χ(C(στ)). We leave it to the
reader to ponder what this means geometrically.
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Wecangeneralize this to anydihedral group Dn withn even.Againweconsider the
generators σ, τ , and get the four group characters. But nowwe get n/2 − 1 characters
χr of 2-dimensional representations induced up from the group characters ηr on 〈σ 〉
given by ηr (σ ) = e2π ir/n for r ∈ {1, 2, . . . , n/2 − 1}. It is checked that these are all
the characters of irreducible representations of Dn . ♦



Chapter 6
Rings

In this chapter we study rings more systematically. Such an approach might seem
unnecessarily general and dry in the beginning, but we do eventually hone in on the
main goal of the chapter, which is the decomposition of PID’s, so called principal
ideal domains. The techniques used to prove the fundamental theorem of arithmetic
are with only minor modifications, effective in this greater generality.

A ring is an additive group with an associative multiplication which distributes
over addition. It is commutative if the order of multiplication is immaterial, and it
is moreover an integral domain whenever the product of two non-zero elements is
again non-zero. The integers form an integral domain, whereas the ring Z6 does not
since [2][3] = [0]. As soon as one has an integral domain, one can talk about the ring
of fractions, which is the smallest field containing the integral domain as a subring.
Not surprisingly, the ring of fractions for the integers is the rational numbers.

By an ideal I of a ring Rwemean an additive subgroup closed undermultiplication
both from the right and left by elements of R. One can then form the quotient ring
R/I consisting of cosets aI for a ∈ R. When the ideal is maximal, the quotient
ring will be simple, meaning that it contains no proper ideals. The quotient ring will
moreover be a field if the original ring is a commutative unital ring. For example, in
Z the proper ideals are of the form nZ. Up to isomorphism, they produce the quotient
rings Zn . If m divides n, then clearly nZ ⊂ mZ. Hence nZ is maximal exactly when
n is a prime number, and then Zn will be a field. It turns out that all finite integral
domains are fields.

Now a PID is an integral domain where every ideal is principal, i.e. is generated by
a single element. A special class of PID’s are Euclidean domains. These are integral
domains coming with an N-valued ‘degree’ function, and which furthermore have a
generalized version of Euclid’s division algorithm built into them. Using the ‘degree’
function, the well-ordering principle can be invoked to show that such rings are
indeed PID’s. Two important examples of Euclidean domains are the integers, where
the ‘degree’ function is the absolute value of an integer, and the ring of polynomials
F[x] in one indeterminate x over a field F , where the ‘degree’ function is the usual
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degree of polynomials. Both these examples are PID’s. The ring of fractions of F[x]
is by the way, the ring of rational functions F(x).

We devote a section to explain carefully what a polynomial is with its notion of an
indeterminate. Here we also construct related rings. For instance, we show that F(x)
is a subfield of the field of formal Laurent series F〈x〉, which is the ring of fractions
of formal power series F[[x]], which in turn extends F[x]. These constructions can
be performed over rings, and with more than one indeterminate. As promised earlier
we also construct group rings, and in the same vain we introduce twisted group rings.
We also include some general nonsense about rings, quotients and homomorphisms.

Turning again to PID’s, we drive towards the announced decomposition result.
We say that a non-zero element in an integral domain is prime if it satisfies Euclid’s
lemma, in that it has to divide one of the factors in a product if it divides the product
itself. A more restricted class of elements are the irreducible ones. These are the
elements that essentially cannot be written as a product of two other elements. Here
we have to rule out the appearance of so called units, which are the invertible elements
in the ring (with respect to the product, of course). This type of problem occurs
already when defining the prime numbers within the ringZ, where the units are 1 and
−1. In PID’s the notions of primeness and irreducibility coalesce, and obviously the
irreducible elements in F[x] are the usual irreducible polynomials.We study also the
corresponding ideals. In a separate sectionwe prove the desired decomposition result,
including the important uniqueness part. In the last section we study UFD’s, so called
unique factorization domains, which are rings where the previous decomposition
result holds. They clearly include PID’s.

For a couple of reasonable references, see [10, 13].

6.1 Basic Definitions

We recall the following basic definition.

Definition 6.1.1 A ring R is an additive group together with an associative binary
operation called multiplication which satisfies

a(b + c) = ab + bc, (b + c)a = ba + ca

for all a, b, c ∈ R. It is unital if it has an identity, that is, an element 1 such that
1a = a = a1 for a ∈ R. If ab = ba for all a, b ∈ R, then R is commutative. An
integral domain is a commutative unital ring such that ab �= 0 when both a and b
are non-zero. A division ring is a unital ring where every non-zero element has a
multiplicative inverse. A field is a commutative division ring.

Since an identity is automatically unique, we have ascribed a symbol to it.
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It is easy to deduce properties like

a0 = 0 = 0a, a(−b) = −(ab) = (−a)b, a(b − c) = ab − ac, (a − b)c = ac − bc

for any elements a, b, c in a ring.
Any field is an integral domain as a−1(ab)b−1 = 1 for a �= 0 and b �= 0. But the

converse is not true. A left (right) zero divisor is a non-zero element a such that
ab = 0 (or ba = 0) for some non-zero element b. A zero divisor is either a left- or
a right zero divisor. Thus a (integral) domain is a (commutative) unital ring with
no zero divisors. Absence of zero divisors means that the ring has the cancellation
property, which says that b = c whenever ab = ac or ba = ca for a �= 0.

We have seen that Q, R and C are fields.

Definition 6.1.2 A homomorphism of a ring R into another ring S is a map f : R →
S such that f (a + b) = f (a) + f (b) and f (ab) = f (a) f (b) for a, b ∈ R. If it is
injective we call it a monomorphism or an embedding and if it is surjective we call it
an epimorphism, and if it is both, then it is an isomorphism, and in this case we say
that R is isomorphic to S, and write R ∼= S.

The relation of being isomorphic is clearly an equivalence relation.

Definition 6.1.3 A subset S of a ring R is a subring of R if it is a ring with respect
to the binary operations induced from R. If S is neither trivial {0} nor R, it is called
a proper subring.

Note that the identity might be different in a subring. If f : R → S is a homo-
morphism of rings with R unital, then f (1) is a identity for the subring f (R) of S,
so if f is an epimorphism, then S is unital.

Proposition 6.1.4 Anon-empty subset S of a ring is a subring if andonly if a − b ∈ S
and ab ∈ S for a, b ∈ S.

Definition 6.1.5 The intersection of all subrings of a ring containing a non-empty
subset X is a ring called the subring generated by X .

Clearly the subring S generated by X is the smallest subring containing X , and
any homomorphism from S to another ring is uniquely determined on the generators
of S, and by a generator of S we simply mean an element of X .

Definition 6.1.6 The center of a ring R is the commutative subring Z(R) of R
consisting of all elements a ∈ R such that ab = ba for b ∈ R.
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6.2 Prime Subfields and Characteristics

Proposition 6.2.1 The additive groupZn is a ringwithmultiplication [a][b] ≡ [ab],
and it is a field if and only if n is a prime number.

Proof Multiplication is well-defined because if c = a + nk and d = b + nl, then
cd = ab + n(al + bk + nkl), so [cd] = [ab]. And surely the axioms for a ring will
hold.

If n is prime, Corollary 2.2.7 says that for a ∈ {1, . . . , n − 1}, there are integers
b and c such that bn + ca = 1, and thus [c][a] = [1], so Zn is a field.

When n is not a prime number, the ring Zn is not even an integral domain since
n = ab for some a, b ∈ {1, . . . , n − 1}, so [0] = [n] = [a][b] and neither [a] = 0
nor [b] = 0. �

Whenever Zn is an integral domain, it is a field, due to the following result.

Proposition 6.2.2 Any finite integral domain is a field.

Proof By the cancellation property, for a non-zero element a in an integral domain,
the map b 
→ ab is injective, and hence surjective. So there is an element b such that
ab = 1. �

Definition 6.2.3 The prime subfield of a field F is the intersection of all subfields
of F , so it is generated by the identity of F .

ObviouslyQ andZp for a prime number p are both fields with no proper subfields,
so they are prime subfields.

Proposition 6.2.4 Every non-trivial prime subfield is isomorphic to Q or Zp for a
unique prime number p.

Proof Suppose P is a prime subfield of a non-trivial field. Two cases can occur.
If n1 �= 0 for every non-zero integer n, then m/n 
→ m1(n1)−1 is a well-defined

isomorphism from Q to P .
If n1 = 0 for some n ∈ N, let p be the smallest such n. Its existence is guaranteed

by the well-ordering principle. If p = mk for smaller natural numbers m and k,
then either m1 = 0 or k1 = 0, which is impossible, so p is prime. Clearly the map
[n] 
→ n1 is a well-defined isomorphism from Zp to P . �

Definition 6.2.5 The characteristic of a ring is the smallest natural number n
such that na = 0 for all a. If no such number exists, we say that the ring has
characteristic 0.

A unital ring has non-zero characteristic if and only if n1 = 0 for some natural
number n, so Zn has characteristic n, whereas Z has characteristic 0.

The characteristic of a field is zero if the prime subfield is Q, and it is p if the
prime subfield is Zp. Clearly any subfield of a field has the same characteristic as
the field. Thus R and C have characteristic 0.
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Proposition 6.2.6 If the absolute value of a field is bounded on the prime subfield,
then the absolute value is non-archimedean. In particular, any absolute value on
fields with non-zero characteristic is automatically non-archimedean as the prime
field is then finite.

Proof For any elements a, b of the field and any natural number n, the binomial
formula yields

|(a + b)n| ≤
n∑

m=0

|
(
n
m

)
ambn−m | ≤ c(n + 1)max(|a|, |b|)n,

where we have also used that the coefficients belong to the prime field and are thus
bounded by a number c. Taking n-th roots and letting n go to infinity, we thus get
|a + b| ≤ max(|a|, |b|). �

Recalling how Q was constructed from Z, the following result is obvious.

Proposition 6.2.7 Any integral domain R can be embedded into a field F such that
every element of F can be expressed as a quotient a/b of a, b ∈ R with b �= 0. The
field F is unique up to isomorphism, and is called the field of quotients or fractions
of R.

6.3 Examples of Non-commutative Rings

Any additive group A is a commutative ring with multiplication ab = 0 for all a, b ∈
A.

Example 6.3.1 The set End(A) of endomorphisms of an additive group A is a ring
with f + g and f g for f, g ∈ End(A) given by ( f + g)(a) = f (a) + f (b) and
( f g)(a) = f (g(a)). Endomorphisms, and not merely maps, are needed to get h( f +
g) = h f + hg.

The following example shows that not all division rings are fields.

Example 6.3.2 The set

H = {A =
(

a b
−b̄ ā

)
| a, b ∈ C}.

is a division ring under matrix addition and multiplication because if A �= 0, then
det(A) = aā + bb̄ > 0 and A−1 ∈ H . This non-commutative division ring is known
as the quaternions. ♦
Example 6.3.3 Let Mn(R) denote the set of n × n-matrices with elements of a
ring R as entries. This is obviously a ring under matrix addition and multiplication,
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and it is non-commutative when n �= 1 and R �= {0}. Already M2(R) contains zero-
divisors when R is non-trivial, because diagonal matrices in Mn(R) with only one
non-zero entry a ∈ R placed at different locations will have 0 as product. Each of
thesematrices provide an embedding of R intoMn(R) that does not preserve possible
identities when n ≥ 2. Yet another embedding is given by a 
→ (aδi j ), and this one
does preserve possible identities.

An upper (lower) triangular matrix is a matrix (ai j ) ∈ Mn(R) with ai j = 0 for
i > j (or i < j). The set of all upper (lower) triangular matrices is a subring of
Mn(R). The quaternions is another subring of M2(C).

If R is a commutative ring, then {(aδi j ) | a ∈ R} is a subring of Z(Mn(R)) for
any n. ♦

6.4 Group Rings

Here we will discuss another way of producing new rings from old ones. The group
algebra F[G] of a group G over a field F is certainly a ring. Let us first extend this
sort of ring with the coefficient field F replaced by any ring.

The direct product and direct sum of rings are obviously rings with pointwise
wise addition and multiplication. Given a unital ring R, the direct sum ⊕i R is unital
exactly when the index set is finite. Considering ⊕i R as an additive group, we can
introduce another multiplication provided the index set is a group G.

To this end let δs : G → R for s ∈ G be given by δs(t) = 1 if t = s and otherwise
set to be0.Then any element f ∈ ⊕s∈G R canbewritten as afinite sum f = ∑

f (s)δs
for unique elements f (s) ∈ R.

Definition 6.4.1 The group ring R[G] of a group G over a unital ring R is the unital
ring which is ⊕s∈G R as a pointwise additive group, but with multiplication uniquely
determined by δsδt = δst for s, t ∈ G. This multiplication is called the convolution
product.

One tends to write the convolution product of f, g ∈ R[G] as f ∗ g to distinguish
it from the pointwise product, so

( f ∗ g)(s) =
∑

uv=s

f (u)g(v),

where the summation is over all u, v ∈ G with uv = s. Note that this is a finite sum.
The convolution product can also be written as

( f ∗ g)(s) =
∑

u

f (u)g(u−1s) =
∑

v

f (sv−1)g(v).

These formulas allow to define the group rings also for non-unital rings, but here
we will stick to unital ones. The map G → R[G] given by s 
→ δs is then a group
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monomorphism, so we have a copy of the group inside the group ring. The map
R → R[G] given by a 
→ aδe is a unital ring monomorphism, so we also have a
copy of R inside the group ring, and we will often suppress this isomorphism. The
unit e in the group will then be identified with the identity 1 in the ring, and we will
use these two symbols interchangeably. The group ring R[G] is generated by G and
R. Thus it is commutative if and only if G is abelian and R is commutative.

The definition of a group ring can obviously be extended to monoid rings by
replacing group with monoid. The last convolution product formula above does not
make sense then.

6.5 Polynomial Rings

Let us consider the group ring R[Zn] of the abelian group Z
n over a unital ring R.

We write xi for the function δs with s ∈ Z
n having coordinate 1 at the i-th place and

otherwise zeroes.

Definition 6.5.1 The subring of R[Zn] generated by R and the xi ’s is called the
polynomial ring in n indeterminates xi with coefficients in R, and is denoted by
R[x1, . . . , xn].

The m-th power xmi of xi is the function δs , where s ∈ Z
n has m at the i-th place

and otherwise zeroes.
Any element f ∈ R[x] can be written as

f = a0 + a1x + a2x
2 + · · · + amx

m

for unique ai ∈ R. The convolution product (now without a ∗) is the expected one,
namely, if g = ∑

n bmx
n , then

f g =
∑

k

ck x
k,

where
ck =

∑

m+n=k

ambn.

This means that we expand products and collect all terms with xk , keeping track of
the order of elements in R when we round up the coefficients. We often write f (x)
for f ∈ R[x] to stress that we are dealing with an indeterminate.

We will be particularly interested in the case where the coefficient ring is a field
F . Then F[x1, . . . , xn] is clearly commutative and unital. In fact, as the following
proposition shows, it is an integral domain.

Proposition 6.5.2 If R is an integral domain, then so is R[x1, . . . , xn].
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Proof It is easy to see that R[x, y] ∼= (R[x])[y], so it is enough to show that R[x]
is an integral domain.

Consider non-zero polynomials f, g ∈ R[x] and let a and b be the coefficients
of the highest power of x in f and g. Then ab will be the coefficient of the highest
power of x in f g, and ab �= 0 as both a and b are non-zero. But then also f g �= 0. �

However, the integral domain F[x1, . . . , xn] is not a field as x1 has no inverse.
The field of fractions of F[x1, . . . , xn] is denoted by F(x1, · · · , xn) and consists of
all rational functions in n indeterminates. For instance, the field F(x) consists of all
quotients f (x)/g(x) of polynomials f (x) and g(x) �= 0.

Remark 6.5.3 It can be misleading to write

f (x) = a0 + a1x + · · · + anx
n

for f (x) ∈ F[x], and to talk about a polynomial in an indeterminate or variable x
over a field F . One gets the impression that one can plug in something for x , and
get f (x) out, suggesting that f is a function from F to F . This is not the case, the
element f (x) is a function f : Z → F such that f (m) = am for m ∈ {0, . . . , n} and
f (k) = 0 for k not among these finite numbers. This means that a formula of the type
1 + 3x − x2 = 0 can never hold since −1, 1 and 3 are not all 0. In fact, we see that
F[x] is an infinite dimensional vector space with basis {xn} under the convention
that x0 = 1.

We certainly do not want to define a polynomial as a function from F to F .
Suppose we did this. Consider F = Z2. Then f (t) = t and g(t) = t2 would be the
same functions, and yet we would like to be able to distinguish the polynomials x
and x2.

However, we can substitute values for the variable.

Definition 6.5.4 Let

f (x) = a0 + a1x + · · · + anx
n ∈ R[x]

for a unital subring R of a commutative unital ring S with the same identity. Then
the evaluation of f (x) at s ∈ S is the element f (s) ∈ S given by

f (s) = a0 + a1s + · · · + ans
n.

The following proposition is obvious, and uses commutativity of the ring S.

Proposition 6.5.5 Suppose we have a unital subring R of a commutative ring S with
the same identity. Then for every s ∈ S, the map R[x] → S given by f 
→ f (s) is a
unital homomorphism.
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6.6 Laurent Series and Power Series

Definition 6.6.1 Let R be a unital ring. The ring R〈x〉 of formal Laurent series over
R is the additive subgroup of

∏
n∈Z R consisting of sequences {ai } with ai = 0 for

at most finitely many negative i’s, and the product of {ai } and {b j } is the sequence
{ck} with

ck =
∑

i+ j=k

aib j ,

which is still a finite sum.

We write
∑∞

n=−m anxn for the sequence {a−m, a−m+1, . . . }, and again the product
is consistent with the suggestive notation. Since R is unital, we see that x ∈ R〈x〉.
Again if R is an integral domain, then so is R〈x〉. This can be seen by considering
the coefficients a and b of the lowest powers of x in non-zero elements f and g of
R〈x〉, and then observe that ab �= 0 is the coefficient of the lowest power of x in f g.

Definition 6.6.2 The Laurent polynomials in one indeterminant x over a unital ring
R is the subring R[x, x−1] of R〈x〉 generated by x and x−1.

So a Laurent polynomial is a finite sum of positive and negative powers of x with
coefficients in R. Clearly R[x] is a subring of R[x, x−1].
Definition 6.6.3 The set of elements of the type

∑∞
n=0 anx

n is a subring of R〈x〉
called the formal power series in one indeterminate over R, denoted by R[[x]].

Clearly R[x] is a subring of R[[x]].
One defines analogously the formal Laurent ring R〈x1, . . . , xn〉 and the subring of

formal power series R[[x1, . . . , xn]] in n indeterminates. As R〈x, y〉 ∼= (R〈x〉)〈y〉,
it is clear that R〈x1, . . . , xn〉, and hence the subring R[[x1, . . . , xn]], are integral
domains whenever R is. The ring of Laurent polynomials R[x1, x−1

1 , . . . , xn, x−1
n ]

in n indeterminants is also an integral domain when the unital coefficient ring R is.

Proposition 6.6.4 Let F be a field. Then the invertible elements of F[[x]] are series∑∞
n=0 anx

n with a0 �= 0.
The ring of formal Laurent series F〈x〉 is a field, and the field of fractions of

the integral domain F[[x]] is isomorphic to F〈x〉, and contains F(x) as a subfield,
which is also the field of fractions of F[x, x−1].
Proof The series f = ∑∞

n=0 anx
n is invertible with inverse g = ∑∞

m=0 bmx
m if and

only if a0b0 = 1 and

a0bn + a1bn−1 + · · · + an−1b1 + anb0 = 0

for all n ∈ N.
So a0 �= 0 if f is invertible. Conversely, if a0 �= 0, then define g with b0 = a−1

0
and with bn constructed inductively using the relation above.
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A similar argument shows that F〈x〉 is a field. Moreover, the field of fractions
of F[[x]] is the smallest field containing F[[x]], so it must be contained in F〈x〉.
But x ∈ F[[x]] has an inverse x−1 that belongs to the field of fractions of F[[x]],
and F〈x〉 is generated by F[[x]] ∪ {x−1}. Hence the field of fractions of F[[x]] is
isomorphic to F〈x〉.

The last statements are now obvious. �

It is natural to also consider evaluation of variables in F[[x]] and F〈x〉, but here
we get infinite series of members in the field, which has to be made sense of. This is
a topic of analysis, which discusses conditions for convergence of such series, which
of course has been done with great success in the case of the complex numbers.

6.7 Ideals

We gather some basic results relating to ideals.

Definition 6.7.1 An ideal I in a ring R is an additive subgroup such that aI ⊂ I
and I a ⊂ I for all a ∈ R. The ideal is said to be a proper ideal if it is not R, and it
is trivial if {0}.

Obviously an ideal is a subring, but it is a much more restrictive notion; most
subrings are not ideals. For instance, if R is unital and an ideal I in R has the same
identity as R, then I = R because a = a1 ∈ I for all a ∈ R.

On the other hand, we can also talk about a left (or right) ideal I in a ring R to be
an additive subgroup of the ring such that aI ⊂ I (or I a ⊂ I ), and then I need not
be a subring of R, except of course when e.g. the ring is commutative.

The intersection of ideals in a ring is again an ideal, so the following definition
makes sense.

Definition 6.7.2 The ideal generated by a subset X of a ring is the smallest ideal
containing X . We denote it by (X). Set (φ) = {0}. When X consists of finitely many
elements a1, . . . an , we write (a1, . . . , an) for (X). An ideal is finitely generated if it
has a finite generator set. A principal ideal I is an ideal that is generated by a single
element, so I = (a) for some a.

For a ring R, the left- and right ideal generated by a ∈ R is Ra and aR,
respectively.

Given ideals I and J in a ring, we denote by I J the ideal which consists of finite
sums of elements ab with a ∈ I and b ∈ J . Then I J ⊂ I ∩ J , and in general the
inclusion is proper.

Example 6.7.3 Let R and S be rings. Then R × 0 is an ideal in R × S. Notice that
if R is unital, then the identity of the ideal is the element (1, 0), which is not the
identity of R × S unless S is trivial. ♦
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Similarly, the functions X → R from a set to a ring is a ring, the direct product
of R over X , and the set IY of functions vanishing on a subset Y of X is an ideal in
the direct product ring.

Example 6.7.4 Let R be a unital ring. Then all matrices of the form

(
0 a
0 0

)

for a ∈ R is an ideal I in the ring of upper triangular matrices over R, but it is neither
a left nor a right ideal in M2(R). The ideal generated by all such matrices is actually
M2(R). Notice that I has no identity as the product of any two elements of I is zero.

♦

6.8 Quotient Rings and Homomorphisms

Suppose I is an ideal in a ring R. Write a ∼ b for a, b ∈ R if a − b ∈ I . Then ∼
is an equivalence relation on R. Write R/I for the set of equivalence classes, so the
equivalence class of a ∈ R is a + I . Define addition and multiplication in R/I by

(a + I ) + (b + I ) = a + b + I and (a + I )(b + I ) = ab + I

for a, b ∈ R. Both these operations are well-defined since if c, d ∈ I , then

(a + c + I ) + (b + d + I ) = a + d + c + d + I = a + b + I

and

(a + c + I )(b + d + I ) = (a + c)(b + d) + I = ab + ad + cb + cd + I = ab + I.

They also satisfy the same arithmetic axioms as the operations of R do, so R/I is a
ring for these two operations.

Definition 6.8.1 The ring R/I is called the quotient ring of R modulo I , and the
map f (a) = a + I is called the quotient map.

Clearly the quotient map is an epimorphism.
As for left- and right ideals, their justification is related to modules, which we

will study in Chap.9.

Example 6.8.2 We have Z/nZ ∼= Zn as rings. ♦
Here is a ring theoretic road to the complex numbers.
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Example 6.8.3 Consider the quotient ring R[x]/(x2 + 1). Denote the equivalence
class of p ∈ R[x] by [p]. Then [x2 + 1] = [0], so [x]2 = −[1], and therefore

R[x]/(x2 + 1) = {[a] + [x][b] | a, b ∈ R}.

Hence a + ib 
→ [a] + [x][b] is an isomorphism from C to R[x]/(x2 + 1). ♦
Definition 6.8.4 The kernel of a homomorphism f : R → S between rings is the
subset ker f of R where f is zero.

Clearly a homomorphism f of rings is injective if and only if ker f = {0}.
It is also immediate that the kernel of the quotient map R → R/I is the ideal

I . More generally, we see that the kernel of a homomorphism f : R → S between
rings is an ideal in R, whereas its image im f is a subring of S. This discussion leads
to the fundamental homomorphism theorem for rings.

Theorem 6.8.5 Suppose f : R → S is a homomorphism between rings, and let
g : R → R/ ker f be the quotient map. Then the map h : R/ ker f → im f given
by

h(a + ker f ) = f (a)

for a ∈ R is an isomorphism of rings, and satisfies hg = f . Hence R/ ker f ∼= im f .

Proof There is notmuch to prove. If a + ker f = b + ker f , then f (a) = f (b), so h
iswell-defined.Clearly h is surjective onto im f . If h(a + ker f ) = 0 for somea ∈ R,
then a ∈ ker f , so a + ker f = ker f , which is the zero element in the quotient ring,
so h is injective. By definition of the ring operations of the quotient ring, the bijection
h is a homomorphism, and again by definition hg = f . �

The correspondence theorem for rings goes as follows.

Proposition 6.8.6 Let f : R → S be an epimorphism. Then I 
→ f (I ) is a bijection
from the collection of ideals in R that contain ker f to the collection of all ideals in
S.

Proof If I is an ideal in R then f (I ) is an ideal in S because f is surjective. For the
same reason X = f ( f −1(X)) for any subset X of S, and therefore themap I 
→ f (I )
is surjective as any ideal J in S is the image of the ideal f −1(J ) in R.

As for injectivity, say I and J are two ideals in R that contain ker f and that f (I ) =
f (J ). We claim that I = f −1( f (I )). The inclusion ⊂ is trivial. Let b ∈ f −1( f (I )).
Then f (b) ∈ f (I ), so f (b) = f (a) for some a ∈ I . Thus b − a ∈ ker f ⊂ I and
b ∈ I , which settles the claim. �

Corollary 6.8.7 Suppose I is an ideal in a ring R. Then every ideal in R/I is of the
form J/I for some ideal J in R that contains I .
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Proof Let f : R → R/I be the quotient map. Then according to the theorem, every
ideal in R/I is of the form f (J ) for some ideal J in R that contains I . But clearly
I is an ideal in J and f (J ) is the ring of equivalence classes a + I with a ∈ J , so
f (J ) = J/I . �

Proposition 6.8.8 For two ideals I and J of a ring we have

I/(I ∩ J ) ∼= (I + J )/J.

Proof Clearly each side of the identity makes sense, and I → (I + J )/J given by
a 
→ a + J is an epimorphism with kernel I ∩ J . �

Theorem 6.8.9 If Ii are ideals of a commutative unital ring R, and if Ii + I j = R
whenever i �= j , then

R/(∩n
i=1 Ii ) ∼= R/I1 × · · · × R/In .

Proof Consider two ideals I and J of R. Then the map

f : I + J → (I + J )/I × (I + J )/J

given by f (a) = (a + I, a + J ) is an epimorphism with kernel I ∩ J , so

(I + J )/(I ∩ J ) ∼= (I + J )/I × (I + J )/J

by the first isomorphism theorem.
We claim that

R = Ii + ∩n
j �=i I j .

Assume by induction that it holds for n − 1 ideals. Then for i �= n we have

R = RR = (Ii + In)(Ii + ∩n−1
j �=i I j ) ⊂ Ii + ∩n

j �=i I j

by commutativity.
To prove the assertion in the theorem, assume that it holds for n − 1 ideals, use

I = Ii and J = ∩n
j �=i I j in the previous paragraph. �

In view of the following example we can think of the above theorem as a
generalization of theChinese remainder theorem to general commutative unital rings.

Example 6.8.10 If a = a1 · · · an ∈ Z for relatively prime integers ai , then

Za
∼= Za1 × · · · × Zan

as unital rings. To see this, consider a = bc for integers b and c that are relatively
prime. Then Z = bZ + cZ because there are integers k, l such that kb + lc = 1. We
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have aZ = bZ ∩ cZ since if both b and c divide an integer d, then a divides d.
Thus Z/aZ ∼= Z/bZ × Z/cZ by the previous theorem. The general result follows
by induction. ♦

6.9 Rings with Generators and Relations

Definition 6.9.1 The free ring R{X} over a unital ring R with indeterminants in a
non-empty set X is the monoid ring R[F] of the free monoid F generated by X . If we
replace F by the free abelian monoid generated by X , we talk about the polynomial
ring R[X ] over R with indeterminants in X .

The elements of the free ring R{X} are finite sums of finite products of indeter-
minants from X with coefficients in R. The same is true for the polynomial ring
R[X ], and now the indeterminants in addition commute with each other, and when
|X | = n we recover the usual polynomial ring in n variables. The free ring R{X}
(the polynomial ring R[X ]) is obviously a (integral) domain when R is a (integral)
domain.

Clearly any homomorphism between monoids extends to a homomorphism
between the corresponding monoid rings over the same ring R.

Example 6.9.2 Free rings behave rather differently frompolynomial rings.Consider
the free ring F{x, y} in two variables over a field F . Let zi = xyi . The subring of
F{x, y} generated by z1, . . . , zn is isomorphic to the free ring F{z1, . . . , zn} since
different monomials in z1, . . . , zn convert to different monomials in x and y. ♦

Obviously every unital ring is the homomorphic image of a free ring.

Definition 6.9.3 Let R{X} be the free ring over a unital ring R with indeterminants
in a non-empty set X . Write (Y ) for the ideal of R{X} generated by a subset Y of
R{X}. The quotient ring R{X}/(Y ) is the ring over R generated by the elements of
X subject to the relations Y .

To explain the terminology in the definition above, if f ∈ Y is expressed in terms
of the variables x1, . . . , xn with images in R{X}/(Y ) carrying the same names, then
f (x1, . . . , xn) = 0 in R{X}/(Y ). Hence we think of the elements of Y as relations
between the variables from X .

Example 6.9.4 Consider the free ring R{X} with Y = {xy − yx |x, y ∈ X}. Then
R{X}/(Y ) ∼= R[X ]. ♦

There are of course endless many examples since every unital ring is by the first
ring isomorphism theorem generated over some coefficient ring by elements subject
to relations.

Example 6.9.5 TheWeyl algebra is the ring over a field generated by x and y subject
to the relation xy − yx = 1. ♦
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Proposition 6.9.6 Let R be a unital ring and X a non-empty set. Suppose we have
a map from X to a unital ring S, and a homomorphism R → S such that the ele-
ments of the images in S of X and R commute. Then there is a unique homomor-
phism f : R{X} → S that extends X → S and R → S. If in addition the elements
in the image of X in S commute with each other, there is a unique homomorphism
g : R[X ] → S such that gq = f , where q : R{X} → R{X}/(Y ) with Y as in the
example above.

Proof Let F be the free monoid generated by X . Since S is a monoid under mul-
tiplication, the map X → S extends uniquely to a monoid homomorphism F → S
by the definition of freeness of F . We extend this map further, and uniquely so, to
a unital additive map R[F] → S, letting R → S carry the coefficients over. Since
the elements of F and R in S commute with each other, this map will also be
multiplicative.

If in addition the elements in the image of X in S commute with each other, we
can well-define a homomorphism g : R[X ] → S uniquely by gq = f . �

6.10 Twisted Group Rings

The notion of a group ring can be generalized.

Definition 6.10.1 Consider a group G acting as automorphisms of a ring R. Write∑
ass for the function G → R that is as ∈ R when evaluated at s ∈ G. The twisted

group ring R ∗ G consists of all functions G → R that are non-zero for only finitely
many group elements. Addition is pointwise and the product is a biadditive extension
of (as)(bt) = as(b)st , where s, t ∈ G and a, b ∈ R and s(b) ∈ R is the action of s
on b.

When G acts trivially on R, we recover the group ring R[G], but for less trivial
actions the twisted group ring R ∗ G can be non-commutative evenwhenG is abelian
and R is commutative.

The following result shows that group rings of groups can sometimes be studied
as twisted group rings of less complicated groups over more complicated coefficient
rings.

Proposition 6.10.2 Consider the semidirect product K � H of two groups with
respect to a homomorphism f : H → Aut(K ). For any ring R we have

R[K � H ] ∼= R[K ] ∗ H,

where the product in the twisted group ring is with respect to H → Aut(R[K ]) gotten
by extending each f (s) to an R-linear map.
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Proof By Proposition 4.14.2 we know that K � H = K H with H ∩ K trivial, and
that the subgroup H acts on the normal subgroup K by t (s) = tst−1 for s ∈ K and
t ∈ H . Then the R-linear bijection R[K � H ] → R[K ] ∗ H given by

∑

(s,t)∈K×H

ast st 
→
∑

t∈H
(
∑

s∈K
ast s)t

is easily seen to be multiplicative. �

Example 6.10.3 Suppose we have an automorphism x of a unital ring R and that 〈x〉
is an infinite cyclic subgroup of Aut(R). Then we can think of R ∗ 〈x〉 as the Laurent
polynomials R[x, x−1] under addition but with the product twisted according to the
rule xa = x(a)x , where x(a) ∈ R denotes the action of x on a ∈ R. Thus in R ∗ 〈x〉
the action of x on a is by conjugation a 
→ xax−1.

Analogously we can define twisted versions of the polynomial ring R[x] and the
ring R[[x]] of formal power series by twisting the products according to xa = f (a)x
for any endomorphism f of R. We denote these rings by R[x; f ] and R[[x; f ]],
respectively. When f is an automorphism the latter ring can be extended to a twisted
version R〈x; f 〉 of the ring of formal Laurent series R〈x〉, so R〈x; x〉 contains the
subring R ∗ 〈x〉 from above. ♦

6.11 Simple Rings and Maximal Ideals

Definition 6.11.1 A simple ring is non-trivial and has no proper non-trivial ideals.

Any non-trivial division ring, and hence any non-trivial field, is simple because
any non-zero element a of an ideal has an inverse, so 1 = a−1a belongs to the ideal.

In the other direction, any simple commutative unital ring R is a field. To see this,
assume that we have a non-zero element a ∈ R. Then aR is a non-trivial ideal in R,
so aR = R and ab = 1 for some b.

Definition 6.11.2 Amaximal ideal in a ring R is a proper ideal I that is not properly
contained in any other proper ideal.

Proposition 6.11.3 Suppose I is an ideal in a ring R. Then I is maximal if and only
if R/I is simple.

Proof If I is maximal, then Corollary 6.8.7 tells us that R/I is simple, for otherwise
there would be a proper ideal J in R that properly contains I .

Conversely, suppose R/I is simple, and say J is an ideal that is strictly larger
than I . Pick a ∈ J\I . Then (I + (a))/I is a non-trivial ideal in R/I , which therefore
must be R/I . Hence I + (a) = R, and obviously I + (a) ⊂ J , so J = R. �

Corollary 6.11.4 Suppose R is a commutative ring with identity. Then an ideal I
in R is maximal if and only if R/I is a non-trivial field.
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Proof Clearly R/I is a commutative unital ring for any ideal I in R. If I is maximal,
then by the proposition, the ring R/I is simple, and hence a field. Conversely, if R/I
is a non-trivial field, then it is simple, so I is maximal by the same proposition. �

Example 6.11.5 The ideal in R[x] generated by x2 + 1 is maximal because
R[x]/(x2 + 1) is isomorphic to the field of complex numbers. ♦
Example 6.11.6 A non-trivial ideal I in Z is maximal if and only if I = (p) for a
prime number p. ♦

The following result shows that non-trivial non-simple rings do have non-trivial
maximal ideals.

Proposition 6.11.7 Suppose R is a non-trivial unital ring. Then every proper ideal
in R is contained in a maximal ideal.

Proof Say I is an ideal in R with I �= R. Let F be the family of proper ideals in R
that contain I . Partially order F by inclusion. Observe that the union of all members
in a chain is an upper bound for them, and belongs to F since the identity cannot
belong to this union as one of the members would then be R. By Zorn’s lemma, the
familyF contains amaximal element J , and this is a maximal ideal containing I . For
suppose it was properly contained in a proper ideal, then that ideal would contradict
the maximality of J in F . �

This means that unital commutative rings either are fields or have a non-trivial
field as a quotient.

Proposition 6.11.8 If Ii are ideals of a commutative unital ring R such that Ii +
I j = R for i �= j , then

I1 · · · In = I1 ∩ · · · ∩ In.

The condition I + J = R obviously holds for any distinct ideals I and J of R with
one of them maximal.

Proof Suppose I and J are ideals of R with I + J = R. Then

I ∩ J = (I ∩ J )R = (I ∩ J )(I + J ) ⊂ (I ∩ J )I + (I ∩ J )J ⊂ J I + I J ⊂ I J,

so I ∩ J = I J . Invoking R = Ii + ∩n
j �=i I j from the second half of the proof of

Theorem 6.8.9, the statement for n ideals follows now easily by induction. �
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6.12 Euclidean Domains and Principal Ideal Domains

Euclid’s division algorithm is easy to generalize to the ring F[x] of polynomials over
a field F .

Definition 6.12.1 The degree deg p of a non-zero polynomial p over a ring is the
highest power of the indeterminate x occurring with non-zero coefficient, called the
leading coefficient of p. If the ring is unital and the leading coefficient of p is the
identity, then p is monic.

We set deg 0 = −∞. Note that deg( f g) ≤ deg f + deg g for polynomials over a
ring, and that equality holds if the ring is a field.

Proposition 6.12.2 Let F be a field, and let f, g ∈ F[x] with g �= 0. Then there
exist polynomials q, r ∈ F[x] such that f = qg + r , where deg r < deg g.

Proof If g is not a factor of f , let r = f − qg be the polynomial with q chosen such
that r has minimal degree. If this degree is not less than deg g, consider the leading
terms axn and bxm of r and g, respectively. Then

r − ab−1xn−mg = f − (q + ab−1xn−m)g

has degree less than r , which is a contradiction. �

Definition 6.12.3 A Euclidean domain is an integral domain R with a function λ

from the non-zero elements of R to N ∪ {0} such that for a, b ∈ R with b �= 0, there
exist c, d ∈ R satisfying a = cb + d, where either d = 0 or λ(d) < λ(b).

Euclidean domains have a generalized version of Euclid’s division algorithm built
into them. The integersZ is a Euclidean domainwithλ given byλ(n) = |n| for n �= 0.
By the proposition above, we see that F[x] is a Euclidean domain with λ = deg.

Definition 6.12.4 A principal ideal domain (PID) is an integral domain where every
ideal is principal.

So every ideal in a PID is of the form (a) for an element a of the ring.

Proposition 6.12.5 Every Euclidean domain is a PID.

Proof Consider a non-trivial ideal I in a Euclidean domain R. By the well-ordering
principle we can pick an element a among the non-zero elements in I with ‘lowest
possible degree’ λ(a), meaning that λ(a) ≤ λ(b) for all non-zero b ∈ I . We claim
that I = aR. Obviously aR ⊂ I . If b ∈ I , then there are elements c, d ∈ R such that
b = ca + d, where either d = 0 or λ(d) < λ(a). The latter option must be ruled out
since d = b − ca ∈ I . So b = ac ∈ aR, and I = (a). �

So the ring F[x] of polynomials over field is a PID.
Here are two more examples of Euclidean domains.
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Example 6.12.6 The Gaussian integers is the subring Z[i] of C consisting of the
complex numbers a + ib with a, b ∈ Z. Being a subring of a field, it is an integral
domain. To see that it is a Euclidean domain, consider the function λ : C → R given
by λ(z) = |z|2, which sends non-zero elements ofZ[i] toN. If z, w ∈ Z[i]withw �=
0, pick a, b ∈ Z such that |Re(z/w) − a| ≤ 1/2 and |Im(z/w) − b| ≤ 1/2. Then
with v = a + ib ∈ Z[i] and u = z − wv, we have z = wv + u, and either u = 0 or

λ(u) = λ(w(z/w − v)) = λ(w)λ(z/w − v) < λ(w)

because

λ(z/w − v) = (Re(z/w) − a)2 + (Im(z/w) − b)2 ≤ 1/4 + 1/4.

♦
The second example is quite similar.

Example 6.12.7 Let ω = (−1 + i
√
3)/2. Then ω2 = −1 − ω. Hence

Z(ω) = {a + bω | a, b ∈ Z}

is a subring of C. Note that ω̄ = ω2 = −1 − ω, so Z(ω) is closed under complex
conjugation. Themapλ : C → R given byλ(z) = |z|2 = zz̄ sends non-zero elements
of Z(ω) to N as

λ(a + bω) = (a + bω)(a + bω̄) = a2 − ab + b2.

Moreover, if z, w ∈ Z(ω)withw �= 0, there are real numbers x and y such that z/w =
zw̄/ww̄ = x + yω. Pick a, b ∈ Z such that |x − a| ≤ 1/2 and |y − b| ≤ 1/2. Then
with v = a + bω ∈ Z[i] and u = z − wv, we have z = wv + u, and either u = 0 or

λ(u) = λ(w(z/w − v)) = λ(w)λ(z/w − v) < λ(w)

because

λ(z/w − v) = (x − a)2 − (x − a)(y − b) + (y − b)2 ≤ 3/4.

♦
Hence both Z[i] and Z[ω] are PID’s, and as we shall see, elements of such rings

decompose uniquely in a certain sense.
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6.13 Prime Ideals and Irreducible Ideals

Definition 6.13.1 Let R be an integral domain. We say that a non-zero element
a ∈ R divides b ∈ R, and write a|b, if b = ac for some c ∈ R. A unit is an element
u ∈ R that divides 1. An element a ∈ R is an associate of b ∈ R if a = ub for a unit
u ∈ R. An element a ∈ R is irreducible if is not a unit and if the only elements that
divide a are units or associates of a, otherwise a is reducible. A non-zero element
p ∈ R is prime if it is not a unit and if p|ab only when p|a or p|b.

Note that the units are the elements that have a multiplicative inverse, and that the
set of units is an abelian group under multiplication. The relation of being associates
is an equivalence relation.

The units of Z are 1 and −1, so the set of associates of a ∈ Z is {−a, a}. In the
ring of integers the irreducible elements are ±p, where p is a prime number. The
definition of irreducible elements mimics that of prime numbers up to signs.

Prime elements are automatically irreducible because if p is prime and a|p, then
p = ab for some b, so p|ab. Then either p|a, in which case a = pc for some c, so
p = pcb and 1 = bc, showing that a is an associate of p. Or p|b and then b = pd,
so p = apd and a is a unit with inverse d.

The converse is not true in general; irreducible elements need not be prime.
Someof these notions canbe translated into the language of ideals, as the following

easily proved result shows.

Proposition 6.13.2 Suppose R is an integral domain. Then:

1. a|b if and only if (b) ⊂ (a);
2. u ∈ R is a unit if and only if (u) = R;
3. a and b are associates if and only if (a) = (b);
4. p is irreducible if and only if (p) is proper and non-trivial and not properly

contained in a proper principal ideal.
5. p is prime if and only if (p) is proper and non-trivial and if ab ∈ (p) implies that

a ∈ (p) or b ∈ (p).
6. p is prime if and only if (p) is proper and non-trivial and if (a)(b) ⊂ (p) implies

that (a) ⊂ (p) or (b) ⊂ (p).

We see that the irreducible elements in a PID are precisely the generators of
non-trivial maximal ideals.

The last equivalence suggests the following definition.

Definition 6.13.3 An ideal P in a ring is primewhenever I ⊂ P or J ⊂ P for ideals
I and J with I J ⊂ P .

It is easy to check that an ideal P in a commutative ring is prime if and only if
ab ∈ P implies that a ∈ P or b ∈ P .

Proposition 6.13.4 Suppose R is a commutative unital ring, and let P be an ideal
in R. Then P is prime if and only if R/P is an integral domain.
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Proof Note that R/P is an integral domain if and only if (a + P)(b + P) = P
implies that either

a + P = P or b + P = P.

This amounts to saying that ab ∈ P implies that either a ∈ P or b ∈ P , so the result
follows from the proposition. �

The ideal (0) in Z is prime, but not maximal.

Proposition 6.13.5 Maximal ideals in a unital ring are prime.

Proof Suppose M is a maximal ideal in a unital ring R, and that I J ⊂ M for ideals I
and J . If I is not contained in M , then I + M is an ideal that properly contains M , so
I + M = R. In particular, there are elements a ∈ I and b ∈ M such that 1 = a + b,
and then J = 1J = aJ + bJ ∈ I J + M ⊂ M . �

Corollary 6.13.6 An irreducible element in a PID is prime.

Proposition 6.13.7 In a PID proper prime ideals are maximal.

Proof Say R is a PID with a proper prime ideal P . If P is not maximal, there is a
proper idealM that properly contains P . Since R is a PID, there are elements a, b ∈ R
such that P = aR andM = bR. Hence there exists c ∈ R such that bc = a ∈ aR. As
b /∈ aR, and aR = P is prime, we must have c ∈ aR. Say c = ad for some d ∈ R.
Then a = bc = bad, and by cancellation, we see that 1 = bd, so bR is unital and
M = R, which is a contradiction. �

We have seen that in an integral domain, non-trivial maximal ideals are prime,
and that prime elements are irreducible. In a PID we have implications the other
way; irreducible elements are prime, and proper prime ideals are maximal, so there
is no distinction between prime elements and irreducible elements. Moreover, they
are single generators of the non-trivial maximal ideals.

6.14 Unique Factorization in a PID

We will see that PID’s allow for a ‘fundamental theorem of arithmetic’.

Definition 6.14.1 Two elements a and b of an integral domain are relatively prime
if their only common divisors are units. A greatest common divisor of two elements
a and b of an integral domain is an element d that divides both a and b, and if d ′ is
another element with this property, then d ′|d.

Greatest common divisors need not exist, but if they do, they are unique up to
unit factors. Note that a and b are relatively prime if they have a greatest common
divisor which is a unit.

Note that d is a common divisor of a and b if and only if (a, b) ⊂ (d), and d is
greater than any other common divisor d ′ of a and b if and only if (d) ⊂ (d ′).
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Proposition 6.14.2 If (a, b) = (d) for elements a, b, d of an integral domain, then
d is a greatest common divisor of a and b. Hence any two elements in a PID have a
greatest common divisor.

Proof As (a, b) ⊂ (d), the element d divides both a and b. If d ′ also divides a and
b, then (d) = (a, b) ⊂ (d ′), so d is a greatest common divisor of a and b. �

Corollary 6.14.3 If a and b are relatively prime in a PID, then (a, b) is the whole
ring.

Here is another argument forwhy irreducible elements in aPIDare prime. Suppose
p is irreducible and that p|ab but that a is not divisible by p. Then a and p are
relatively prime, so R = (a, p) = aR + pR. Thus

(b) = bR = b(aR + pR) = (ab, pb) ⊂ (p)

and p|b, so p is prime.
The following lemma uses the ascending chain condition for PID’s; a property

which we will return to in the context of modules.

Lemma 6.14.4 Any chain (a1) ⊂ (a2) ⊂ · · · in a PID breaks off after finitely many
steps, that is, there is an n such that (an) = (an+1) = · · · .
Proof Obviously the union of all ideals in the chain is an ideal, and hence of the
form (a). So a ∈ (an) for some n, and therefore (a) = (an) = (an+1) = · · · . �

Lemma 6.14.5 Every non-zero non-unit element of a PID is a product of irreducible
elements.

Proof Let a be a non-zero element that is not a unit.
We claim thata has an irreducible factor. Ifa is irreducible,we are done.Otherwise

we can write a = a1b1 for elements a1 and b1 that are not units. If a1 is irreducible,
we are done. Otherwise a1 = a2b2 for elements a2 and b2 that are not units. If a2 is
irreducible, we are done. Otherwise a2 = a3b3 for elements a3 and b3 that are not
units. If this never stops,we get a chain (a) ⊂ (a1) ⊂ (a2) ⊂ · · · of proper inclusions,
which contradicts the previous lemma. So an has to be irreducible for some n, and
the claim is valid.

In fact, we assert that the element a is a product of irreducible elements.
If a is irreducible, we are done. Otherwise there is an irreducible element p1

such that p1|a, so a = p1b1 for some element b1. If b1 is a unit, we are done since
p1b1 is irreducible. Otherwise there is an irreducible element p2 such that p2|b1,
so a = p1 p2b2 for some element b2. If b2 is a unit, we are done. Otherwise there
is an irreducible element p3 such that p3|b2, so a = p1 p2 p3b3 for some element
b3. If this never stops, we get a chain (a) ⊂ (b1) ⊂ (b2) ⊂ · · · of proper inclusions,
which contradicts the previous lemma. So bn has to be a unit for some n, and we are
done. �
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Theorem 6.14.6 Suppose R is a PID. Then every non-zero element that is not a unit
can be factorized into a product of finitely many irreducible elements. Furthermore,
this factorization is unique in the following sense: Any two factorizations have the
same number of irreducible elements, and these are modulo rearrangements, unique
up to associates.

Proof Existence was established in the previous lemma.
As for uniqueness, first notice that if an irreducible element p in a PID divides a

finite product of elements, then p has to divide one of the factors. This follows by
induction and the fact that irreducible elements in a PID are prime.

Now say
p1 · · · pm = q1 · · · qn

are two decomposition into irreducible elements of a non-zero element that is not a
unit. Then p1 has to divide the right hand side, so it must divide one of the q’s, say
q1 upon reordering of factors. Hence q1 = p1u1, and u1 is a unit as both p1 and q1
are irreducible. Cancelling p1 in an integral domain, we therefore get

p2 · · · pm = u1q2 · · · qn.

Continuing this we finally get

1 = u1 · · · umqm+1 · · · qn,

which says that gn is a unit, an absurdity, unless n = m.
In the process we have also shown that all the p’s are associates of the q’s. �

As we see, there is some arbitrariness in choosing the irreducible elements in the
decomposition, they are only determined up to units. In Z there was a natural choice,
we could work with the prime numbers. And in the polynomial ring F[x] over a field,
we could work with monic polynomials since the units are the non-zero scalars. But
in general there is no preferred choice.

The same factors up to units, can of course appear several times in the
decomposition.

Proposition 6.14.7 Let p be a prime element in a PID. For every non-zero element
a, there is a unique non-negative integer n such that pn divides a and pn+1 does not
divide a.

Proof Otherwise there would be an element bn such that a = pnbn for every non-
negative integer n. Then pbn+1 = bn by cancelling pn . But then

(b1) ⊂ (b2) ⊂ (b3) ⊂ · · ·

is an ascending chain of proper inclusions, since equality at any step would force p
to be a unit. And such a chain contradicts Lemma 6.14.4. �
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Definition 6.14.8 The order ordp a of the prime element p in a non-zero element a
of a PID is the unique number n described in the proposition above.

Let p be a prime element in a PID. The function ordp enjoys the following three
properties:

(i) ordp u = 0 for a unit u;

(ii) ordp q = 1 if q is an associate of p, and equals 0 if q is a prime that is not an
associate of p;

(iii) ordp (ab) = ordp a + ordp b if a and b are non-zero.

The two first properties are obvious. As for the third, let m = ordp a and n =
ordp b. Then a = pmc and b = pnd, and p will not divide c and d. Thus ab =
pm+ncd, and p will not divide cd as p is prime. Therefore ordp (ab) = m + n.

Now suppose we have a decomposition

a = u
∏

q

qn(q)

of a non-zero element a that is not a unit, with factors consisting of a unit u and
pairwise non-associate prime elementsq. Thenwe can apply the function ord p to both
sides, and we immediately get n(p) = ordp a. So the exponents in a decomposition
are uniquely determined. But then the unit u is also determined. This is another
proof of the uniqueness statement of the theorem above, and the exponent of any
irreducible factor occurring in the decomposition is the maximal one for this factor.

6.15 Unique Factorization Domains

It is fruitful to consider integral domains that from the outset offer a ‘fundamental
theorem of arithmetic’.

Definition 6.15.1 A unique factorization domain (UFD) is an integral domain that
satisfies the conclusion of the theorem above.

So by the same theorem, a PID is a UFD.
Any two, and thus any finite number of, elements in a UFD have obviously a

greatest common divisor.

Definition 6.15.2 Suppose R is a UFD. The content of f ∈ R[x] is a greatest com-
mon divisor cont( f ) ∈ R of the coefficients of f , so the content of f is uniquely
determined up to a unit factor. If cont( f ) = 1 and deg( f ) > 0, we say that f is
primitive.
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Given f ∈ R[x] where R is a UFD, we see that cont(a f ) = a cont( f ) for a ∈ R.
Therefore for a non-constant f ∈ R[x], we can write f = cont( f ) f1, where f1 is
primitive and uniquely determined up to a unit factor.

Proposition 6.15.3 Let R be a UFD. The product of finitely many primitive
polynomials of R[x] is primitive.
Proof Let f and g be primitive. We have to show that any irreducible p ∈ R does
not divide all the coefficients of f g.

Define a homomorphism h → [h] from R[x] to (R/(p))[x] by applying the
quotient map R → R/(p) to the coefficients of h.

By assumption [ f ] and [g] are non-zero, and then also [ f g] = [ f ][g] �= 0 because
p is prime (being irreducible in a UFD), and then R/(p) is an integral domain by
Proposition 6.13.4. �

Corollary 6.15.4 Let R be a UFD. Then up to unit factors, we have

cont( f g) = cont( f ) cont(g) and ( f g)1 = f1g1

for non-constant f, g ∈ R[x].
Lemma 6.15.5 Let R be a UFD, and let F be the field of quotients of the integral
domain R. Consider f ∈ R[x]. Then f factorizes non-trivially in F[x] if and only if
f factorizes non-trivially in R[x]. Moreover, the non-constant factors of f ∈ R[x]
can be chosen to be primitive polynomials, and the remaining factor in R is then
unique up to multiplication by units.

Proof If f factors non-trivially in R[x], then because R[x] is a subring of F[x], it
clearly also factors non-trivially in F[x].

Conversely, if f is a product of lower degree polynomials in F[x], then clearing
denominators, we can write d f = gh for g, h ∈ R[x] and d ∈ R. Then

f1 = (d f )1 = (gh)1 = g1h1,

so f = cont( f )g1h1 up to a unit factor. �

Corollary 6.15.6 Let R be a UFD, and let F be the field of quotients of the integral
domain R. The irreducible elements of R[x] are the irreducible elements of R and
the primitive polynomials in R[x] that are irreducible as elements of F[x].
Theorem 6.15.7 If R is a UFD, then R[x] is a UFD.
Proof Existence of decomposition of an element in R[x] into irreducible elements
follows immediately from the lemma and its corollary and the fact that F[x] is a
UFD.

Uniqueness of the decomposition is again clear from the lemma and its corollary
because as F[x] is a UFD, the factors are unique up to associates in F[x]. �
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Corollary 6.15.8 If R is a UFD, then R[x1, . . . , xn] is a UFD.
Proof Follows by induction as R[x, y] = (R[x])[y]. �

There are UFD’s that are not PID’s.

Example 6.15.9 Let F be a field. Then the ideal I generated by the elements x
and y of the integral domain F[x, y] cannot be principal, so F[x, y] is not a PID.
However, it is a UFD, as the corollary shows. ♦

Clearly Z[x] is a UFD as Z is a PID and hence a UFD. But Z[x] is not a PID
because elements of the form a + x f , where f ∈ Z[x] and a ∈ 2Z, is an ideal in
Z[x] that is not principal, as can be checked by trivial calculations with coefficients
of polynomials.

Example 6.15.10 The set of all a + b
√
5 for a, b ∈ Z is a subring R ofC, and hence

an integral domain. The elements 3, 2 ± √
5 are irreducible in R, and

32 = (2 + √
5)(2 − √

5),

so R is not a UFD. ♦
Example 6.15.11 Consider the quotient ring R ≡ C[x, y, z]/I , where I is the ideal
inC[x, y, z] generated by x2 + y2 + z2 − 1. Identifying x, y and z with their images
in R under the quotient map, we get x2 + y2 + z2 = 1. The ring R is not a UFD
because

(x + iy)(x − iy) = (1 + z)(1 − z).

♦



Chapter 7
Field Extensions

In this chapter we investigate the relationship between roots and extensions of fields.
Let F be a field with an extension E , meaning that E is a field containing F as a
subfield. We can regard E as a vector space over F , and we say that the extension is
finite if the dimension [E, F] of E is finite. A root of p(x) ∈ F[x] in E is an element
a ∈ E such that p(a) = 0. The element a is then said to be algebraic over F , and
if E consists solely of such elements, we say it is an algebraic extension of F . If
the root belongs to F , then by the division algorithm for polynomials, we can write
p(x) = (x − a)q(x) for q(x) ∈ F[x]. Continuing in this fashion, we see that if we
have deg(p(x)) distinct roots in F , then we obtain a complete factorization of p(x)
into first order polynomials. This stresses the relationship between reducibility of a
polynomial in a field and the roots of the polynomial in the field. Be aware though,
that if p(x) has no roots in F , it doesn’t necessarily mean that it is irreducible over
F ; it can split into higher order irreducible polynomials thanks to roots lying in some
extension of F .

It is true that any irreducible polynomial has a root in some extension. Indeed,
assume that p(x) is irreducible. Then the ideal (p) in F[x] generated by p is a maxi-
mal ideal in a PID, so its quotient will be an extension of F , and the equivalence class
[x] will be a root of p, seen now as a polynomial over this extension. If on the other
hand, an element a ∈ E is algebraic over F , then the kernel of the homomorphism
f ∈ F[x] �→ f (a) ∈ E is a proper ideal in a PID, so it must be generated by a unique
irreducible monic polynomial, called the minimal polynomial of a ∈ E over F . This
means, by a simple application of the division algorithm, that the subfield F(a) in
E generated by F and a, called a simple extension, has the same dimension as the
degree of the minimal polynomial. But any finite extension is algebraic since the
powers of an element cannot form a linear independent set. Hence F(a) is algebraic,
and so is any extension of F generated by F and finitely many algebraic elements.

Recall that a field is algebraically closed if it has no proper algebraic extensions,
and an algebraic extension of a field F is called its algebraic closure, denoted by
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F , if it is algebraically closed. The notation is justified as we furnish the non-trivial
result saying that F always has an algebraic closure, and such a closure is unique
up to isomorphism. The algebraic closure is a convenient recipient for the roots of
F , and of course every polynomial over such a closure decomposes completely into
first order ones. In general, the algebraic closure is big, but still countable if the
original field is countable. Typically, the algebraic numbers Q is a countable set,
and the further extension C consists of uncountable many transcendental elements
in addition to the elements in Q.

At the opposite extreme is the splitting field of a polynomial p(x) over F . This is
the subfield in F generated by F and all the roots of p(x). It is up to isomorphism, the
unique smallest fieldwhere p(x) splits into linear factors.Amore general extension is
that of a normal extension of F . It has by definition the property that if an irreducible
polynomial over F has one root there, then all the roots will be there. One can show
that an algebraic extension over F is normal if and only if it is a splitting field for a
family of polynomials over F .

We study also multiple roots, and the notion of a separable extension of F consist-
ing solely of elements having minimal polynomials over F with only simple roots.
We say F is perfect if all its algebraic extensions are separable. Examples of perfect
fields are fields of characteristic zero, and all finite fields. We characterize the simple
fields among the finite extensions of a field F as those having only finitely many
intermediate fields between.

We devote a section to finite fields. Their order is always a power of a prime
number. We also devote a section to the antique problems of the impossibility of
constructing certain geometric objects by rulers and compasses. We associate to
such a construction a chain of subfields ofR, and deduce a property that such a chain
leads to. For instance, to divide an angle by three will violate this property, thus
making the construction impossible.

For suggested reading for this and the next chapter, see [15] and references therein.

7.1 Roots and Reducible Polynomials

Definition 7.1.1 Suppose F is a subfield of a field E . A root of f ∈ F[x] in E is
an element a ∈ E such that f (a) = 0.

We should specify what field we are referring to when we talk about roots and
reducibility. When we say that a polynomial is reducible over a field F we mean that
it is not irreducible regarded as an element of the integral domain F[x].
Example 7.1.2 The number

√
3 is a root of x2 − 3 inR, but not inQ. Similarly, the

numbers ±i are roots of x2 + 1 in C, but not in R. ♦
Proposition 7.1.3 Any polynomial over a field with degree greater than one that
has a root in this field is reducible over the field.
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Proof Say F is a field and a ∈ F is a root of f ∈ F[x] with deg( f ) ≥ 2. By the
division algorithm for polynomials, we can write f (x) = q(x)(x − a) + r for r ∈ F
and q ∈ F[x] with deg(q) ≥ 1. But then r = q(a)(a − a) + r = f (a) = 0, so f is
reducible. �

The converse is true for polynomials f ∈ F[x] of degree 2 and 3, because then
we can write f (x) = g(x)(ax + b) for a �= 0, and f has root −ba−1.

Corollary 7.1.4 A polynomial of degree n over a field has at most n distinct roots
in the field.

Proof Say f is a polynomial over a field with deg( f ) = n. If a is a root of f in the
given field, then f is divisible by x − a, resulting in a polynomial of degree n − 1.
This opens for an obvious induction argument. �

The corollary immediately implies that any polynomial over a field vanishes if it
has infinitely many distinct roots in the field.

Proposition 7.1.5 Any polynomial over Z can be non-trivially factorized over Z if
and only if it is reducible over Q.

Proof The forward implication is trivial. Conversely, say f ∈ Z[x] is reducible over
Q. We can assume that f is primitive and f = agh for non-constant primitive poly-
nomials g, h ∈ Z[x] and a ∈ Q. But then, since also gh is primitive, we get a = ±1.
�

The following integral root test pulls in the same direction.

Proposition 7.1.6 Any rational root of a monic polynomial over Z is an integer and
divides the constant term of the polynomial.

Proof Say f (x) = a0 + · · · + an−1xn−1 + xn ∈ Z[x] has a root r/s with integers r
and s that are relatively prime. Then

a0s
n−1 + a1rs

n−2 + · · · + an−1r
n−1 = −rn/s

shows that s = ±1 and that r divides a0. �

A more subtle criterion for irreducibility is the following one by Eisenstein.

Proposition 7.1.7 If a prime number p divides all the coefficients of a polynomial
f ∈ Z[x] except the coefficient of the highest order of x, and if the constant term of
f is not divisible by p2, then f cannot be non-trivially factorized.

Proof Suppose to the contrary that

f (x) = a0 + · · · + anx
n = (b0 + · · · + bmx

m)(c0 + · · · + ckx
k)
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with ai , bi , ci ∈ Z and bmck �= 0 and k < n. Since p divides a0 = b0c0, whereas p2

does not, then either p divides b0 and not c0, or p divides c0 and not b0. By symmetry
it is enough to consider one of these cases, say the second one.

Since p does not divide an = bmck , it cannot divide ck . Let cr be the first coefficient
in c0 + · · · + ckxk that is not divisible by p. Then

ar = b0cr + b1cr−1 + · · · + brc0

cannot be divisible by p because otherwise b0cr , and hence cr , would be. But an is
the only coefficient of f with this property, so r = n, which is absurd. �

Using Eisenstein’s criterion and Proposition 7.1.5, we conclude that x2 − 2 is
irreducible over Q. The same is true for xn − m for any natural number n and any
square free integer m �= ±1.

Here is a standard example, where the criterion is applied to a translation of the
polynomial of interest.

Example 7.1.8 The polynomial

f (x) = 1 + x + · · · + x p−1

with p prime, is irreducible over Q. To see this, observe that

g(x) ≡ f (x + 1) = (x + 1)p − 1

(x + 1) − 1
= x p−1 +

(
p
1

)
x p−2 + · · · +

(
p

p − 1

)

obviously satisfies Eisenstein’s criterion. Thus g is irreducible over Q, and so is f ,
otherwise g would be reducible. ♦

7.2 Algebraic Extensions

Definition 7.2.1 If F is a subfield of a field E , then E is an extension field of F .

We also talk about extensions when we have a ring monomorphism F → E , and
we often suppress this map.

Note that an extension field Ei of Ei−1 is a vector space over Ei−1. Denote the
dimension of Ei over Ei−1 by [Ei , Ei−1]. If all these dimensions are finite, that is, if
the extension field Ei of Ei−1 is finite for each i , then

[En : E0] = [En : En−1] · · · [E1 : E0]

because {x1j1 · · · xnjn } is by an easy successive argument, a linear basis for En over E0

whenever {xiji } is a linear basis for Ei over Ei−1.
Here is one of the reasons why we introduce extension fields.
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Proposition 7.2.2 Any non-constant polynomial over a field has a root in an
extension field.

Proof Suppose f is an irreducible polynomial over a field F . Then ( f ) is a maximal
ideal in the principal ideal domain F[x], so E ≡ F[x]/( f ) is an extension field of
F . The equivalence class [x] of the indeterminate x is a root in E of f because
f ([x]) = [ f (x)] = 0.
Given any non-constant polynomial, we can decompose it into factors of irre-

ducible ones, and a root in an extension field of any of these, will also be a root in
the same extension field of the original polynomial. �

Corollary 7.2.3 Any finite collection of non-constant polynomials over a field all
have roots in a common extension field.

Proof Say f1, . . . , fn are non-constant polynomials over a field F . Let E1 be an
extension field of F such that f1 has a root in E1. View f2 as a polynomial over
E1 and let E2 be an extension field of E1 such that f2 has a root in E2. Proceeding
inductively this way completes the proof. �

Definition 7.2.4 Let E be an extension field of F with ai ∈ E . Write F(a1, . . . , an)
for the subfield of E generated by F and the ai ’s. If E itself is of this form for some
ai ’s, then it is finitely generated. When n = 1 we talk about simple extension fields.

Example 7.2.5 The subfield Q(
√
2) of R consists of all elements of the form a +

b
√
2 for a, b ∈ Q because such elements form a subfield of R with

(a + b
√
2)−1 = a − b

√
2

a2 + 2b2
,

and it is the smallest one that contains bothQ and
√
2. Since

√
2 is irrational, we see

that {1,√2} is a basis for Q(
√
2) over Q, so [Q(

√
2) : Q] = 2. ♦

Definition 7.2.6 Suppose E is an extension field of F . An element of E is algebraic
over F if it is a root of a non-zero polynomial over F . If all elements of E are algebraic
over F , then E is an algebraic extension of F .

Example 7.2.7 In the example above we actually have an algebraic extension
because a + b

√
2 is a root of (x − a)2 − 2b2 ∈ Q[x]. ♦

Proposition 7.2.8 A finite extension of a field F is an algebraic extension over F.

Proof All integer powers of any non-zero element in the extension field cannot be
linear independent over F , and any non-trivial linear combination between these says
that the element is algebraic over F . �

The field of fractions F(x) of polynomials over a field F is clearly an exten-
sion field of F generated by F and x , but it is not an algebraic extension as the
indeterminant x ∈ F(x) by definition is not a root of any polynomial over F .

The following example shows that there are infinite algebraic extension fields.
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Example 7.2.9 The field embeddings

Q ⊂ Q(
√
2) ⊂ Q(

√
2,

√
3) ⊂ Q(

√
2,

√
3,

√
5) ⊂ · · ·

withinR are proper. This is certainly true for the first inclusion. Suppose the inclusion
F ≡ Q(

√
p1, . . . ,

√
pn−1) ⊂ F(

√
pn) is proper, where p1, . . . , pn are n consecu-

tive primes. For any prime q different from these, we have
√
q /∈ F(

√
pn) because

otherwise we can write
√
q = a + b

√
pn for a, b ∈ F , so

q = a2 + b2 pn + 2ab
√
pn,

which shows that
√
pn ∈ F , and this contradicts our induction hypothesis.

Let E be the subfield of R generated by square roots of all primes. Clearly any
c ∈ E will belong to one of the fields in the ascending chain of inclusions above.
Each of these fields is a finite extension field, and hence an algebraic extension, ofQ.
So c is algebraic overQ. Thus E is an algebraic extension ofQ of infinite dimension.

♦
Suppose E is an extension field of a field F , and that a ∈ E is algebraic over F .

Then the kernel of the evaluation homomorphism f ∈ F[x] �→ f (a) ∈ E is a non-
trivial ideal in the principal ideal domain F[x], so it is generated by a single monic
polynomial. Since this polynomial divides any other polynomial over F with root a,
it must have least degree among all polynomials over F with root a, and clearly it is
uniquely determined by this property.

Definition 7.2.10 Let F be afieldwith an extensionfield E . Theminimal polynomial
Irr(a, F) of an algebraic element a ∈ E over F is the monic polynomial of least
degree with root a.

Minimal polynomials are irreducible because if they could be factorized non-
trivially, then one of the factors would have the same root, and this factor would have
lower degree than theminimal polynomial. By the division algorithm for polynomials
the minimal polynomial of an element is clearly also the unique irreducible monic
polynomial having that element as a root.

Proposition 7.2.11 Suppose F is a field with an extension field E. Let n be the
degree of the minimal polynomial of a ∈ E over F. Then {am}n−1

m=0 is a linear basis of
the vector space F(a) over F. So [F(a) : F] = n and F(a) is an algebraic extension
of F.

Proof Since Irr(a, F) is irreducible in the principle ideal domain F[x], and since it
generates the kernel of the evaluation homomorphism f �→ f (a), the quotient ring
of F[x] by this kernel is a field. By the fundamental ring isomorphism theorem the
image { f (a) | f ∈ F[x]} of the evaluation homomorphism is therefore also a field,
and this field is clearly the smallest subfield F(a) of E that contains both a and
F . By the division algorithm we can write any f ∈ F[x] as f = qIrr(a, F) + r ,
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where q, r ∈ F[x] and deg(r) < deg(Irr(a, F)). So f (a) = r(a), which shows that
the vectors {am}n−1

m=0 span F(a) over F . They are also linear independent since any
non-trivial F-linear combination of them shows that a is a root of a polynomial with
lower degree than the minimal polynomial. �

We have seen that F(a) = { f (a) | f ∈ F[x]}. To checkmore directly that f (a)−1

belongs to this latter set when f (a) �= 0, observe that by Corollary 6.14.3, there are
polynomials u, v ∈ F[x] such that uIrr(a, F) + v f = 1 as Irr(a, F) cannot divide
f because f (a) �= 0. So u(a)0 + v(a) f (a) = 1 and f (a)−1 = v(a).

Corollary 7.2.12 Let F be a field with an extension field E. The field F(a1, · · · an),
where ai ∈ E are algebraic over F, is a finite extension field of F. In particular, it
is an algebraic extension.

Proof Let Ei ≡ F(a1, . . . , ai ). Then a1 is algebraic over F , and a2 is algebraic over
F and hence over E1, and a3 is algebraic over F and hence over E2, and so on.
Thus ai is algebraic over Ei−1 and Ei = Ei−1(ai ). By the proposition we know that
[Ei : Ei−1] is finite, and hence [En : F] = [En : En−1] · · · [E1, F] < ∞. �

Corollary 7.2.13 Suppose F is a field with an extension field E. Then the subset of
all elements of E that are algebraic over F is an algebraic extension of F.

Proof Let K be the subset of all elements of E that are algebraic over F . We must
show that K is a subfield of E . Take any a, b ∈ K . Then the subfield F(a, b) of E is
an algebraic extension of F , so F(a, b) ⊂ K , and as a, b belong to the field F(a, b),
so will a ± b, ab and a−1. �

The previous result is less trivial than it seems. Of course the product x of
√
2 and√

3 is algebraic overQ since x2 − 6 = 0. And so is their sum y, since upon squaring
two times, we get y4 − 10y2 + 1 = 0. And there are no problems with divisions
either, say the reciprocal z of

√
3, which satisfies 3z2 − 1 = 0. The problem arises

when one picks roots of general polynomials of arbitrary degree and wants to check
that sums and products and inverses of such roots are algebraic.

We can nevertheless prove the previous result more directly using linear algebra.
Consider two non-zero elements a, b ∈ E that are algebraic over F . The crucial
observation is that the vector space V over F spanned by the monomials ambn as
m, n range over the integers, is finite dimensional. This is so because as soon as for
instance m reaches the degree of the polynomial that a is a root of, then am is a
F-linear combination of lower degree monomials in a. A similar reduction happens
for negative m when it hits minus the degree of the polynomial. Now V is clearly
invariant undermultiplication bya + b, sowith respect to any basis {xi }ofV , we have
(a + b) · xi = ∑

j ai j x j for ai j ∈ F . Thus a + b is an eigenvalue with eigenvector∑
i xi of the matrix (ai j ), and will be a root of its characteristic equation, so a + b

is algebraic over F . The same argument works for ab and a−1, so we do get a field.
This method also helps to find polynomials having as roots combinations of other

roots.
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Example 7.2.14 We know that the monic polynomial x3 − 2 is irreducible over Q,
so it is the minimal polynomial of a ≡ 3

√
2 ∈ R over Q. Therefore the three vectors

x1 = 1, x2 = a and x3 = a2 form a basis forQ(
3
√
2) overQ. Let b ≡ a + a2, and let

A = (ai j ) ∈ M(3, F) be given by bxi = ∑
j ai j x j . Then as a3 = 2, we get bx1 =

a + a2 = x2 + x3 and bx2 = a2 + a3 = 2x1 + x3 and bx3 = a3 + a4 = 2x1 + 2x2,
so

A =
⎛
⎝0 2 2
1 0 2
1 1 0

⎞
⎠

with characteristic equation

0 = det(A − λI3) = −λ3 + 6λ + 6,

which is consistent with what we get by hand:

b3 = a3(1 + a)3 = 2(1 + 3a + 3a2 + a3) = 6(a + a2 + 1) = 6(b + 1).

♦

7.3 Algebraic Closures

Definition 7.3.1 A field is algebraically closed if it possesses no proper algebraic
extension.

Proposition 7.3.2 For any field F the following conditions are equivalent:

(i) The field F is algebraically closed;

(ii) Every irreducible polynomial over F has degree one;

(iii)Every non-constant polynomial over F factors completely into linear factors;

(iv) Every non-constant polynomial over F has a root in F.

Proof Assume that (i) holds and that f is an irreducible polynomial over F of degree
n. By the previous section we know that F has an algebraic extension E in which f
has a root, and that [E : F] = n. In order for this not to be a proper extension, we
must have n = 1, so (ii) holds.

From the previous chapter any non-constant polynomial in the principal ideal
domain F[x] factors completely into irreducible polynomials, so if we assume (ii),
we get (iii). Trivially (iii) implies (iv).
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Assuming (iv) holds and that E is some algebraic extension of F . The minimal
polynomial of a ∈ E over F is irreducible, and since it has a root in F , its degree
must be one, so a is this root and E = F . �

Definition 7.3.3 An algebraic extension E of a field F is an algebraic closure of F
if it is algebraically closed.

We will show that algebraic closures exist and are unique in a natural sense. For
this fundamental result we need a lemma.

Lemma 7.3.4 Every field has an extension field that is algebraically closed.

Proof First we show that there exists an extension field E1 of a field F in which
every non-constant polynomial over F has a root.

Let I denote the subset of F[x] consisting of non-constant polynomials. Consider
the group ring F[ZI ] of the additive groupZI . Let F[I ] denote the subring generated
by the unit 1 and themembers xi ofZI ⊂ F[ZI ], where xi ( j) = δi j for i, j ∈ I . Thus
F[I ] consists of 1 and all elements that are finite sums of the form

∑
ai xi1 · · · xin ,

where the coefficients ai ∈ F are uniquely determined by the element. We think of
F[I ] as a polynomial ring in an infinite number of commuting variables xi .

Let J be the ideal in F[I ] generated by the singled variable polynomials f (x f )

as f ranges over I ⊂ F[x]. We claim that J �= F[I ]. If on the contrary 1 ∈ J , then

g1 f1(x f1) + · · · + gn fn(x fn ) = 1

for some fm ∈ F[x] and gm ∈ F[I ]. By Corollary 7.2.3 the polynomials fm have
roots bm in a common extension field. Replacing x fm by bm in the identity above, and
with zeroes for the variables of the polynomials gm , we get 0 = 1, which is absurd.
So J is a proper ideal in F[I ].

Therefore, by Zorn’s lemma, the ideal J is contained in a maximal ideal, and the
quotient of F[I ] by this maximal ideal is a field E1 that extends F . Moreover, every
non-constant polynomial f over F has a root in E1 since the maximal ideal contains
f (x f ).
Inductively we can thus form an ascending chain E1 ⊂ E2 ⊂ · · · of fields Ek such

that every non-constant polynomial over Ek−1 has a root in Ek . Obviously E ≡ ∪k Ek

is a field that extends F . It is also algebraically closed because any non-constant
polynomial over E will be a polynomial over Ek for some k, and will therefore have
a root in Ek+1 ⊂ E . �

The algebraically closed field in the lemma above is not an algebraic extension.
We had no reservations making it large since it just serves as a recipient for roots of
the original field.

Theorem 7.3.5 Every field has an algebraic closure.
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Proof Let F be a field, and let E be any extension field of F that is algebraically
closed; the existence of such a field is guaranteed by the lemma above.

Let K be the set of all elements of E that are algebraic over F . By Corollary 7.2.13
we know that K is an algebraic extension of F . It is also algebraically closed. For
suppose f is a non-constant polynomial over K . Viewed as an element of E[x], it has
a root a in E since E is algebraically closed. Let b1, . . . , bm ∈ K be the coefficients
of f , and consider the finite extension E0 ≡ F(b1, . . . , bm) of F . As E0(a) is a finite
extension of E0, it is therefore also a finite extension of F , and hence an algebraic
extension. Thus a ∈ E0(a) is algebraic over F , so by definition it belongs to K . �

In the proof above we showed that if we have a chain of fields F ⊂ K ⊂ E such
that K is an algebraic extension of F and a ∈ E is algebraic over K , then a is
algebraic over F . Let us record the obvious generalization of this result.

Corollary 7.3.6 If we have an ascending chain E0 ⊂ · · · ⊂ En of fields such that
Ei is algebraic over Ei−1 for all i , then En is algebraic over E0.

Using linear algebrawe can give amore direct proof of the theoremabove provided
we know that the field F has some extension field E that is algebraically closed.Using
linear algebra we have already seen that the set K of elements of E that are algebraic
over F is a field, and hence an algebraic extension of F . To see that it is algebraically
closed, first note that any non-constant polynomial f over K obviously has a root
a in E . To verify that a ∈ K , let V ⊂ E be the vector space over F spanned by the
coefficients of f and all integer powers of a. Arguing as before we conclude that V
is finite dimensional, and the element a will be a root of the characteristic equation
with coefficients in F of the matrix corresponding via a chosen linear basis of V to
multiplication by a. So by definition a ∈ K .

The fundamental theorem of algebra says that C is algebraically closed, see The-
orem 8.4.2. Using this we see that all subfields of C have algebraic closures without
referring to the lemma above. However, the enveloping field that the lemma provides
us with is by construction countable if the field we start with is countable, and this
is not the case for C.

Let us now turn to uniqueness, to the task of proving that every field has an
algebraic closure that is unique up to isomorphisms that fix elements of the original
field.

Lemma 7.3.7 Suppose α is a monomorphism from a field F to an algebraically
closed field L. Let F(a) be a simple algebraic extension of F. Then α can be extended
to a homomorphism F(a) → L.

Proof Say p(x) = a0 + · · · + anxn ∈ F[x] is the minimal polynomial of a. Let b ∈
L be a root of the polynomial q(x) = α(a0) + · · · + α(an)xn ∈ L[x]. Such a root
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exists because L is algebraically closed. Since {ak}n−1
k=0 is a linear basis of F(a) over

F , we can extend α to a linear map F(a) → L by

c0 + c1a + · · · + cn−1a
n−1 �→ α(c0) + α(c1)b + · · · + α(cn−1)b

n−1

for ci ∈ F , and this map is clearly a homomorphism. �

Next we prove the following general extension result.

Theorem 7.3.8 Let K be an algebraic extension of a field F, and let α : F → L be
a monomorphism into an algebraically closed field L. Then α can be extended to a
monomorphism K → L.

Proof Let S be the set of pairs (E, γ ), where E is a subfield of K that contains
F , and γ : E → L is an extension of α. The set S is non-empty as (F, α) ∈ S. It
has an obvious partial order with (E, γ ) ≤ (E ′, γ ′) if E is a subfield of E ′ and if γ ′
restricted to E equals γ . Also, if (Ei , γi ) is a chain, then (∪i Ei , β)with β(a) = γi (a)

if a ∈ Ei , is an upper bound. It is straightforward to check that ∪i Ei is a field, and
that β : ∪i Ei → L is a well-defined homomorphism that extends α.

Therefore S has a maximal element by Zorn’s lemma, which we claim is the
required extension.Otherwise, there exists a ∈ K that does not belong to themaximal
extension, and this contradicts the lemma above since a then provides a simple
extension that is strictly larger.

Since the extension K → L takes the identity to the identity, and is a homo-
morphism between fields, it has to be injective because non-zero elements of K are
invertible. �

Corollary 7.3.9 If F is a field with algebraic closures K and L, then there exist an
isomorphism α : K → L such that α(a) = a for a ∈ F.

Proof By the theorem above the identity map F → F extends to an monomorphism
α : K → L . Then α(K ) is an algebraically closed field and an algebraic extension
of F , and since L is also an algebraic extension of F , it cannot be larger than α(K ).
So α is an isomorphism from K onto L . �

Definition 7.3.10 We denote the algebraic closure of a field F by F . The algebraic
numbers are the members of Q.

So the algebraic numbers are the complex roots of polynomials with integer
coefficients not all zero.Clearly nothing is gainedby considering rational coefficients,
and of course, all complex numbers with rational real- and imaginary parts are in
particular algebraic.

As we have seen, the set of algebraic numbers is countable. We can also convince
us of this by observing that ann-th degree equation hasmaximallyn distinct roots, and
that there are only countable many n-th degree equations with integer coefficients.
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Definition 7.3.11 A transcendental number is a complex number that is not alge-
braic. We say that an element in an extension field of a field F is transcendental over
a field F if it is not algebraic over F , and the extension field is then a transcendental
field.

So the transcendental numbers are uncountable, and it is easy to see that they
have cardinality |C| = |R|. In any case they certainly do exist, and this countability
argument was actually Cantor’s proof of their existence.

The algebraic numbers meet the quest for numbers solving algebraic equations,
provided one can manage without the transcendental numbers necessary for Cauchy
completeness; in this respect the complex numbers is an overkill.

We have proper field inclusions Q ⊂ Q ⊂ C, but the field of complex numbers
is not an algebraic extension of Q. Neither is it an algebraic extension of Q because
the latter is already algebraically closed. However, it is an algebraic extension of R
since any complex number can be written in normal form and i2 + 1 = 0.

Let us record the following useful result.

Corollary 7.3.12 Let a be an algebraic element of a field F, and let L be an alge-
braically closed field. Then the number of monomorphic extensions F(a) → L of
a monomorphism F → L equals the number of distinct roots in F of the minimal
polynomial over F of a.

Proof Recall that if p(x) = a0 + · · · + anxn is the minimal polynomial of a, then
an extension of a monomorphism α : F → L is given by

c0 + · · · + cn−1a
n−1 �→ α(c0) + · · · + α(cn−1)b

n−1

for ci ∈ F , where b ∈ L is a root of q(x) = α(a0) + · · · + α(an)xn .
Clearly, this gives a bijection between the set of distinct roots of q in L and the

monomorphic extensions F(a) → L ofα.We claim that these roots are in one-to-one
correspondence with the distinct roots of p in F .

By the theorem above extend α : F → L to a monomorphism β : F → L , and
define a ring monomorphism η : F[x] → L[x] by

η(d0 + · · · + dmx
m) = β(d0) + · · · + β(dm)xm

for di ∈ F . Then q = η(p) and uniqueness of decompositions of p over F and q
over L shows that p and q have the same number of distinct roots. �

7.4 Ruler and Compass

According to the Greeks circles and straight lines are perfect figures, so everything
ought to be constructed by compasses and rulers, and by rulers was meant unmarked
straight edges. However, using only these tools, they ran into problems. In particular,
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they could not duplicate the cube, trisect the angle or square the circle. This was not
due to lack of skill. As it turns out, these challenges were not merely difficult, they
were simply impossible. In this section we will explain why.

Let us first be clear about what we here mean by constructing.

Definition 7.4.1 Given a set X of points in the Euclidean plane R2. A point x ∈ R2

is constructed from X by ruler and compass if it is obtained after finitely many steps
starting from X and at each step adding new points gotten as intersections of two
distinct straight lines or circles drawn respectively with a ruler between old points
or with a compass centered at some old point and adjusted to pass through another
old point.

This way one can for instance construct the midpoint between two given points;
first draw the straight line between them, then draw two distinct circles with center
at these points and with radius the distance between the two points, and finally draw
the straight line between the intersection of these two circles, which then cuts the
former straight line at the midpoint. From the original two points we constructed in
the process three new intersection points p1, p2 and p3, of which p3 was themidpoint
obtained at the third step.

How does field theory enter the picture?

Definition 7.4.2 Suppose a point is constructed in n steps from X ⊂ R2 by ruler and
compass, producing as intersection points p1, . . . , pn . The chain of fields associated
to this construction is the ascending chain

E0 ⊂ E1 ⊂ · · · ⊂ En

of subfields of R, where E0 is the subfield of R generated by the coordinates of X ,
and E1 is the subfield generated by E0 and the coordinates of p1, and so on. Thus, if
pi = (xi , yi ), then Ei = Ei−1(xi , yi ).

Proposition 7.4.3 Suppose Ei = Ei−1(xi , yi ) is a chain of fields associated to a
construction of a point from X ⊂ R2 by ruler and compass producing intersection
points pi = (xi , yi ) with i ∈ {1, . . . , n}. Then xi and yi are roots in Ei of second
degree polynomials over Ei−1.

Proof The point pi is an intersection of either two straight lines, a straight line
and a circle, or two circles. The straight lines considered here are assumed to pass
through at least two points with coordinates in Ei−1, and the circles have centers
with coordinates in Ei−1 and with circumferences that pass through points with
coordinates in Ei−1.

Let us look at the case where a straight line through points a and b meets a
circle with center c and having radius r equaling the distance between c and d,
where the coordinates a j , b j , c j , d j of a, b, c, d, respectively, all belong to Ei−1.
Note that r2 = (c1 − d1)2 + (c2 − d2)2 ∈ Ei−1. Since pi lies on the straight line that
goes through a and b, we have
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yi − b2
xi − a1

= b2 − a2
b1 − a1

.

The same point pi also lies on the circumference of the circle with center c and radius
r , so

(xi − c1)
2 + (yi − c2)

2 = r2.

This gives a second degree equation

(xi − c1)
2 + (

b2 − a2
b1 − a1

(xi − a1) + b2 − c2)
2 = r2

in xi of required form. One gets a similar quadratic equation for yi . The two other
intersection cases are verified in a similar fashion. �

Corollary 7.4.4 If (x, y) is constructed by ruler and compass from X ⊂ R2, and
if E is the subfield of R generated by the coordinates of X, then [E(x) : E] and
[E(y) : E] are powers of 2.
Proof Let {Ei } be a chain of fields associated to a construction of (x, y) from X ⊂
R2 by ruler and compass with intersection points pi = (xi , yi ), where E0 = E and
(xn, yn) = (x, y). By the proposition we see that

[Ei : Ei−1] = [Ei−1(xi , yi ) : Ei−1(xi )][Ei−1(xi ) : Ei−1]

is either 1, 2 or 4. Therefore [En : E] is a power of 2, and so are [E(x) : E] and
[E(y) : E] because e.g.

[En : E(x)][E(x) : E] = [En : E].

�

Having now translated the inherent limitations of constructions by ruler and com-
pass to the language of algebra, we can return to the earlier problems that caused
such headache for the old Greeks.

Proposition 7.4.5 One cannot by ruler and compass construct a cube with volume
twice the volume of a given cube, nor an angle one-third of a given angle, nor a
square with area equal to that of a given circle.

Proof Say we have a cube with one corner at the origin (0, 0) and another one at
(1, 0). If we are to construct a cube with volume 2, we must be able to construct the
point (a, 0), where a3 = 2. Now the subfield of R containing 0 and 1 is Q, whereas
the subfield of R containing 0, 1 and a is Q(a). But [Q(a),Q] = 3 as x3 − 2 is the
minimal polynomial of a overQ, and 3 is certainly not a power of 2. This contradicts
the corollary above, so we cannot duplicate the cube by ruler and compass.



7.5 Splitting Fields and Normal Extensions 271

To construct an angle trisecting π/3 is equivalent to constructing the point (a, 0)
given (0, 0) and (1, 0), where a = cos(π/9). From this we could construct (b, 0),
where b = 2 cos(π/9). Plugging u = π/9 into the trigonometric identity

cos(3u) = 4 cos3 u − 3 cos u,

we get b3 − 3b − 1 = 0. But f (x) = x3 − 3x − 1 is the minimal polynomial of b
over Q because f (x + 1) = x3 + 3x2 − 3 is irreducible by Eisenstein’s criterion.
Thus [Q(b) : Q] = 3, which is not a power of 2.

To square the circle by ruler and compass is equivalent to constructing the point
(
√

π, 0) from (0, 0) and (1, 0). But then by the proposition below, we could also
construct (π, 0). This is impossible because [Q(π) : Q] is not a power of 2. The
extension Q(π) is not even algebraic over Q due to Lindeman’s famous theorem,
which says that π is transcendental. �

Definition 7.4.6 A real number a is constructable if (a, 0) is constructable by ruler
and compass from (0, 0) and (1, 0).

Proposition 7.4.7 The subset of R consisting of constructable real numbers is a
subfield of R, and hence an algebraic extension of Q.

Proof If a, b belong to this subset E , then we can easily construct the points (a +
b, 0) and (a − b, 0) from (a, 0) and (b, 0) by ruler and compass.

Let us construct ab for positive a, b ∈ E . Form any ray from the origin not parallel
with the x-axis, and set off the points P and B at distance 1 and b, respectively,
from the origin O . Let A = (a, 0) and C = (c, 0), where C is constructed as the
intersection of the x-axis and the line parallel to AP . Comparing the similar triangles
OAP and OCB, we get 1/a = b/c, so ab = c is constructable. The cases with other
signs for a and b are easy enough.

One constructs a/b from a, b ∈ E with b �= 0, in a similar fashion. �

7.5 Splitting Fields and Normal Extensions

Definition 7.5.1 The splitting field of a polynomial f over a field F is the subfield
of F generated by F and the roots of f in F .

So the splitting field E of a non-constant polynomial f ∈ F[x] is the smallest
field where f decomposes into linear factors over E . More concretely, if ai ∈ F are
the roots of f , then E = F(a1, . . . , an) and

f (x) = b(x − a1) · · · (x − an)

for some b ∈ F . In particular, the splitting field E is a finite extension, and hence an
algebraic extension, of F .
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The field Q(
√
2) is a splitting field of x2 − 2 over Q.

Splitting fields are unique, as the following result shows.

Theorem 7.5.2 If E and K are splitting fields of a polynomial over a field F, then
there is an isomorphism α : E → K that is the identity on F.

Proof Since K is an algebraic extension of K , then by Corollary 7.3.6, it is also an
algebraic extension of F , so K = F . By Theorem 7.3.8 there exists amonomorphism
α : E → K that is the identity on F . It remains to check that α(E) = K .

Say f ∈ F[x] is the polynomial for which both E and K are splitting fields, and
let ai ∈ E and bi ∈ K be the roots of f in these two fields. Since the coefficients of
f are in F , and are thus fixed by α, which also is a homomorphism, it is clear that
α(ai ) are roots of f in K , decomposing f into linear factors. So {bi } = {α(ai )} and

α(E) = α(F(a1, . . . , an)) = F(α(a1), . . . , α(an)) = F(b1, . . . , bn) = K .

�

Example 7.5.3 The splitting field of x4 − 2 over Q has degree 8 despite the fact
that x4 − 2 is the minimal polynomial of the positive root 21/4 overQ. This is due to
the fact that x4 − 2 has the factor x2 + √

2, which is irreducible over Q(21/4) with
roots ±21/4i , so the splitting field is Q(21/4, i), which has degree 2 · 4 over Q. ♦
Example 7.5.4 The splitting field of f (x) = x3 + x2 + 1 over Z2 consists of 8
elements. To see this, first observe that neither 0 nor 1 are roots of f , which has
degree 3, so f is irreducible over Z2. If a is a root of f , then

f (x) = (x + a)(x + a2)(x + 1 + a + a2).

Therefore the splitting field of f is Z2(a) and a has f as the minimal polynomial
over Z2. Thus {1, a, a2} is a basis for Z2(a) over Z2, and

Z2(a) = {0, 1, a, a2, a + 1, a2 + 1, a2 + a, a2 + a + 1}.

Definition 7.5.5 A normal extension of a field F is a field E such that every irre-
ducible polynomial over F that has at least one root in E decomposes into linear
factors over E .

So if an irreducible polynomial over a field F has a root in a normal extension E
of F , then all its roots belong there.

To say that a field E is the splitting field of a family { fi } of polynomials over a
field F means that E is the subfield of F generated by all the roots of each member of
this family. Every polynomial fi decomposes then into linear factors over E . When
the family is finite, then E is an algebraic extension of F , and can obviously be
regarded as the splitting field of the polynomial that is the product of all the members
of the family. It is therefore unique up to isomorphisms that fix elements of F , and
by essentially the same proof, this remains true when the family is infinite.
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Theorem 7.5.6 Suppose F is a field with an algebraic extension E ⊂ F. Then the
following conditions are equivalent:

(i) E is a normal extension of F;

(ii) E is the splitting field of some family of polynomials over F;

(iii)Every monomorphism α : E → F that fixes elements of F satisfies α(E) = E.

Condition (iii) means that α can be regarded as an automorphism of E .

Proof To see that (i) implies (ii), observe that E is the splitting field of the family
of minimal polynomials of all elements of E .

Assume that (ii) holds, so E is the splitting field of some family { fi } ⊂ F[x].
Suppose α : E → F is a monomorphism that is the identity on F . If a ∈ E is a
root of fi , then so is α(a), and since E is generated by the roots of fi , we see that
α(E) ⊂ E . But then α(E) = E by the lemma below. So (iii) holds.

Suppose (iii) is true, and let f be an irreducible polynomial over F with a root
a ∈ E . To get (i), we must show that if b ∈ F is another root of f , then b ∈ E .

Since f is irreducible, there is an isomorphism

α : F(a) → F[x]/( f ) → F(b)

that fixes elements of F and satisfies α(a) = b. By Theorem 7.3.8 there is a
monomorphic extension E → F of α, which by assumption must map E onto E , so
b = α(a) ∈ E . �

Lemma 7.5.7 If E is an algebraic extension of a field F, and if α : E → E is a
monomorphism that fixes elements of F, then α(E) = E.

Proof Let a ∈ E , and let f ∈ F[x] be the minimal polynomial of a. Let K be the
subfield of E generated by F and the roots of f in E . Since α maps roots of f to
other roots of f , it maps K into K , and since K is a finite extension of F and α is an
injective F-linear map, we get α(K ) = K . So there is an element b ∈ K ⊂ E such
that α(b) = a. �

Since x3 − 2 is irreducible over Q, and has only one real root, the field Q(21/3)
is not a normal extension of Q, nor is any other subfield of R.

Example 7.5.8 Any extension E of a field F with [E : F] = 2 is normal because
any a ∈ E\F has a minimal polynomial f over F with degree greater than one, so

2 = [E : F] = [E : F(a)][F(a) : F]

shows that deg( f ) = 2 and [E : F(a)] = 1. Therefore E = F(a) is a splitting field
of f . ♦
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7.6 Multiple Roots

Define the derivative of a polynomial f (x) = a0 + a1x + · · · + anxn over a field F
to be the polynomial f ′(x) ∈ F[x] given by

f ′(x) = a1 + 2a2x + · · · + nanx
n−1.

It is easy to check that ( f + g)′ = f ′ + g′ and ( f g)′ = f ′g + f g′ for g ∈ F[x].
This notion of a formal derivative of polynomials over a field requires some

caution. For instance, we see that (x7)′ = 7x6 = 0 over Z7 despite the fact that x7 is
non-constant.

When we talk about roots without any explicit reference to the field they belong,
we usually mean that they belong to the algebraic closure of the field, or to a splitting
field of the field.

Definition 7.6.1 A root a of a polynomial f over a field F has multiplicity m if
f (x) = g(x)(x − a)m , where g ∈ F[x] and g(a) �= 0. It is a simple root if m = 1.

Counted with multiplicities we see that any polynomial of degree n over a field
has at most n roots.

Proposition 7.6.2 Any root a of a polynomial f over a field F has multiplicity
greater than one if and only if f ′(a) = 0.

Proof Write f as f (x) = g(x)(x − a)m with g ∈ F[x] and g(a) �= 0. Then

f ′(x) = g′(x)(x − a)m + mg(x)(x − a)m−1.

So if m ≥ 2, then f ′(a) = 0, and conversely, if m = 1, then f ′(a) = g(a) �= 0. �

Corollary 7.6.3 Suppose f is an irreducible polynomial over a field F. Then f has
a non-simple root if and only if f ′ = 0.

Proof Clearly f has some root a in F , and if f ′ = 0, then in particular f ′(a) = 0,
so by the proposition this root is not simple.

Conversely, if f has a root b ∈ F with multiplicity greater than one, then since
f is irreducible, the minimal polynomial of b over F is proportional to f . By the
proposition we know that f ′(a) = 0, so f ′ = 0 since f ′ has one degree less than f ,
and hence lower degree than the minimal polynomial of a. �

Say f is a polynomial over a field F with root a ∈ F , and that f (x) = g(xn) for
some g ∈ F[x] and n ∈ N. Then clearly the multiplicity of a is at least n. We will
see that every irreducible polynomial over a field of non-zero characteristic is of this
form whenever it has a non-simple root.

Corollary 7.6.4 Every irreducible polynomial f over a field F has simple roots if F
has characteristic zero. When F has prime characteristic p, then f has non-simple
roots if and only if there is a g ∈ F[x] such that f (x) = g(x p).
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Proof Suppose f (x) = a0 + a1x + · · · + anxn . By the corollary above we know
that f has non-simple roots if and only if f ′ = 0. This happens precisely when
mam = 0 for m ∈ {1, . . . , n}.

If F has characteristic zero and if f has a non-simple root, then these am’s vanish,
and f (x) = a0, which is absurd.

If F has characteristic p, then form ≥ 1, either am = 0 or p dividesm. Therefore
we can write f (x) = g(x p) for some g ∈ F[x]. �

Theorem 7.6.5 All roots of an irreducible polynomial over a field have the same
multiplicity.

Proof Let f be an irreducible polynomial over a field F having roots a and b in F
with multiplicity k and l, respectively. As f is irreducible, there is an isomorphism

α : F(a) → F[x]/( f ) → F(b)

that fixes elements of F and satisfies α(a) = b.
By Theorem 7.3.8 we can extend α to an automorphism β of F . This auto-

morphism can be extended further to a ring endomorphism η on F[x] such
that

η(a0 + · · · + anx
n) = β(a0) + · · · + β(an)x

n

for ai ∈ F . Since η( f (x)) = f (x) and η((x − a)k) = (x − b)k , we see that (x − b)k

is a factor of f (x), so k ≤ l. By symmetry we also get l ≤ k. �

We can therefore write any irreducible polynomial f over a field F as a finite
product

f (x) = c
∏
i

(x − ai )
k

in its splitting field E over F , where c ∈ F and the roots ai ∈ E of f havemultiplicity
k.

The theorem above combinedwith the previous corollary tell us that all the roots of
an irreducible polynomial over a field of characteristic zero are simple. In Proposition
7.7.10 we will see that all the roots of an irreducible polynomial over a finite field
are also simple. So non-simple roots can only occur for irreducible polynomials over
infinite fields of prime characteristic. Here is an example of this.

Example 7.6.6 Consider the field F(x) of fractions of polynomials over a field F of
characteristic 3. Then f (y) = y3 − x ∈ F(x)[y] is irreducible and has non-simple
roots. To see that this polynomial of degree 3 is indeed irreducible, it clearly suffices
to show that there are no polynomials g, h ∈ F[x]with h �= 0 such that g/h is a root
of f . Suppose it was, then g(x)3 = xh(x)3, which is impossible as the polynomial on
the left-hand-side has degree a multiple of 3, whereas the one on the right-hand-side
has degree a multiple of 3 plus 1.
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If a and b are two roots of f in its splitting field, then a3 = x = b3. Calculating
in characteristic 3, we get (a − b)3 = a3 − b3 = 0, which shows that a = b. So f
has one root with multiplicity 3, and this is consistent with the fact that F(x) is an
infinite field of characteristic 3. ♦

7.7 Finite Fields

We have seen that a finite field F has characteristic p for some prime number, and
will then contain the prime subfield Zp. Say [F : Zp] = n. Using a basis of F over
Zp we get a ring isomorphism F ∼= Zn

p, so |F | = pn . Conversely, if F is any field
having order a power of a prime number p, then its characteristic is p because if it
was a prime number q, then qm = pn , which is impossible unless p = q. We record
this.

Proposition 7.7.1 Every finite field has order a power of a prime number, and this
prime number is the characteristic of the field.

Proposition 7.7.2 A finite field of order pn for p prime, is the splitting field of
the polynomial x pn − x over Zp. Consequently, a finite field is determined up to
isomorphism by its order.

Proof The set F∗ of non-zero elements of a field F of order pn is a multiplicative
group of order pn − 1, so if a ∈ F∗, then a pn−1 = 1. Therefore the elements of F
are the roots of the polynomial x pn − x .

Two fields with the same order have the same characteristic and are splitting fields
of the same prime fields. The result is then immediate from Theorem 7.5.2. �

As the following result shows there is a field with order pn for every prime number
p and natural number n.

Proposition 7.7.3 For every prime number p and natural number n, the roots of
f (x) ≡ x pn − x ∈ Zp[x] are distinct and form a field with pn elements, and this is
indeed the splitting field of f .

Proof Since f ′(x) = pnx pn−1 − 1 = −1 �= 0, then by Proposition 7.6.2 we see that
f has pn distinct roots. It remains to show that they form a field. If a and b �= 0 are
two roots of f , then so are ab−1 and a ± b since

(ab−1)p
n = a pn (bpn )−1 = ab−1 and (a ± b)p

n = a pn ± bpn = a ± b,

where we in the second last step used the binomial formula and calculated in
characteristic p. �

We now show that any finite field has an extension field of any finite degree.
Since these are all algebraic extensions, no finite field is algebraically closed. So the
algebraic closure of a finite field is an infinite countable field.
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Proposition 7.7.4 Let F be a field with pn elements for p prime, and let m ∈ N.
Then up to isomorphism there is a unique extension field E of F with [E : F] = m.

Proof Since the multiplicative group F∗ has order pn − 1, we have a pn−1 = 1 for
any non-zero a ∈ F . The formula

(pn)m − 1 = (pn − 1)(1 + pn + · · · + (pn)m−1)

shows that pn − 1 divides pmn − 1, so we also get a pmn−1 = 1. Thus every element
of F is a root of f (x) = x pmn − x ∈ F[x].

According to the proposition above the roots of f in F form a field E with pmn

elements. We have just seen that F is a subfield of E , so E is an extension of F of
degree m as |F |m = pmn . This extension is unique up to isomorphism as any finite
field is determined up to isomorphism by its order. �

Proposition 7.7.5 Any finite subgroup of the multiplicative group of a field is cyclic.

Proof A finite subgroup G of the multiplicative group of a field is by Corollary
4.20.5 isomorphic to a direct product G1 × · · · × Gn of cyclic groups Gi with prime
power ordermi . Ifm is the least commonmultiplier of all themi ’s, then them1 · · ·mn

elements of G are roots of the polynomial xm − 1, so m = m1 · · ·mn , which shows
that the numbers mi are relatively prime. But then G is cyclic. �

Corollary 7.7.6 The multiplicative group of a field is cyclic if and only if the field
is finite.

Proof Suppose the multiplicative group F∗ of a field F is cyclic with generator a.
If F has characteristic p, then obviously F = Zp(a). If a + 1 ∈ F∗ and a �= 0,

then a + 1 = an for some n ∈ N, so the minimal polynomial of a overZp has degree
not greater than n, and |F | ≤ pn .

If F has characteristic zero, then −1 ∈ F∗ is not the unit, so −1 = an for some
n ∈ N, and a2n = 1. Thus F∗ and F are finite.

The opposite direction is immediate from the proposition above. �

Corollary 7.7.7 Any finite extension of a finite field is simple.

Proof Suppose E is a finite extension of a finite field F . As E is a finite field, then
by the corollary above, its multiplicative group is generated by an element a, and
then E = F(a). �

Corollary 7.7.8 There is an irreducible polynomial of any given degree over a finite
field.

Proof Given a finite field F , then by Proposition 7.7.4, there is an extension field
E of F having any degree. By the corollary above E = F(a) for some algebraic
element a over F . Then the minimal polynomial of a over F will do. �

Proposition 7.7.9 A finite field F has exactly one subfield of order that divides |F |.
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Proof Say F has pn elements for a prime number p, and that m ∈ N divides n,
which is the only way the order pm of a subfield of F can divide pn . Regard F as
the splitting field of x pn − x over Zp. Then as pm − 1 divides pn − 1, the required
subfield is the splitting field of x pm − x over Zp. �
Proposition 7.7.10 The roots of an irreducible polynomial over a finite field are
distinct.

Proof Suppose F is a field with pn elements for a prime number p, and that f is
an irreducible polynomial over F . By Corollary 7.6.4 the polynomial f has non-

simple roots if and only if f (x) = ∑
k ak(x

p)k for some ak ∈ F . Set bk = a pn−1

k , so
bp
k = a pn

k = ak . Calculating in characteristic p we therefore get

f (x) =
∑
k

(bkx
k)p = (

∑
k

bkx
k)p

by repeated use of the binomial formula. Hence f has distinct roots if and only if it
is irreducible. �
Theorem 7.7.11 Let F be a field with pn elements for p prime. The group of auto-
morphisms of F is cyclic of order n, and is generated by the automorphism φ of F
given by φ(a) = a p, known as the Frobenius endomorphism.

Proof Using the binomial formula and calculating in characteristic p, we see that
the map φ is a homomorphism. Clearly it has trivial kernel, so it is also surjective
on the finite set F . Thus φ is an automorphism of F , and φn is the identity because
φ(a)n = a pn = a for a ∈ F . Let m be the order of φ. Then every element of F is a
root of x pm − x , so pm ≥ pn , or m ≥ n, which means that m = n. So φ has order n.

Let a be a generator of the cyclic multiplicative group F∗, so F = Zp(a). Let f be
the minimal polynomial of a overZp, so deg( f ) = n. Since automorphisms of F are
unital and therefore fix the elements of Zp, they correspond to all possible extension
of the identity map Zp → F to monomorphisms F → F . These will automatically
have range F as F is a splitting field and therefore a normal extension of Zp, so
Theorem 7.5.6 kicks in. By Corollary 7.3.12 there are as many suchmonomorphisms
as there are distinct roots of f . By the proposition above all the roots of f are indeed
distinct, and since the degree of f is n, there are n automorphism of F . These are
the n ones generated by φ. �

7.8 Separable Extensions

Definition 7.8.1 A polynomial over a field F is separable if its irreducible factors
are separable, that is, if all their roots are simple. An algebraic element in an extension
field E of F is a separable element if its minimal polynomial is separable. If E is an
algebraic extension of F consisting only of separable elements, then E is a separable
extension of F . The field F is perfect if all its algebraic extensions are separable.
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So finite fields and fields with characteristic zero are perfect. We have seen an
example of an infinite field of characteristic 3 that has an inseparable extension.

Proposition 7.8.2 Finite separable extensions are simple.

Proof Let F be a field with a finite separable extension E . By Corollary 7.7.7 we
may assume that F is infinite. Since E is a finite extension field of F , it is generated
over F by finitely many elements of E that are algebraic over F . By induction if
therefore suffices to show that if E = F(a, b) for algebraic elements a, b ∈ E over
F , then there exists c ∈ E such that E = F(c).

Let f and g be the minimal polynomials over F of a and b, respectively. Since E
is separable, the roots ai of f are distinct, and so are the roots b j of g. Say a1 = a
and b1 = b. As F is infinite it has an element d different from (a − ai )/(b j − b)
for all i and j �= 1. Let c = a + db and define h(x) = f (c − dx) ∈ F(c)[x]. Then
h(b) = f (a) = 0 and h(b j ) �= 0 for j �= 1 as c − db j = a − d(b j − b) �= ai for all
i . So b is the only common root of h and g, and therefore also the only root of its
minimal polynomial p over F(c) since p divides both h and g. Thus p(x) = x − b
and b ∈ F(c). But then also a = c − db ∈ F(c), so F(c) = F(a, b). �

Theorem 7.8.3 Suppose E is a finite extension of a field F. Then E is a simple
extension of F if and only if there are only finitely many intermediate fields between
F and E.

Proof Assume E = F(a) and that a has minimal polynomial f ∈ F[x]. We define
a map η from the intermediate fields between F and E to divisors of f by letting
η(K ) = g, where g is the minimal polynomial of a over the intermediate field K .
The polynomial g will indeed be a divisor of f because f can be regarded as an
element of K [x] and f (a) = 0. Since there are only finitely many divisors of f we
know that there are only finitely many intermediate fields between F and E provided
we can show that η is injective. But this follows because if L is the subfield of K
generated by F and the coefficients of g, so L is uniquely determined by g, then
L = K . To verify this equality observe that g is evidently also irreducible over L ,
and K (a) = E = L(a) as E = F(a), so [E : K ] = deg(g) = [E : L], which shows
that K and L have the same degree over F .

To prove the opposite direction we may by Corollary 7.7.7 assume that F is
infinite, and of course with only finitely many fields between F and E .

We claim that the field F(a, b) fora, b ∈ E is generated over F by a single element
of E . By assumption there are only finitely many fields between F and E , and hence
finitely many fields of the form F(a + cb) for c ∈ F . Since F is infinite there is a
non-zero element c of F such that F(a + cb) = F(a). Thus cb = (a + cb) − a ∈
F(a + cb), so b ∈ F(a + cb) and F(a, b) = F(a + cb), proving the claim.

Choose d ∈ E such that [F(d) : F] is as large as possible, and this is by assump-
tion a finite number. If there exists an element u of E that does not belong to F(d),
then by the previous paragraph we can find an element v ∈ E such that F(v) contains
both d and u, so F(v) is strictly larger than F(d), and this is a contradiction. Hence
E = F(d). �
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Proposition 7.8.4 Let a be an algebraic element over a field F. Then a is separable
over F if and only if F(a) is a separable extension of F.

Proof We only need to show that the roots of the minimal polynomial f over F
of an element b ∈ F(a) are simple. So if f has n distinct roots, we must show that
n = deg( f ).

By Corollary 7.3.12 there are correspondingly n distinct extensions αi to F(b)
of any monomorphism α : F → L into an algebraically closed field. If the minimal
polynomial g of a over F(b) has m distinct roots, then again by the same corol-
lary each αi : F(b) → L has m extensions αi j to F(a). These are the mn possible
extensions of α : F → L to F(a).

Let h be the minimal polynomial of a over F . Since a is separable over F , the
number of distinct roots of h coincides with its degree. By the same corollary we
conclude that [F(a) : F] = mn. But a is evidently also separable over F(b), so by
the same corollary [F(a) : F(b)] = deg(g) = m. Hence

mn = [F(a) : F] = [F(a) : F(b)][F(b) : F] = m deg( f ).

�

Proposition 7.8.5 If E is a finite separable extension of a field F, and K is a finite
separable extension of E, then K is a finite separable extension of F.

Proof By Proposition 7.8.2 we know that E = F(a) for some a ∈ E . We need to
show that any element b ∈ K\F(a) is separable over F . Now b is separable over
F(a), and F(a) is a separable extension of F . So by the same reasoning as in the
previous proof, the number of extensions to F(a, b) of any monomorphism α : F →
L into an algebraically closed field equals [F(a, b) : F(a)][F(a) : F]. This also
equals [F(a, b) : F(b)][F(b) : F], so to obtain these extensions via F(b) requires
by Corollary 7.3.12 that a is separable over F(b) and that b is separable over F . �

Proposition 7.8.6 Let F be a field of prime number characteristic p. Then F is
perfect if and only if every element of F has a p-th root in F.

Proof Suppose F is perfect and let a ∈ F . Let b be a root of x p − a ∈ F[x]. Since
F is perfect the minimal polynomial f of b over F has only simple roots, and it must
divide x p − a = x p − bp = (x − b)p, so f (x) = x − b and b ∈ F .

Conversely, assume that every element of F has a p-th root. To show that F is
perfect, it is certainly enough to show that every irreducible polynomial f over F
has only simple roots. If f has non-simple roots, then by Corollary 7.6.4 it is of the
form f (x) = a0 + a1x p + · · · + anxnp, where ai ∈ F . Let bi ∈ F be the p-th root
of ai . Then by repeated use of the binomial formula in characteristic p, we get the
contradiction

f (x) = bp
0 + bp

1 x
p + · · · + bp

n x
np = (b0 + b1x + · · · + bnx

n)p.
�



Chapter 8
Galois Theory

Having an extension E of a field F , consider the group G(E/F) of automorphisms
of E that leave F fixed. Such automorphisms permute the roots of any polynomial
over F . We are interested in the situation when all the roots belong to E and are
distinct, so we require E to be a finite separable normal extension of F ; henceforth
called a Galois extension. Given this setup, one can define a map from the sub-
groups of G(E/F) to the intermediate extensions of F , which sends a subgroup H
to its fixed field EH = {a ∈ E | α(a) = a for α ∈ H}. It has an inverse map sending
an intermediate field K to G(E/K ). Moreover, one has [E : K ] = |G(E/K )| and
[K : F] = [G(E/F) : G(E/K )]. Finally, this correspondence restricts to a corre-
spondence between normal extensions and normal subgroups, and then G(K/F)

is isomorphic to G(E/F)/G(E/K ). We spend the first three sections proving this
beautiful result, known as the fundamental theorem in Galois theory.

Using this result, we then prove the fundamental theorem of algebra. Crucial in
these investigations is the Galois group of a polynomial over F . This is just G(E/F)

where E now is the splitting field of the polynomial. This will always be a subgroup
of Sn , where n is the number of distinct roots of the polynomial.

Returning to rulers and compasses, we characterize exactly what n-gons can be
constructed by these means. This is achieved by studying the Galois group of the
cyclotomic nth polynomial �n , which by definition is the monic polynomial over
C having the primitive nth roots of unity in C as its roots. It turns out that �n has
only integer coefficients, and is irreducible over Q. Also, if a ∈ C is any of these
roots, then Q(a) is the splitting field both of �n and of xn − 1. In addition, one has
|G(Q(a)/Q)| = φ(n), and G(Q(a)/Q) is isomorphic to the groupU (Zn) of units in
the ring Zn . We know that U (Zn) is cyclic exactly when n is either 2, 4, pm or 2pm

for odd primes p. Any Galois extension E of a field F for which G(E/F) is cyclic is
called cyclic. We characterize such extensions of degree n in terms of splitting fields
of irreducible polynomials over F of the form xn − b.

In the last three sections of the chapter we focus on the problem of solving polyno-
mial equations by radicals. This loosely speaking, means finding some generalized
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abc-formula involving extracting recursively square roots, cubic roots, etc. Math-
ematically this means that the splitting field of the polynomial should ultimately
belong to some extension of the original field by radicals. We prove the spectacular
result that in a field of characteristic zero, this can be done precisely when the Galois
group of the polynomial is solvable. We know that this group is a subgroup of Sn
when the polynomial has n distinct roots. But we have also seen that Sn is solvable if
and only if n ≤ 4. Indeed, the complex cubic and quartic equations were solved by
radicals already in the Renaissance. We refresh this work in the final section. How-
ever, no general such formulas exists for n ≥ 5. In fact, there exist polynomials over
C in any degree having symmetric groups as Galois groups. We prove this in two
different ways. One of these methods involves symmetric functions, to be defined
and studied in a separate section.

8.1 Automorphisms and Fixed Fields

Let E be an extension field of a field F . We denote by G(E/F) the group of auto-
morphisms of E that leave the elements of F fixed. Trivially we get a group under
composition this way. Now the crucial observation is that any element of G(E/F)

permutes the roots in E of any polynomial over F . The picture is complete when
all the roots belong to E , and when they are distinct. This sets the focus on finite
separable normal extensions.

Proposition 8.1.1 If E is a finite separable extension of a field F, then

|G(E/F)| ≤ [E : F].

Proof By Proposition7.8.2 we have E = F(a) for some algebraic element a. By
Corollary7.3.12 the number of possible extensions F(a) → F of the identity map
F → F equals the number of distinct roots of the minimal polynomial of a over
F . The number of these roots is obviously less than the degree [F(a) : F] of the
minimal polynomial. �

Example 8.1.2 By the proposition above we have |G(C/R)| ≤ [C : R] = 2. We
actually get equality here because if α ∈ G(C/R), then α(a + ib) = a + α(i)b for
a, b ∈ R, and as α(i)2 = −1, there are two possibilities α(i) = ±i corresponding to
the identity map and complex conjugation, which are indeed R-automorphisms of
C. ♦
Example 8.1.3 Any α ∈ G(Q(51/3)/Q) is determined by its value α(51/3) on the
generator 51/3. This value must also be a root of the irreducible polynomial x3 − 5,
and can only be real if α is the identity map. So G(Q(51/3)/Q) is trivial, whereas
[Q(51/3) : Q] = 3. ♦
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Definition 8.1.4 Let G be a subgroup of the group of automorphisms of a field E .
Then the fixed field of G is the subfield

EG ≡ {a ∈ E | α(a) = a for α ∈ G}

of E .

Lemma 8.1.5 Any finite collection of distinct monomorphisms from a non-trivial
field F into an extension field E of F is linear independent over E.

Proof Suppose this is not true. Then from a finite collection of monomorphisms
from F to E we may pick a least number of members α1, . . . , αn such that

a1α1 + · · · + anαn = 0

for some non-zero elements ai ∈ E . Clearly n > 1. Pick b ∈ E with α1(b) �= αn(b).
Since

a2(α1(b) − α2(b))α2 + · · · + an(α1(b) − αn(b))αn = 0,

we get a contradiction as a less number of members with non-zero coefficients can
obviously be picked from {α2, . . . , αn}. �

From the proof we see that the lemma remains valid when the monomorphisms
are replaced by e.g. multiplicative maps from a semigroup to the multiplicative
semigroup of an integral domain with the same definition of linear independence. In
particular, it holds for characters of abelian groups.

Theorem 8.1.6 If G is a finite subgroup of the group of automorphisms of a field
E, then

[E : EG] = |G|

provided [E : EG] < ∞.

Proof Say G = {α1, . . . , αn} with no repetitions, and let {a1, . . . , am} be a basis for
E over EG .

If m < n, then the system ∑

j

α j (ai )x j = 0

of m linear equations in the variables x j has a non-trivial solution {b j } ⊂ E .
Writing a ∈ E as a = ∑

ciai for ci ∈ EG , we therefore get

∑

j

α j (a)b j = 0

which contradicts the lemma.
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Ifm > n, then by arguing as above, we can find a set {b1, . . . , bk} ⊂ E of non-zero
members such that

k∑

i=1

α j (ai )bi = 0,

and we may assume that the number k ≤ n + 1 is the least such possible. Applying
α ∈ G to these equations and observing that {αα1, . . . , ααn} = {α1, . . . , αn}, gives

k∑

i=1

α j (ai )α(bi ) = 0.

Combining these two systems we see that

k∑

i=2

α j (ai )(biα(b1) − α(bi )b1) = 0.

By assumption all the coefficients biα(b1) − α(bi )b1 must vanish. So ci ≡ bib
−1
1 ∈

EG for i ≥ 1.
From

∑k
i=1 α j (ai )bi = 0, we get

∑k
i=1 α1(ai )ci = 0. Thus

∑k
i=1 aici = 0 and

ci = 0 as the ai ’s are linear independent over EG . But then bi = 0, which is a
contradiction. So m = n. �

Theorem 8.1.7 Let E be a finite separable extension of a field F. If H is a subgroup
of G(E/F), then G(E/EH ) = H and [E : EH ] = |G(E/EH )|.
Proof Obviously H is a subgroup of G(E/EH ). By Theorem8.1.6 and Proposi-
tion8.1.1 we have

|H | = [E : EH ] ≥ |G(E/EH )| ≥ |H |,

which gives the desired result. �

Theorem 8.1.8 Suppose E is a finite separable extension of a field F. Then the
following conditions are equivalent:

(i) E is a normal extension of F;

(ii) F is the fixed field of G(E/F);

(iii) [E : F] = |G(E/F)|.
Proof By Theorem8.1.6 we have [E : K ] = |G(E/F)| for the fixed field K of
G(E/F).

By Proposition7.8.2 we have E = F(a) for an algebraic element a. By Corol-
lary7.3.12 the number of possible extensions F(a) → F of the identity map F → F
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equals the number of distinct roots n of the minimal polynomial of a over F , which
is [E : F] as a is separable.

If E is a normal extension of F , these extensions map onto E by Theorem7.5.6,
so |G(E/F)| = n. But then [E : K ] = [E : F], so [K : F] = 1 and K = F . So (i)
implies (i i).

Assume (i i) holds. Consider f ∈ E[x] given by

f (x) = (x − α1(a)) · · · (x − αn(a)),

where αi are the elements of G(E/F).
Let ηi : E[x] → E[x] be the ring homomorphism obtained by letting αi act on

the coefficients. Then as G(E/F) = {αiα1, . . . , αiαn}, we get

ηi ( f )(x) = (x − αiα1(a)) · · · (x − αiαn(a)) = f (x),

so the coefficients of f are in the fixed field of G(E/F). By assumption these are
therefore in F , and f is actually a polynomial over F . By construction all the roots
of f belong to E , and a is one of them since G(E/F) contains the identity map.
Therefore E is the splitting field of f , and E is a normal extension by Theorem7.5.6.
So (i) holds.

The implication (i i) ⇒ (i i i) is immediate from the first paragraph in this proof.
Conversely, if (i i i) holds, then [E : K ] = [E : F], so K = F . �

Example 8.1.9 Leta ∈ Qbe a non-unital root of x5 − 1.ClearlyQ(a) is the splitting
field of x5 − 1 with distinct roots 1, a, a2, a3, a4. By Theorem7.5.6 it is a finite
separable normal extension of Q. Thus |G(Q(a)/Q)| = [Q(a) : Q] = 4 as a is a
root of the polynomial

f (x) = (x5 − 1)/(x − 1) = 1 + x + x2 + x3 + x4,

which is irreducible by Example7.1.8. The element α ∈ G(Q(a)/Q) which sends a
to a2 is clearly a generator, so G(Q(a)/Q) ∼= Z4. ♦
Example 8.1.10 Let a ∈ Q be a non-unital root of x3 − 1, and let α be the Q-
automorphism of E ≡ Q(21/3, a) given by α(a) = a2 and α(21/3) = a21/3. Let
G = {ι, α}. We claim that EG = Q(a221/3). To see this write any b ∈ E as a lin-
ear combination of the basis {1, 21/3, 22/3, a, a21/3, a22/3} for E over Q. Then the
requirement α(b) = b forces b to be of the form

b = c1 + c2(1 + a)21/3 + c3a2
2/3

for ci ∈ Q. The result now follows from 1 + a = −a2 and a = a4. ♦
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8.2 The Galois Group of a Polynomial

Definition 8.2.1 The Galois group of a polynomial f over a field F is the group
G(E/F), where E is the splitting field of f .

Example 8.2.2 Let f (x) = x2 − a be an irreducible polynomial over a field F of
characteristic different from 2. If b is a root of f , then −b is also a root, and b �= −b
in characteristic 2. So f is separable over F , and by Theorem7.5.6 its splitting field
F(b) is a finite separable normal extension of F . Thus the Galois group of f has
order two as |G(F(b)/F)| = [F(b) : F] = 2. ♦
Proposition 8.2.3 The Galois group G(E/F) of a polynomial over a field F with
n distinct roots in E is a subgroup of Sn.

Proof Say a1, . . . , an are the distinct roots. Every α ∈ G(E/F) produces a permu-
tation fα ∈ Sn of these roots, where fα(ai ) = α(ai ). The map G(E/F) → Sn which
sends α to fα is a monomorphism as E = F(a1, . . . , an). �

Example 8.2.4 TheGalois group of x4 − 2 ∈ Q[x] is the dihedral group D4, known
as the octic group. As for the details, first note that

x4 − 2 = (x − 21/4)(x + 21/4)(x − i21/4)(x + i21/4).

Thus E ≡ Q(21/4, i) is the splitting field of x4 − 2 over Q. Since Q has character-
istic zero, we know that E is a finite separable normal extension of Q. Therefore
|G(E/Q)| = [E : Q] = 8.

AnyQ-automorphism of E is determined by its value on i and 21/4, andmust send
these elements to±i and to±21/4 or±i21/4. The generatorsσ and τ of D4 correspond
to permutations of the roots 21/4, i21/4,−21/4,−i21/4. The first sends 21/4 to i21/4

and fixes i , and the second sends i to −i and fixes 21/4. In the complex plane the
roots are vertices of a square with center at the origin, and σ and τ correspond to the
90◦ counterclockwise rotation and the reflection about the real axis, respectively. ♦
Proposition 8.2.5 Let E be the splitting field of a polynomial xn − a over a field F
that contains all the nth roots of unity. Then E = F(b), where b is a root of xn − a,
and the Galois group of the polynomial is abelian.

Proof Let c ∈ F be a generator for the nth roots of unity. Then all the roots of
xn − a are of the form bci for a non-negative integer i . Hence E = F(b). Moreover,
if α, β ∈ G(E/F), then α(b) = bci and β(b) = bc j . Thus αβ(b) = bci+ j = βα(b).

�

Example 8.2.6 Let a be a root of the irreducible polynomial x2 + x + 1 over
Q(21/3). Since

x3 − 2 = (x − 21/3)(x − a21/3)(x − a221/3),

the splitting field of x3 − 2 ∈ Q[x] is E ≡ Q(21/3, a), so |G(E/Q)| = [E : Q] = 6.
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The six Q-automorphisms of E are those that send 21/3 to itself, or to a21/3 or
a221/3, and a to itself or a2. It is easy to see that G(E/Q) is isomorphic to the
dihedral group D3. While D3 is not abelian, the Galois group of x3 − 2 over Q(a)

is, as E = Q(a)(21/3) is the splitting field over Q(a), and G(E/Q(a)) ∼= Z2. ♦
Example 8.2.7 Let E ≡ Q(a), where a = eπ i/4. Then the roots of x4 + 1 are
a, a3, a5, a7, so E is the splitting field of this irreducible polynomial overQ. There-
fore |G(E/Q)| = [E : Q] = 4.AnyQ-automorphismof E is determined by its value
on a, which must also be a root of x4 + 1. Apart from the identity map, we get the
three automorphisms a �→ a3, a �→ a5 and a �→ a7, which all have degree two.
Therefore G(E/Q) ∼= Z2 × Z2. ♦

8.3 The Fundamental Theorem in Galois Theory

Definition 8.3.1 A Galois extension E of a field F is a finite separable normal
extension of F .

For example, the splitting field of a polynomial over a field F of characteristic
zero is a Galois extension of F .

Proposition 8.3.2 Suppose E is a Galois extension of a field F with an intermediate
field K . Then E is a Galois extension of K , and K is a finite separable extension of
F.

Proof By Theorem7.5.6 the field E has a splitting family of polynomials over F .
Regarding these as polynomials over K , we conclude by the same theorem that E
is a normal extension of K . Clearly it is also a finite extension. To see that it is a
separable one, consider any a ∈ E and its minimal polynomials f and g over F and
K , respectively. By assumption all the roots of f are distinct. To see that all the roots
of g are also distinct, by the division algorithm for polynomials, write f = gq + r
for q, r ∈ K [x] with deg(r) < deg(g). But f (a) = g(a) = 0 implies that r(a) = 0,
which contradicts the minimality of g unless r = 0. Hence all the roots of g are also
roots of f , and are therefore distinct.

Clearly K is a finite separable extension of F , but in general it cannot be expected
to be a normal one. �

The following result, fundamental in Galois theory, provides a correspondence
between fixed fields and automorphisms.

Theorem 8.3.3 Suppose E is a Galois extension of a field F. Let S be the set of
subfields of E containing F, and let G be the set of subgroups of G(E/F). Then the
maps G → S and S → G given by

H �→ EH and K �→ G(E/K ),
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respectively, are mutual inverses, i.e. K = EG(E/K ) and H = G(E/EH ). Also
[E : K ] = |G(E/K )| and [K : F] = [G(E/F) : G(E/K )]. Furthermore, the maps
restrict to bijective maps between normal extensions and normal subgroups, so K is
a normal extension of F if and only if G(E/K ) is a normal subgroup of G(E/F),
and in this case G(K/F) ∼= G(E/F)/G(E/K ).

Proof By the proposition E is a normal extension of K . By Theorem8.1.8, we
therefore get K = EG(E/K ). By the same theorem

|G(E/F)| = [E : F] = [E : K ][K : F] = |G(E/K )|[K : F].

Now H = G(E/EH ) holds by Theorem8.1.7, so we have mutual inverse maps.
We claim that K is a normal extension of F if and only if α(K ) = K for

α ∈ G(E/F). The forward implication is immediate from Theorem7.5.6. For the
backward implication, let α : K → F be a monomorphism that fixes the elements
of F . By Theorem7.3.8 we can extend α to the monomorphism β : E → F , and
Theorem7.5.6 tells us that β ∈ G(E/F). By assumption β(K ) = K , so α(K ) = K
and Theorem7.5.6 tells us that K is a normal extension of F . So our claim is true.

Thus if K is a normal extension of F , then for a ∈ K and α ∈ G(E/F), we
have α(a) ∈ K , so γ (α(a)) = α(a) for γ ∈ G(E/K ). Hence α−1γα ∈ G(E/K )

and G(E/K ) is a normal subgroup of G(E/F).
Conversely, ifG(E/K ) is a normal subgroupofG(E/F), thenα−1γα ∈ G(E/K )

for α ∈ G(E/F) and γ ∈ G(E/K ), so γ (α(a)) = α(a) for a ∈ K . Since K is the
fixed field of G(E/K ), we see that α(a) ∈ K . Similarly, we get α−1(K ) ⊂ K . So
α(K ) = K , and K is a normal extension of F .

Again by our claim, restricting α ∈ G(E/F) to a normal extension K of F gives
a homomorphism G(E/F) → G(K/F) with kernel G(E/K ). The last assertion in
the theorem now follows by the fundamental theorem for homomorphisms because

[G(E/F) : G(E/K )] = [K : F] = |G(K/F)|.

�

The maps G → S and S → G in the theorem above clearly reverse the inclusions
of subgroups and subfields.

Example 8.3.4 Continuing Example8.2.4, the Galois group G of x4 − 2 over Q
was identified with D4, where σ sends 21/4 to i21/4 and fixes i , and τ sends i to −i
and fixes 21/4.

The group G has four normal subgroups, namely

G1 = {ι, σ τ, σ 2, σ 3τ }, G2 = 〈σ 〉, G3 = {ι, τ, σ 2, σ 2τ }, G4 = 〈σ 2〉.

In addition, it has four non-normal subgroups of order two, namely

H1 = 〈σ 3τ 〉, H2 = 〈στ 〉, H3 = 〈σ 2τ 〉, H4 = 〈τ 〉.
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These are all the proper subgroups of G. Note that H1 and H2 are included in G1,
that H3 and H4 are included in G3, whereas G4 is included in G1,G2,G3, and that
these are all the non-trivial inclusions.

The corresponding fixed fields with inclusions reversed are

EG1 = Q(i21/2), EG2 = Q(i), EG3 = Q(21/2), EG4 = Q(i, 21/2),

which are normal extensions and indeed splitting fields of x2 + 2, x2 + 1, x2 − 2
and (x2 + 1)(x2 − 2), respectively, and

EH1 = Q((1 − i)21/4), EH2 = Q((1 + i)21/4), EH3 = Q(i21/4), EH4 = Q(21/4).

Note that EG3 is included in both EH3 and EH4 , as it should be.
To calculate for instance EG4 , let a ≡ 21/4 and write any b ∈ Q(a, i) as

b = b1 + b2a + b3a
2 + b4a

3 + b5i + b6ia + b7ia
2 + b8ia

3.

Since b ∈ EG4 if and only if σ 2(b) = b, and as σ 2(a) = −a and σ 2(i) = i , the
b j ’s with even j will vanish, whereas there are no constrains on those with odd j .
Hence EG4 = Q(i, 21/2), as claimed. Similarly, we see that b ∈ EG3 if and only if
σ 2(b) = b = τ(b). This will again force the b j ’s with even j to vanish, but now, in
addition b5 = 0 = b7, with no further constraints, so EG3 = Q(21/2). The other fixed
fields are calculated similarly. ♦

8.4 Proof of the Fundamental Theorem of Algebra

There are many proofs of the fundamental theorem of algebra. We choose a rather
elaborate one to illustrate the algebraic theory developed. It uses analytic properties of
real numbers from calculus, whichwe for the sake of completeness, prove rigorously.
The second assertion of the lemma below is known as the intermediate value theorem,
based on the principle that in the plane, always pressing the pencil down, you need
to cross an infinite line to get from one side to another. All this can be put in the
conceptual context of continuity and connectedness, but this belongs to analysis, and
ought perhaps to be minimized here.

Lemma 8.4.1 The square root of a complex number exists as a complex number.
Any polynomial over R of odd degree has a real root.

Proof We claim that the square root of a positive real number r exists as a real
number. The reader is encouraged towork out a recursive procedure using the decimal
system and the division algorithm to find a Cauchy sequence {an} of positive rational
numbers such that a2n → r . Then

√
r ≡ lim an belongs to R by completeness, and

as the notation suggests, we have
√
r
2 = (lim an)2 = lim a2n = r . The square root of

the complex number reiθ is then
√
reiθ/2.
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Say f ∈ R[x] has odd degree, and consider the evaluation at numbers as a function
f from R to R. The highest power of x , when replaced by a real number with large
absolute value, will dominate the value of f at that number, and since this power
is odd, we can find a, b ∈ R with a < b and such that f (a) < 0 and f (b) > 0. Let
s ∈ R be the supremum of the non-empty set X ≡ {c ∈ [a, b] | f (c) ≤ 0}. Clearly
s ∈ [a, b〉. By definition of s there are numbers cn ∈ X such that cn → s. Then
f (s) = lim f (cn) since we are dealing with a polynomial, and can use the triangle
inequality. Thus f (s) ≤ 0. If f (s) < 0, again using that f is a polynomial, we can
find ε > 0 small enough such that s + ε ∈ X , which is absurd. So f (s) = 0. �

Theorem 8.4.2 The field of complex numbers is the algebraic closure of the real
numbers.

Proof We show that any polynomial f (x) = a0 + · · · + anxn ∈ C[x] factors into
first degree polynomials over C. Consider

g(x) = (x2 + 1) f (x) f (x) ∈ R[x],

where bar means complex conjugating the coefficients of f . Let E be the splitting
field of g over R. Thus E is a Galois extension of R that contains C as x2 + 1 has
roots ±i . It suffices to prove E = C.

Let H be a Sylow 2-subgroup of G ≡ G(E/R). Then by the fundamental result
of Galois theory, we have [E : EH ] = |H | = 2m and [EH : R] = [G : H ] = k for a
non-negative integer m and an odd natural number k. By Proposition7.8.2 the field
EH is a simple extension of R with a root of a minimal polynomial of degree k. By
the lemma this irreducible polynomial over R must have a real root, which means
that k = 1. Thus

2[E : C] = [E : C][C : R] = [E : R] = [E : EH ][EH : R] = 2m,

so |G(E/C)| = 2m−1. If m ≥ 2, pick a subgroup K of G(E/C) of order 2m−2. The
existence of such a subgroup is again guaranteed by Theorem4.20.2. Then

2m−2[EK : C] = [E : EK ][EK : C] = [E : C] = 2m−1,

so [EK : C] = 2. By Proposition7.8.2 the field EK is a simple extension of C with a
root of a second degree minimal polynomial h, say h(x) = x2 + 2ax + b for a, b ∈
C. By the lemma we can form the complex number

√
a2 − b. But then we get a

contradiction because h is irreducible over C, and yet

h(x) = (x + a +
√
a2 − b)(x + a −

√
a2 − b).

To avoid this, we must have m = 1, and then [E : R] = 2, so E = C. �
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8.5 Primitive Roots and Cyclotomic Polynomials

Definition 8.5.1 Let n ∈ N. A primitive nth root of unity in a field F is an element
a ∈ F such that an = 1, but am �= 1 for every natural number m < n.

By Proposition7.7.5 we know that the nth roots of unity in a non-trivial field F
form a cyclic group. A primitive nth root of unity in F will obviously be a generator
of this group, but the converse is not true; there might not even be any primitive nth
roots of unity in F .

For instance, the number −1 is a generator for the cyclic group {±1} ∼= Z2 of
roots of x4 − 1 inR, but it is not a primitive 4th root of unity. Obviously, the number
i is a primitive 4th root of unity in the extension field C of R. There are two such
primitive roots inC, namely±i . In general there are φ(n) primitive nth roots of unity
in C, namely the numbers e2π im/n , where m is coprime to n.

Proposition 8.5.2 There exists a primitive nth root of unity in some extension field
E of a field F if and only if the characteristic of F is either zero or does not divide
n.

Proof If a is a primitive nth root of unity in some extension field E of F , then
1, a, . . . , an−1 are n distinct roots of f (x) ≡ xn − 1. Thus 0 �= f ′(x) = nxn−1,
which means that the characteristic of F is zero or cannot divide n.

If the characteristic of F is zero or does not divide n, and f (x) = xn − 1, then
f ′(x) = nxn−1 �= 0 and f has n distinct roots in its splitting field E over F . Any
generator of the cyclic group of these roots will then be a primitive n-root of unity
in E . �
Definition 8.5.3 The nth cyclotomic polynomial is the monic polynomial

�n(x) =
∏

a

(x − a)

over C, where the product runs over all primitive nth roots of unity in C.

Now if we factorize the polynomial xn − 1 into linear factors and gather those
factors where the roots of unity have the same periode d, we get the formula

xn − 1 =
∏

�d(x),

where we take the product over all natural numbers d that divide n.
By what has been said, the polynomial �n(x) has degree φ(n), and if n is a prime

number, then
�n(x) = 1 + x + · · · + xn−1.

It is also easy to see that �4(x) = x2 + 1 and �6(x) = x2 − x + 1. This suggests
that all the coefficients of�n(x) are±1, but this is not true; the first counter example
occur for n = 105. However, we have the following fundamental result.
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Theorem 8.5.4 The cyclotomic polynomials belong to Z[x] and are irreducible
over Q.

Proof The splitting field E of xn + 1 ∈ Q[x] is a Galois extension of the field Q of
characteristic zero. By the fundamental result of Galois theory, the rational numbers
is the fixed field ofG(E/Q). AnyQ-automorphism of E takes a primitive nth root of
unity to another primitive nth root of unity, so the corresponding ring endomorphism
of E[x] fixes �n . Thus the coefficients of �n(x) belong to Q. But �n is a monic
factor of xn − 1, and from the proof of Proposition7.1.5, we see that this is only
possible if �n ∈ Z[x].

The same proposition tells us that �n is irreducible overQ if it is irreducible over
Z. Say f ∈ Z[x] is an irreducible factor of �n . We aim to show that �n = f by
proving that all the nth primitive roots of unity are roots of f . Say a is a root of f .
Then it is clearly a primitive nth root of unity. If m is prime number that does not
divide n, then am , being a generator of the cyclic group of all nth roots of unity, is
again a primitive nth root of unity, and clearly all such roots are obtained by repeating
this process finitely many times. Hence it suffices to show that am is a root of f .

If this is not the case, we can write �n = f g, where g ∈ Z[x] and g(am) = 0. By
the division algorithm for polynomials over Q we can write g(xm) = f (x)q(x) +
r(x) for r, q ∈ Q[x] with deg(r) < deg( f ). But r(a) = 0, so r = 0 since f is irre-
ducible over Q and is therefore the minimal polynomial of a over Q. As above we
see that q ∈ Z[x]. By h̄ we mean the polynomial over Zm obtained by applying the
quotient map Z → Zm to the coefficients of h ∈ Z[x]. As am ≡ a (modm), we see
that ḡ and f̄ have a common root b = [a], which must also be a root of xn − [1].
Thus the derivative of this polynomial must vanish at b, so [n]bn−1 = [0]. Since m
and n are relatively prime, we get bn−1 = 0 and b = 0, which obviously cannot be a
root of xn − [1]. This is a contradiction. �

Definition 8.5.5 We denote the group of units in a unital ring R by U (R).

Note that U (F) = F∗ for a field F .
The invertible elements of the ring Zn are the elements [m] with gcd(m, n) = 1,

that is, those m having integers k and l such that mk + nl = 1, or [m][k] = 1 for
some integer k. So the order of U (Zn) is φ(n).

Theorem 8.5.6 Suppose a is a primitive nth root of unity in C. Then Q(a) is the
splitting field both of �n and of xn − 1 regarded as polynomials over Q. Moreover,
we have |G(Q(a)/Q)| = [Q(a) : Q] = φ(n) and G(Q(a)/Q) ∼= U (Zn).

Proof Since a generates all roots of unity in C, the first statement is immedi-
ate. Clearly Q(a) is a Galois extension of Q. Since �n has degree φ(n) and is
by the theorem above, the minimal polynomial of a over Q, we therefore get
|G(Q(a)/Q)| = [Q(a) : Q] = φ(n).

Define a map f : U (Zn) → G(Q(a)/Q) by [m] �→ σm , where σm is uniquely
determined by σm(a) = am . This is clearly a well-defined monomorphism. It is sur-
jective because if σ ∈ G(Q(a)/Q), then σ(a) is again a primitive nth root of unity,
that is, of the form am with m is coprime to n, so σ = σm and [m] ∈ U (Zn). �
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By Theorem1.12.13 we know that U (Zn) is cyclic exactly when n is 2, 4, pm or
2pm , where p is an odd prime number.

Example 8.5.7 The Galois groups of �8 and x8 − 1 are both isomorphic toU (Z8),
which is the group with four elements such that all non-unital elements have square
one. ♦
Example 8.5.8 The Galois groups of both x4 + x2 + 1 and x6 − 1 are Z2. Indeed,
since y2 + y + 1 = �3(y), the splittingfield E of x4 + x2 + 1will contain the square
root of e2π i/3, and thus the primitive 6th root of unity a ≡ eπ i/3, so E = Q(a),
which is also the splitting field of x6 − 1 over Q. In both cases the Galois group is
G(Q(a)/Q) = U (Z6) = {[1], [5]} ∼= Z2, which is cyclic, as expected. ♦

8.6 Constructable Polygons

Wewill here investigate what regular n-gons are constructable by ruler and compass.

Lemma 8.6.1 We can construct the square root of any positive real number.

Proof Say OA has length a ∈ R. Prolong this line to the left with a unit length
arriving at the point P . Going via the midpoint of AP , form an upper semicircle that
intersects A and P . Erect a perpendicular line from O that intersects the semicircle
at Q. The triangles OQP and OQA are similar, and comparing two and two sides,
we see that the length of OQ is the square root of a. �

Lemma 8.6.2 The number φ(n) is a power of two if and only if the odd primes
dividing n are Fermat primes with squares that do not divide n.

Proof Say n = 2n0 pn11 · · · pnmm for odd primes pi and ni ,m ∈ N. Now

φ(n) = 2n0−1 pn1−1
1 · · · pnm−1

m (p1 − 1) · · · (pm − 1)

is a power of two if and only if for all i ≥ 1, we have ni = 1 and pi = 2ki + 1 for
ki ∈ N. For 2ki − 1 to be a prime number, the number ki must be a power of two
because if ki = rp for an odd prime p, then 2ki − 1 would be divisible by 2r + 1. �

Theorem 8.6.3 The regular n-gon is constructable by ruler and compass if and only
if the odd primes dividing n are Fermat primes with squares that do not divide n.

Proof Clearly a regular n-gon is constructable by ruler and compass if and only if
the angle 2π/n is constructable if and only if cos(2π/n) is constructable if and only
if 2 cos(2π/n) = a + 1/a, with a = e2π i/n , is constructable.

Let E be the splitting field of xn − 1 over Q. By Theorem8.5.6 we have [E :
Q] = φ(n). Any non-trivial α ∈ G(E/Q) obviously satisfies α(a) = am for some
integer m between 1 and n, and then
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α(a + 1/a)) = am + 1/am = 2 cos(2mπ/n),

which equals 2 cos(2π/n) if and only if m = n − 1. Thus the subgroup of G(E/Q)

with fixed field Q(a + 1/a) is {ι, β}, where β(a) = 1/a. By the fundamental result
in Galois theory we therefore get [Q(a + 1/a) : Q] = φ(n)/2.

If a regular n-gon is constructable, by Corollary7.4.4 we know that [Q(a + 1/a) :
Q] is a power of two, and the same must therefore be true for φ(n). By the lemma
above we have proved the forward implication.

For the converse, wemay assume by the lemma above that φ(n) is a power of two.
Then by Theorem4.20.2 there is an ascending chain of subgroups Gi of G(Q(a)/Q)

of order 2i with G1 = {ι, β} and Gk = G(Q(a)/Q). By the fundamental result in
Galois theory we have for the corresponding fixed fields that

[EGi−1 : EGi ] = 2

for i ≥ 2, and EG1 = Q(a + 1/a). As a + 1/a is real they are all subfields of R,
so EGi−1 = EGi (ai ), where the ai ’s are real roots of quadratic polynomials over
EGi that can be solved using the high school formula for second degree equations.
Therefore EGi−1 = EGi (bi ) for roots bi of positive real numbers. By Lemma8.6.1
and Proposition7.4.7 we conclude that all numbers inQ(a + 1/a) are constructable.
In particular, the number a + 1/a is constructable, and we can construct the regular
n-gon. �

Example 8.6.4 The numbers 22
k + 1 are prime for k = 0, 1, 2, 3, 4. These are the

first 5 Fermat primes. Now k = 5 gives a number that is divisible by 641, disprov-
ing Fermat’s conjecture that all numbers of such a form are primes. Anyway, we
conclude that the first five regular p-gons for p a prime that are constructable by
ruler and compass correspond to the numbers 3, 5, 17, 257 and 65537. Already the
construction of the regular 17-gon is quite intricate.

As for non-primes, the regular 60-gon is constructable because 60 = 22 · 3 · 5 and
both 3 and 5 are Fermat primes. However, the regular 18-gon is not constructable,
for while 3 is a Fermat prime, its square divides 18. ♦

8.7 Cyclic Extensions

Definition 8.7.1 A Galois extension E of a field F is a cyclic extension of F if
G(E/F) is cyclic.

In Sect. 8.5 we saw that the splitting fields of xn − 1 ∈ Q[x] are cyclic extensions
of Q precisely when n is 2, 4, pm or 2pm , where p is an odd prime number.

Splitting fields of polynomials over finite fields are separable extensions, and are
therefore cyclic extensions by Theorem7.7.11.
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Lemma 8.7.2 Suppose E is a field, and that we have a map f : G → E∗, where G
is a subgroup of the group of all automorphism of E. Then there exists an element
a ∈ E∗ such that f (α) = α(a−1)a if and only if f (αβ) = α( f (β)) f (α).

Proof The forward implication is immediate. As for the backward implication, by
Lemma8.1.5 there exists b ∈ E∗ such that

a ≡
∑

β∈G
f (β)β(b) �= 0

as all f (β) �= 0. Thus

α(a) =
∑

β

α( f (β))αβ(b) = f (α)−1
∑

β

f (αβ)αβ(b) = f (α)−1a.

�

Lemma 8.7.3 Suppose E is a finite extension of a field F, and that G(E/F) is
cyclic of order n with generator α. If E contains a primitive nth root b of unity, then
b = α(a)a−1 for some a ∈ E∗.

Weare going to apply the lemma for b ∈ F , which simplifiesmatters.Nevertheless
we supply a proof in the general case.

Proof By the lemma above it suffices to define a map f : G(E/F) → E∗ such that
f (α) = b and with the property

αi ( f (α j )) f (αi ) = f (αiα j )

for all i, j ∈ N. Set f (ι) = 1 and f (αm) = αm−1(a) · · · α(a)a for m ∈ N.
For consistency we must show that αn−1(a) · · · α(a)a = 1. As α(a) is another

primitive nth root of unity, we can write α(a) = ak for k coprime to n. Thus
αn−1(a) · · · α(a)a = ar , where

r(k − 1) = (1 + k + · · · + kn−1)(k − 1) = kn − 1.

But kn ≡ 1 (mod n) as αn = ι, so ar = 1.
Now

f (αiα j ) = f (αi+ j ) = αi+ j−1(a) · · · α(a)a,

whereas

αi ( f (α j )) f (αi ) = αi (α j−1(a) · · · α(a)a)αi−1(a) · · · α(a)a = αi+ j−1(a) · · · α(a)a.

�
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Theorem 8.7.4 Let F be a field that contains a primitive nth root of unity. Then E
is a finite cyclic extension of F of degree n if and only if E is the splitting field of an
irreducible polynomial over F of the form xn − b. Moreover, in this case E = F(a)

for a root a of xn − b.

Proof For the forward implication, let α be a generator of G(E/F). By the previous
lemma there is a ∈ E∗ such that α(a) = ca, where c ∈ F is a primitive nth root
of unity. Then αm(a) = cma for all m ∈ N, so αm(an) = cmnan = an and an ∈ F .
Set b = an . Then all the roots of xn − b ∈ F[x] are of the form cma, and one can
obviously get from one to another by applying integer powers of α. So any factor of
xn − b over F will have n distinct roots, showing that xn − b is irreducible over F .
This shows that E = F(a) and that E is the splitting field of xn − b.

Conversely, if E is the splitting field of an irreducible polynomial xn − b ∈ F[x]
with root a ∈ E , then all its roots are of the form cia for an integer i . Clearly
there will be n distinct ones, so E = F(a) is a Galois extension of F . Define a
map Zn → G(E/F) by [i] �→ αi , where αi (a) = cia. This is clearly a well-defined
monomorphism which is surjective because |G(E/F)| = [E : F] = n = |Zn|. �

8.8 Polynomials Solvable by Radicals

Definition 8.8.1 We say that a field E is an extension of a field F by radicals
if there are elements ai ∈ E and ni ∈ N such that E = F(a1, . . . , am) and anii ∈
F(a1, . . . , ai−1) with a

n1
1 ∈ F .

Thus Q(21/3, (5 + 21/3)1/2) is an extension of Q by radicals as 2 ∈ Q and 5 +
21/3 ∈ Q(21/3).

Definition 8.8.2 A polynomial over a field F is solvable by radicals if its splitting
field is contained in some radical extension of F .

Hence a polynomial over a field F is solvable by radicals if every root of it can
be obtained using field operations and taking nth roots in any finite combination.

Lemma 8.8.3 If E is a splitting field of xn − a over a field F of characteristic zero,
then G(E/F) is a solvable group.

Proof By Proposition8.5.2 we may pick a primitive nth root b of unity in F . If
c is a root of xn − a, then cb is also a root, so b = c−1(cb) ∈ E and F(b) ⊂ E .
Now F(b) is a Galois extension of F being the splitting field of xn − 1 over a field
of characteristic zero. By the fundamental result in Galois theory, we deduce that
G(E/F(b)) is a normal subgroup of G(E/F). So we have a normal series

{ι} � G(E/F(b)) � G(E/F).

By Proposition8.2.5 the group G(E/F(b)) is abelian, and again by the fundamental
result of Galois theory, we see thatG(E/F)/G(E/F(b)) ∼= G(F(b)/F), which also
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is abelian because any F-automorphism α of F(b) is of the form α(b) = bm for an
integer m and such automorphisms will commute. �

Lemma 8.8.4 Say Fr is an extension by radicals of a field F of characteristic zero
with intermediate fields Fi . Then there exists a normal extension Es by radicals of
F containing Fr and with intermediate fields E j such that E j is a splitting field of a
polynomial of the form xm j − a j ∈ E j−1[x].
Proof Say Fi is a simple extension of a root of xni − bi ∈ Fi−1[x]. Let n = n1 · · · nr
and let c ∈ F be a primitive nth root of unity. Let K be the splitting field of g1(x) ≡
(xn − 1)(xn1 − b1) ∈ F[x]. Clearly F1 ⊂ K and c ∈ K . We obviously also get an
ascending chain of intermediate fields E j between F and K such that each one is a
splitting field of a polynomial of the form xm − a over the former one.

Next we construct a normal extension L of F that contains K and F2. Set

f2(x) =
∏

α∈G(K/F)

(xn2 − α(b2)) ∈ K [x].

Since we are working in characteristic zero, we know that K is a Galois extension
of F , and since f2 is clearly fixed under the action of the elements of G(K/F) on its
coefficients, we see that f2 ∈ F[x]. Then the splitting field L of g2 ≡ g1 f2 ∈ F[x]
clearly has the desired properties. We get further intermediate fields E j between K
and L such that each one is a splitting field of a polynomial of the form xm − a over
the former one. Continuing this way gives the desired normal extension by radicals.

�

Theorem 8.8.5 A polynomial is solvable by radicals over a field of characteristic
zero if and only if its Galois group is solvable.

Proof Say we have a polynomial f over a field F of characteristic zero, and let E
be its splitting field over F , so E is a Galois extension of F since we are working in
characteristic zero.

Suppose that f is solvable by radicals. By the previous lemma we can assume
that E is contained in a normal extension by radicals Es of F which contains Fr and
has intermediate fields E j such that E j is a splitting field of a polynomial of the form
xm j − a j ∈ E j−1[x].

By the fundamental result of Galois theory, we get a normal series

{ι} � G(Es/Es−1) � G(Es/Es−2) � · · · � G(Es/F)

which by the first lemma above has solvable quotients

G(Es/Es−i )/G(Es/Es−i+1) ∼= G(Es−i+1/Es−i ).

Thus G(Es/F) is solvable, and so is its homomorphic image

G(E/F) ∼= G(Es/F)/G(Es/E).



298 8 Galois Theory

Conversely, suppose G(E/F) is solvable. Say [E : F] = n and assume that F
has a primitive nth root of unity.

Since the group is finite, it has a normal series of groups Gi with cyclic quotients
Gi−1/Gi . By the fundamental result in Galois theory, the fixed field Ei ≡ EGi is
a normal extension of F , and thus also normal over Ei−1, and therefore is a cyclic
extension of Ei−1. By Theorem8.7.4 we know that Ei is the splitting field of a poly-
nomial xni − bi ∈ Ei−1[x], so Ei = Ei−1(ai ), where a

ni
i = bi . Thus f is solvable by

radicals.
Suppose F does not contain a primitive nth root of unity. Since we are working

in characteristic zero there is such a root a in E . Now E(a) is the splitting field
of f regarded as a polynomial over F(a). Moreover, we have a monomorphism
G(E(a)/F(a)) → G(E/F) given by restriction of automorphisms. They will map
into E under restriction because E is a normal extension of F . A subgroup of a
solvable group is solvable, so G(E(a)/F(a)) is solvable. By the paragraph above
we know that E(a) is an extension by radicals of F(a), and hence also of F . Since
E ⊂ E(a) we conclude that f is solvable by radicals also in this case. �

We know that the Galois group of a polynomial over a field F with n distinct
roots can be embedded in the symmetric group Sn . Since Sn is not solvable if and
only if n ≥ 5, we see that polynomials of degree less than 5 are solvable by radicals
when F has characteristic zero. Explicit formulas to this effect can be found for
such polynomials over C, and we will return to that in Sect. 8.10. For n ≥ 5 no such
general formulas exist because in this case we can find polynomials over subfields
of C, and sometimes over Q, such that their Galois groups are all of Sn . We look at
criteria that will guarantee this.

Definition 8.8.6 A subgroup G of Sn is transitive if it acts transitively on the set
{1, . . . , n}.
Proposition 8.8.7 If p is a prime number and G is a transitive subgroup of Sp that
contains a transposition, then G = Sp.

Proof Since G acts transitively on X ≡ {1, . . . , p}, we have [G : Gx ] = p, where
Gx is the isotropy group of x ∈ X . Thus p divides the order of G, and by Corol-
lary4.20.3 it has an element of order p, or in other words, a p-cocycle σ . We may
assume that σ = (

1 · · · p) and τ ≡ (
1 n

) ∈ G for some n ≤ p.
Now σmτσ−m = (

m m + n
)
, so

(
p − 1 p

) ∈ G if n = p. If n < p, then

(
1 2n

) = (
n 2n

) (
1 n

) (
n 2n

)−1 ∈ G.

Continuing this shows that
(
1 mn

) ∈ G. Pick the largest integerm such thatmn ≤ p.
Since p is prime,weknow that 1 ≤ k ≡ p − mn < n, soweget an element

(
1 k

) ∈ G
after conjugating

(
1 mn

)
by σ k . By repeating the whole process finitely many times

we get k = 2, so
(
1 2

) ∈ G, and again
(
p − 1 p

) ∈ G. The result then follows from
Proposition4.11.3. �
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Proposition 8.8.8 A polynomial over a field is irreducible if and only if its Galois
group is a transitive subgroup of the symmetric group on its distinct roots.

Proof Say f is a polynomial over a field F with n distinct roots ai in its splitting
field E . Consider its Galois group G(E/F) as a subgroup of Sn .

If f is irreducible over F , then F(ai ) ∼= F[x]/( f ) ∼= F(a j )under an isomorphism
that sends ai to a j and fixes each element of F . Since E is a normal extension of F
we can extend this map to an automorphism α ∈ G(E/F), showing that the Galois
group is a transitive subgroup of Sn .

Conversely, ifG(E/F) is transitive, then if ai is a root of an irreducible factor g of
f , then α(ai ), and thus every root of f will also be a root of g. Thus f is proportional
to g. �

Theorem 8.8.9 Say f ∈ Q[x] is an irreducible polynomial of prime number degree
p that has exactly two non-real roots inC. Then the Galois group of f is isomorphic
to Sp. Thus f is not solvable by radicals when p ≥ 5.

Proof Let E ⊂ C be the splitting field of f overQ. SinceQ has characteristic zero,
the irreducible polynomial f has p distinct roots. By the proposition above G(E/Q)

is isomorphic to a transitive subgroup of Sp. Since the coefficients of f are real, the
operation of complex conjugation sends a root to a root and fixes each element ofQ.
Since E is a normal extension ofQwe can extend this operation to an automorphism
α ∈ G(E/Q). Clearly α fixes each real root and permutes the two non-real ones, so
it is a transposition. By Proposition8.8.7 we therefore get G(E/Q) ∼= Sp. �

Example 8.8.10 The polynomial f (x) = x5 − 6x + 3 ∈ Q[x] is not solvable by
radicals. To see this, first observe that by Eisenstein’s criterion it is irreducible over
Q. Next, drawing its graph, we see that f has exactly three real roots, and thus two
non-real ones by the fundamental theorem of algebra. The theorem above then kicks
in.

Being slightly more rigorous about the roots, we notice that f changes signs at
real values sufficiently many times for it to have at least three real roots according to
the proof of Lemma8.4.1. Also we see that 5x4 − 6 = f ′(x) = 0 has precisely two
real roots ±(6/5)1/4, which accounts for no more changes of signs for f .

Similarly, we see that x5 − 4x + 2 ∈ Q[x] is not solvable by radicals. Using
Descartes’ rule of signs in combination with the proof of Lemma8.4.1, one also
sees that the irreducible polynomial x7 − 10x5 + 15x + 5 ∈ Q[x] has exactly two
non-real roots, and is therefore not solvable by radicals.

Of course, there are also polynomials over Q of degree higher than five that are
solvable by radicals. The polynomial x13 − 1 is one such example. In the next section
wewill however construct polynomials of any degree greater than four over subfields
of C that are not solvable by radicals. ♦
Proposition 8.8.11 Any irreducible polynomial over a field F with a root in an
extension by radicals of F is solvable by radicals.
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Proof By the lemma above any extension by radicals of F with a root of the polyno-
mial can be contained in a normal extension by radicals of F . Since the polynomial is
irreducible, this normal extensionmust also contain a splittingfield of the polynomial,
so it is solvable by radicals. �

8.9 Symmetric Functions

Consider the field F(x1, . . . , xn) of rational functions over a field F . Any σ ∈ Sn
induces an F-automorphism ησ on F(x1, . . . , xn) uniquely determined by ησ (xi ) =
xσ(i) for all i . Clearly the map σ �→ ησ is a monomorphism

Sn → G(F(x1, . . . , xn)/F).

Definition 8.9.1 A symmetric function in x1, . . . , xn over a field F is an element
f ∈ F(x1, . . . , xn) such that ησ ( f ) = f for all σ ∈ Sn .

Let E ⊂ F(x1, . . . , xn) be the fixed field of Sn . Consider f ∈ F(x1, . . . , xn)[y]
given by

f (y) =
n∏

i=1

(y − xi ).

Clearly f is fixed by the mapping induced by ησ , so its coefficients belong to E .

Definition 8.9.2 The number (−1)i times the coefficient of yn−i in
∏

(y − xi ) is
called the elementary symmetric function si in x1, . . . , xn .

Note that

s1 = x1 + x2 + · · · + xn
s2 = x1x2 + x1x3 + · · · + xn−1xn

·
sn = x1x2 · · · xn

Theorem 8.9.3 Every symmetric function in x1, . . . , xn is a rational function of
the elementary symmetric functions si , and F(x1, . . . , xn) is a normal extension of
F(s1, . . . , sn) of degree n! with

G(F(x1, . . . , xn)/F(s1, . . . , sn)) ∼= Sn.

Proof Clearly K ≡ F(s1, . . . , sn) ⊂ E . Note that F(x1, . . . , xn) is a splitting field
of a separable polynomial

∏
(y − xi ) which is of degree n over K . By transitivity of

the degree of extensions, we have



8.10 Cubic and Quartic Equations 301

[F(x1, . . . , xn) : K ] ≤ n!

which combined with

[F(x1, . . . , xn) : E] = |Sn| = n!

yields E = K . For the last claim in the theorem observe that for our Galois extension
we have

[F(x1, . . . , xn) : K ] = |G(F(x1, . . . , xn)/K )|,

so Sn is embedded into a group of the same finite order. �

Example 8.9.4 The symmetric polynomial x21 + x22 + x23 can obviously be written
as s21 − 2s2. ♦

By a countability argument we can pick real numbers a1, . . . , an such that ai is
transcendental overQ(a1, . . . , ai−1) with a1 transcendental overQ. Then a1, . . . , an
are said to be independent transcendental elements over Q.

The Q-homomorphism F(x1, . . . , xn) → F(a1, . . . , an) that sends xi to ai is
clearly a Q-automorphism. On the level of polynomials in y over these fields it
sends

∏
(y − xi ) to

∏
(y − ai ). Evaluating the elementary polynomial si at the num-

bers a1, . . . , an produce ti ∈ F(a1, . . . , an). As G(F(x1, . . . , xn)/F(s1, . . . , sn)) ∼=
G(F(a1, . . . , an)/F(t1, . . . , tn)) we immediately get the following result from the
theorem above.

Theorem 8.9.5 Let a1, . . . , an be independent transcendental elements over Q.
Then the Galois group of the polynomial

∏
(y − ai ) over the subfield of R gen-

erated by the elementary symmetric functions si evaluated at the ai ’s is isomorphic
to Sn, rendering the polynomial not solvable by radicals for n ≥ 5.

8.10 Cubic and Quartic Equations

As we have seen, cubic and quartic polynomials over fields of characteristic zero are
solvable by radicals.

The renaissance Italians solved the complex cubic equation

x3 + ax2 + bx + c = 0

by the following trickery. Translate away the quadratic term by y = x + a/3. Then

y3 + py = q

for constants p and q that depend on a, b and c. The ingenious step is to make
the ansats y = u + v, where uv = r should only depend on p and q and should be
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adjusted correctly to simplify matters. Plugging this in gives

q = u3 + 3u2v + 3uv2 + v3 + p(u + v) = u3 + v3 + (3r + p)(u + v).

As v3 = r3/u3, we get a quadratic equation in u3 if we set r = −p/3, namely the
equation

(u3)2 − qu3 − p3/27 = 0.

This gives
u3 = q/2 ±

√
q2/4 + p3/27

and
v3 = r3/u3 = q/2 ∓

√
q2/4 + p3/27,

where the square root is any complex number with square q2/4 + p3/27. Hence we
get three solutions

yn = ωn 3

√
q/2 +

√
q2/4 + p3/27 + ω3−n 3

√
q/2 −

√
q2/4 + p3/27,

where ω ∈ C is a 3-rd primitive root of unity and the two cube roots are any chosen
ones. We have not missed any complex number in the substitution y = u + r/u as
u2 − yu + r = 0 has complex solutions u for any y and r .

How do we approach this from the point of view of Galois theory? Let ai be n
complex independent transcendental elements over Q, and let ti be the elementary
symmetric polynomial si evaluated at these ai ’s. Then the Galois group of

∏
(x − ai )

over the subfield of C generated by the ti ’s is Sn . Let us first consider n = 2.
The Galois group of the quadratic polynomial

x2 − t1x + t2

is S2 ∼= {ι, τ }, where τ transposes a1 and a2. Clearly (a1 − a2)2 is fixed by S2, so
by the previous section, it belongs to the rational field Q(t1, t2) generated by the
coefficients t1 and t2. Explicitly, we get

(a1 − a2)
2 = t21 − 4t2,

which combined with a1 + a2 = t1 gives the familiar formula

ai = t1/2 ±
√
t21 /4 − t2

for the roots in terms of the coefficients.
The Galois group of the cubic polynomial
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x3 − t1x
2 + t2x − t3

has the normal series
{ι} � A3 � S3

with A3
∼= Z3 and S3/A3

∼= Z2. Let

U = a1 + ωa2 + ω2a3 and V = a1 + ω2a2 + ωa3.

Since the generator of A3 permutes a1, a2 and a3 cyclically, and thus multiplies U
by ω and V by ω2, we see that both U 3 and V 3 are fixed by A3. This generator and
τ generate the whole group S3. As τ(U ) = ωV , we see that U 3 + V 3 and U 3V 3

are fixed by S3, and thus belong to Q(t1, t2, t3). One then finds explicit expressions
for U 3 + V 3 and U 3V 3 in terms of the ti ’s, solve the quadratic equations in U 3

and in V 3, and extract U and V as cube roots. Finally, using t1 = a1 + a2 + a3 and
remembering that ω2 + ω + 1 = 0, we arrive at

a1 = 1

3
(t1 +U + V ), a2 = 1

3
(t1 + ω2U + ωV ), a3 = 1

3
(t1 + ωU + ω2V ).

The Galois group of the quartic polynomial

x4 − t1x
3 + t2x

2 − t3x + t4

has the normal series
{ι} � G � A4 � S4,

where
G = {ι, (1 2

) (
3 4

)
,
(
1 3

) (
2 4

)
,
(
1 4

) (
2 3

)}

and the quotients are abelian. We therefore consider the elements

b1 = (a1 + a2)(a3 + a4), b2 = (a1 + a3)(a2 + a4), b3 = (a1 + a4)(a2 + a3),

which permute among themselves under the action of S4. Hence the symmetric
expressions

b1 + b2 + b3, b1b2 + b1b3 + b2b3, b1b2b3

belong to Q(t1, t2, t3, t4). Finding explicit expressions of these, we see that the bi ’s
are roots of a cubic polynomial over this coefficient field. Solving this resolvent cubic
we find the bi ’s. Next, invoking

a1 + a2 + a3 + a4 = t1
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we get three quadratic polynomials with roots a1 + a2 and a3 + a4, a1 + a3 and
a2 + a4, a1 + a4 and a2 + a3. From these we then find a1, a2, a3 and a4.

Alternatively, we can follow Ferrari’s method for solving the complex quartic
equation

x4 + ax3 + bx2 + cx + d = 0

by first translating y = x + a/4, obtaining the equation in depressed form

y4 + py2 + qy + r = 0

for constants p, q and r that depend on a, b, c and d, and then basically insisting on
factorizing the left-hand-side into two second order polynomials with appropriate
coefficients. A straightforward calculation shows that this can be done if the square
of the first order coefficients in either case satisfy a cubic equation, the resolvent
cubic. Solving this cubic, extracting square roots, and determining the remaining
coefficients, one is left with two quadratic equations which are easily solved.

Definition 8.10.1 The discriminant of a monic polynomial over a field F with roots
ai is � = δ2 ∈ F , where

δ =
∏

i< j

(ai − a j ).

Note that the discriminant of a polynomial is zero precisely when it has multiple
roots.

Proposition 8.10.2 Let f be a monic separable polynomial of degree n over a
field F of characteristic zero. Then its discriminant � belongs to F. Moreover, the
discriminant is a perfect square in F if and only if the Galois group of f is contained
in the alternating group An.

Proof Note that the splitting field of f is a Galois extension of F , and that we may
consider the Galois group of f as a subgroup of Sn . Next note that δ is unaltered up
to a sign under the action of elements from Sn , so � ∈ F . This sign is actually what
defines the sign of a permutation on n elements.

Thus if � is a perfect square, then δ ∈ F , so it is fixed by the Galois group G of
f , which means that G ⊂ An .
Conversely, if G ⊂ An , then δ is fixed by G, so it belongs to the fixed field F .

Thus � is a perfect square in F . �

Example 8.10.3 Consider the cubic polynomial x3 + ax + b over a field F of char-
acteristic zero. If all its roots are in F , then its Galois group is trivial, and if this is
not the case but that it is still reducible, then its Galois group is S2.

Consider now the case when the cubic polynomial is irreducible over F , or in
other words, when none of its roots belong to F . In characteristic zero it is then
automatically separable, and on order grounds, its Galois group is either S3 or A3.
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By the proposition above, the Galois group is A3 precisely when the discriminant �
is a perfect square in F . This in turn can be easily checked because

� = −4a3 − 27b2.

One can get this formula by brute force, or by considering the roots to be indepen-
dent transcendental elements, and then argue that as � is homogeneous of degree 6
in t1 and t2, while a and b are homogeneous of degree 2 and 3, respectively, it must
be of the form μa3 + νb2 for universal integers μ and ν. These integers are then
determined by picking two simple cubic polynomials, like x3 − x and x3 − 1.

To find the discriminant for higher degree polynomials, observe that δ is given
by the Vandermonde determinant of the roots, so that � is the determinant of the
product of the Vandermonde matrix and its transpose, whose entries can be found
recursively from the polynomial.

The polynomial x3 − x + 1 is irreducible over Q since any rational root would
have to be ±1, and its discriminant is −23, which is not the square of a rational
number, so its Galois group is S3.

The polynomial x3 − 3x + 1 is also irreducible over Q since it has no integer
roots, and its discriminant is 81 = 92, so its Galois group is A3, which is isomorphic
to Z3. ♦



Chapter 9
Modules

In thismonster chapter we considermodules. Amodule is a generalization of a vector
space over a field, where the field is replaced by a general ring R. One speaks then
of an R-module, or a module over R. However, many facts about vector spaces do
not carry over as expected; caution is required.

An abelian group G is an example of a module over Z, where ±na means adding
±a ∈ G to itself n-times.When a ∈ Zn , we get na = 0. So a single non-zero element
is not linear independent in the Z-module Zn . Also note that {2, 3} generate the Z-
module Z, but 3 · 2 + (−2) · 3 = 0 shows that it isn’t (and cannot be reduced to) a
linear basis. Yet, we see that {1} is a linear basis for the Z-module Z. Modules that
admit a linear basis are called free. If a ring R is unital, the direct sum ⊕i R is a free
R-module with R-action given by ring multiplication from the left.

More interesting types of modules are the projective ones. Over unital rings they
are the direct summands of freemodules. They can alternatively be described in terms
ofmodulemaps between threemodules, represented by fulfilling a certain completion
of a diagram of map-arrows. Reversing the arrows in the diagram leads to the notion
of injectivity. All modules over unital rings are submodules of injective modules. A
crucial notion in dealing with diagrams is exactness, meaning that the image of any
incoming arrow equals the kernel of the outgoing arrow. Finitely generated projective
modules are particularly relevant in algebraic topology, as sections of bundles over
manifolds form such modules over rings of continuous (or smooth) functions on
the manifolds. In homological algebra and K-theory, which are essential parts of
algebraic topology, diagrammatic representations of notions for modules are very
convenient. Basically, all mathematics can be expressed using category theory, where
the emphasis is on morphisms and composition of these, or in other words, on arrows
and the formation of diagrams. In this book we won’t dwell excessively with such an
abstract approach since in particular number theory doesn’t exactly scream after this
machinery. Nevertheless, we include a section about diagram chase, and use this to
study flatness of modules, which for unital rings generalizes projectivity. Along the
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way we introduce and interrelate basic concepts for modules, like homomorphisms,
bimodules, tensor products, duals. We discuss how some of these notions are related
for modules over specific rings. For instance, free modules over PID’s behave a bit
more like vector spaces, and a notion of dimension makes sense. Projective modules
over PID’s are automatically free, and so are finitely generated flat modules.

In the middle sections we focus on decomposition of modules, starting with a
generalization of the fundamental theorem for finitely generated abelian groups to
modules over PID’s. This echoes the fundamental theorem of arithmetic. The study
of Smith normal forms is more in the spirit of linear algebra. We even apply this to
linear algebra, talk about generalized Jordan blocks, and of the Jordan–Chevalley
decomposition of a matrix into a diagonalizable and nilpotent part. This brings us
to simple and semisimple modules. The latter modules are direct sums of simple
ones, and they in turn are modules having non-trivial ring actions and with no non-
trivial proper submodules. A left ideal I in a ring R is an important example of an
R-module, and so is the quotient module R/I . The simple modules over a unital ring
are precisely the quotientmoduleswith respect tomaximal left ideals. Semisimplicity
passes to submodules and to quotients. It is a notion more related to representation
theory. An analog of Schur’s lemma says that non-zero homomorphisms between
simplemodulesmust be isomorphisms, which implies that the endomorphism ring of
a simplemodule is a division ring. Jacobson’s density theorem,which says something
about the density of the image of the natural map in a certain bicommutant of a unital
ring provided with a semisimple module, yields Burnside’s theorem as a corollary,
which again implies that an irreducible representation of a finite group on a vector
space V over an algebraically closed field has a full image in the endomorphism
ring of V . We consider also balanced modules over unital rings, those where the
natural map into the bicommutant is an isomorphism. Meanwhile we look more
carefully into (simple) semisimple rings. These are the non-trivial unital rings which
are (simple) semisimple as left-modules over themselves. Modules over such rings
are automatically semisimple. Division rings are all semisimple. Conversely, every
semisimple ring is a direct product of full matrix rings over division rings, and this
decomposition is unique up to trivial alterations.

We then look at noetherian and artinian modules. They are the modules where
every ascending, and respectively descending, chain of submodules eventually stabi-
lizes. Amodule is noetherian if and only if all its submodules are finitely generated if
and only if any non-empty family of submodules has a maximal element. A reverse
statement holds for artinian modules. Completely reducible modules are examples
of noetherian and artinian modules, and any such module is completely reducible
if it is semisimple. One can push the theory in a similar way to the case of groups
and series of subgroups. The Hilbert basis theorem says that polynomial rings over
noetherian unital rings are noetherian, and this is also the case for rings of formal
power series. Another major result is the characterization of finite direct products
of matrix rings over division rings as the unital artinian rings having no non-trivial
nilpotent ideals, where by nilpotent, we mean that some power of the ideal is trivial.

We study in length various radicals, the Jacobsen radical rad(A) of a module A
being the most versatile. This is just the intersection of all the maximal submodules.
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It is itself a submodule, which is trivial when A is semisimple. We prove various
results related to the Jacobson radical, including Nakayama’s lemma. For artinian
unital commutative rings the Jacobson radical coincides with the more historical
Wedderburn radical, which by definition consists of the nilpotent elements of the
ring. We also study the relation between the Jacobson radicals of a ring and its
subrings before we look in detail at radicals of polynomial rings and group rings,
which are of course quite different in nature. We consider in particular group rings
over fields and of their extensions. On the way we consider the Jacobson radical
of an algebra over a field, and show that the elements of the radical has vanishing
spectrum; the spectrum of an element a are the scalars λ such that a − λI is not
invertible. Finally, we devote a section to units in group rings, and one to division
rings, due to their importance in decomposition results.

Going further, we suggest the references [7, 14].

9.1 Basics

Definition 9.1.1 A module over a ring R, or an R-module, or simply a module, is
an additive group A with a map R × A → A; (a, x) �→ ax such that

(ab)x = a(bx), (a + b)x = ax + bx, a(x + y) = ax + ay,

and 1x = x if R is unital. An R-submodule B of A is an additive subgroup of A such
that RB ⊂ B. We say B is a proper submodule if B �= A.

A right R-module is a (left) module over the ring Rop with the same addition
and opposite product a · b ≡ ba. If we have a homomorphism f : Rop → R, or
an antiendomorphism of R, then we can turn R-modules into right R-modules by
x · a = f (a)x . For commutative rings the identity map is an antiendomorphism, and
for the group ring the unique extension of the inverse map of the group is such a map,
so in both these cases modules can be turned into right modules and vice versa.

Note that a submodule is automatically a module with restricted operations. Left
ideals in a ring are by definition the submodules of the ring regarded as a module
over itself under multiplication.

Definition 9.1.2 If A, B are modules over a ring R, then f : A → B is a module
homomorphism, or an R-module map, or simply a module map, if it is a group
homomorphism and f (ax) = a f (x). Endomorphisms, monomorphisms, epimor-
phisms, isomorphisms and automorphisms have the obvious meaning, and so do
Hom(A, B) and End(A) etc., where we often write HomR(A, B) etc. to stress the
ring R. Similarly, we use A ∼= B, or A ∼=R B, to say that A and B are isomorphic
R-modules.

Note that the kernel ker f and image im f of a module map f : A → B are
submodules of A and B, respectively. Also note that Hom(A, B) is an R-module
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under pointwise operations when R is commutative, otherwise this statement is not
true. For a unital commutative ring R, the map Hom(R, B) → B which evaluates
homomorphisms at 1, is obviously an isomorphism.

Clearly vector spaces over a field F are modules over F , subspaces are
submodules, and linear maps are module maps.

We have seen that a vector spaces over a field F acted upon by a group G
via a representation of G are precisely the F[G]-modules. This important obser-
vation casts the theory of representations into the language of rings and modules, so
subrepresentations correspond to submodules, and intertwiners to module maps.

We can regard an additive group G as a Z-module under the operation na. Then
subgroups and homomorphisms will be submodules and module maps.

Example 9.1.3 The additive group of (m × n)-matrices Mm,n(R) with entries in a
ring R is a module over Mm(R) under multiplication from the left, and it is a right
Mn(R)-module under multiplication from the right. In particular, the additive group
Rn is an R-module under the pointwise operation a{bi } = {abi }, an observation that
extends to RX for any set X . ♦

Trivially the direct product
∏

Ai and direct sum ⊕Ai of R-modules Ai as addi-
tive groups and with R acting by pointwise operations are again R-modules, and
⊕Ai is the submodule of

∏
Ai generated (in the sense explained just below) by the

submodules Ai .
Notice that intersections of submodules are submodules.

Definition 9.1.4 If A is an R-module with a subset X , then the submodule 〈X〉
generated by X is the smallest submodule of A containing X . In other words, it is
the intersection of all submodules that contain X , so 〈X〉 consists of all finite sums∑

x ax x with x ∈ X and ax ∈ R. If there exists a subset X of A such that A = 〈X〉,
then A is generated by X , and if X is finite we say that A is a finitely generated
module, and if it consists of a single element x , or generator, we say that 〈x〉 is a
cyclic module. The least |X | among all finite generator sets X of a finitely generated
module A is the rank of the module A. We denote by

∑
Bi the submodule of A

generated by the submodules Bi , or more presicely, by the subset ∪Bi .

Note that an abelian group is cyclic if it is cyclic as a Z-module. Any submodule
of a PID has rank one. A finite dimensional vector space over a field F acted upon
by a group G via an irreducible representation is a cyclic F[G]-module.

Definition 9.1.5 The quotient module of an R-module A by a submodule B is the
additive group A/B turned into an R-module with operation a(x + B) = ax + B.

Clearly the quotient map A → A/B of the additive groups will then be an
epimorphism of modules.

The homomorphic image of a finitely generated module is a finitely generated
module since the image of the generators will be a generator set, so quotients of
finitely generated modules are finitely generated. We leave the following converse
result as an exercise to the reader.
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Proposition 9.1.6 Suppose A is a module with a submodule B. If both B and A/B
are finitely generated, then so is A with rank not greater than the sum of the ranks
of B and A/B.

In order not to repeat ourselves excessively, we state in this context the first-,
second-, third isomorphism theorem, and the correspondence theorem without the
by now, standard proofs.

Theorem 9.1.7 If f : A → B is a module map, then A/ ker f → im f given by
x + ker f �→ f (x) is an isomorphism.

Theorem 9.1.8 If A is a module with submodules B and C, then the quotient map
A → A/C restricted to B has kernel B ∩ C and image (B + C)/C and induces an
isomorphism

B/(B ∩ C) ∼= (B + C)/C.

Theorem 9.1.9 If A is a module with submodules B,C such that C ⊂ B, then the
module map A/C → A/B given by x + C �→ x + B induces an isomorphism

(A/B)/(B/C) ∼= A/B.

Theorem 9.1.10 If A is a module with a submodule B, then the quotient map A →
A/B provides a bijection from the intermediate submodules of A and B to the
submodules of A/B.

We also state the following proposition without a proof.

Proposition 9.1.11 Suppose A is a module generated by submodules Ai such that
each Ai intersects

∑
j �=i A j trivially. Then ⊕Ai → A given by {xi } �→ ∑

xi is an
isomorphism.

Definition 9.1.12 Asubmodul B of amodule A is a direct summandof themodule A,
or is complemented in the module A, if there is a submodule C of A such that
A ∼= B ⊕ C .

Example 9.1.13 Let p be a prime number. Then Zp is not complemented in the
Z-module Zp2 since it is the only subgroup of order p. ♦
Definition 9.1.14 The annihilator of a subset X of a module over a ring R is the left
ideal Ann(X) of R consisting of all a ∈ R such that ax = 0 for all x ∈ X .

Clearly the annihilator of a submodule B is an ideal. If B is a cyclic submodule
over a commutative ring, thenAnn(B) = Ann({x}) ≡ Ann(x), where x is a generator
for B, and one then talks about the order ideal of x . If a belongs to an additive group
and has finite order p, then Ann(a) = 〈p〉 ⊂ Z, which explains the terminology.

Proposition 9.1.15 If 〈x〉 is a cyclic module over a ring R, then 〈x〉 ∼= R/Ann(x).
In particular, any non-zero cyclic module over a field F is isomorphic to F.



312 9 Modules

Proof For the first claim apply the first isomorphism theorem to the module map
R → 〈x〉; a �→ ax .

If 〈x〉 is a non-zero cyclic module over a field F , then Ann(x) = {0}. �

Definition 9.1.16 An element x in a module A over an integral domain is a torsion
element if Ann(x) is non-trivial. The set Aτ of torsion elements in A is called the
torsion submodule of A. We say that A is a torsion-free module if Aτ is trivial, and
that A is a torsion module if Aτ = A.

Proposition 9.1.17 Suppose A is a module over an integral domain R. Then Aτ is
a submodule of A, and A/Aτ is torsion-free.

Proof Consider x, y ∈ Aτ and a, b ∈ R, so there are non-zero elements c, d ∈ R
such that cx = 0 = dy. Then ax + by ∈ Aτ because (cd)(ax + by) = ad(cx) +
bc(dy) = 0 and cd �= 0 in an integral domain.

For the second assertion, assume we have a non-zero element a ∈ R such that
a(x + Aτ ) = 0 for x ∈ A. Then ax ∈ Aτ , so there is a non-zero b ∈ R such that
(ba)x = b(ax) = 0. Thus x ∈ Aτ as ba �= 0. �

Anon-trivial vector space over a non-trivial field is torsion-free. An additive group
with no non-trivial elements of finite order, like Z

n , is torsion-free as a Z-module.
An additive group is a torsion module over Z if and only if every element is of finite
order. So finite additive groups are torsion modules over Z. Every element in the
infinite additive group Q/Z has finite order because n(m/n + Z) is zero in Q/Z.

9.2 Exactness

Definition 9.2.1 Let R be a ring. A sequence

· · · −→ Ai−1
fi−1−−→ Ai

fi−→ Ai+1 −→ · · ·

of R-modules is exact if it is exact at Ai , meaning im fi−1 = ker fi , for each i .

Note that 0 −→ A
f−→ B is exact if and only if f is injective, and that B

g−→
C −→ 0 is exact if and only if g is surjective.

Definition 9.2.2 An exact sequence of the form

0 −→ A
f−→ B

g−→ C −→ 0

is called short extact, and if addition im f is a direct summand of B, then it is called
split exact.



9.2 Exactness 313

By the first isomorphism theorem we see that C ∼= B/A whenever the sequence
of modules in the definition above is exact, and that B ∼= A ⊕ C whenever it is split
exact.

Example 9.2.3 Given two primes numbers p and q, we get a short exact sequence

0 −→ Zp
f−→ Zpq

g−→ Zq −→ 0

ofZ-modules, where g is the quotient map and f is given by f ([n]) = [qn]. We also
see that it is split exact exactly when p �= q. ♦

We have the following characterization of split exactness.

Proposition 9.2.4 For a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

the following assertions are equivalent:

(i) The sequence of modules is split exact;

(ii) There is a homomorphism r : B → A such that r f = ι;

(iii) There is a homomorphism s : C → B such that gs = ι.

We say the maps r and s split the sequence, and will see that C ∼= ker r ∼= ims.

Proof If the sequence of modules is split extact, then B ∼= A ⊕ C , where f is the
inclusion map and g is the projection map. Thus the projection map r : B → A and
the inclusion map s : C → B will satisfy r f = ι and gs = ι, so (i) implies both (i i)
and (i i i).

Suppose that (i i) holds for a homomorphism r : B → A. Writing the identity
map on B as f r + (ι − f r) and using r f = ι, we see that B = im f + ker r and
im f ∩ ker r = {0}, so B ∼= im f ⊕ ker r and (i) holds.

Similarly one shows that (i i i) implies B ∼= ker g ⊕ ims. �

Definition 9.2.5 An idempotent in a ring is any element a that satisfies a2 = a. A
family of idempotents is orthogonal if ab = 0 for distinct elements a and b of the
family.

Note that with notation as in the proposition above we see that f r and sg form an
orthogonal family of idempotents in the ring End(B) such that f r + sg = ι. Thus
A ∼= f r B and C ∼= sgB in the decomposition B ∼= A ⊕ C .

If {ei } is an orthogonal family of idempotents in a ring, then
∑

i Rei is a direct
sum of left ideals Rei because if bei = ∑

j �=i c j e j , then bei = c j e j ei = 0. If on the
other hand a unital ring R is a direct sum of left ideals Ai , then
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1 = e1 + · · · + en

for elements ei ∈ Ai . Upon multiplying with ei we see that {ei } is an orthogonal
family of idempotents such that Ai = Rei and R = ⊕n

i=1Rei as modules.

Proposition 9.2.6 If a unital ring R is a direct sum of simple left ideals, then every
left ideal of R is of the form Re for an idempotent e ∈ R.

Proof Since R is unital the direct sum must be finite, say R = A1 ⊕ · · · ⊕ An for
simple left ideals Ai . If A is a proper left ideal of R, then after renumbering we may
assume that A1 is not contained in A. Then A1 ∩ A = {0} since A1 ∩ A is a proper
left ideal of the simple left ideal A1. So A + A1 is a direct sum. If A ⊕ A1 �= R, then
by renumbering we may assume A2 ∩ (A ∩ A1) = {0}. Continuing this way, we get
R = A ⊕ (⊕m

i=1Ai ) for some m ≤ n. By the discussion before the proposition we
conclude that A = Re for an idempotent e. �

Given a module map f : A → B, define an additive map

f∗ : Hom(C, A) → Hom(C, B) by f∗(u) = f u.

Proposition 9.2.7 The sequence

0 −→ A
f−→ B

g−→ C

of modules is exact if and only if the sequence

0 −→ Hom(D, A)
f∗−→ Hom(D, B)

g∗−→ Hom(D,C)

of Z-modules is exact for all modules D. Moreover, if the first sequence is split, then
the second sequence is short exact.

Proof Suppose the first sequence of modules is exact. If u ∈ ker f∗, then f u = 0,
so u = 0 and f∗ is injective.

Also im f∗ ⊂ ker g∗ as g∗( f∗(u)) = g f u = 0u = 0 for any u is the domain of f∗.
If v ∈ ker g∗, then g(v(x)) = 0 for x ∈ D. As ker g = im f and f is injective,

there is a unique y ∈ A such that v(x) = f (y). Thus we can define a module map
w : D → A by w(x) = y, and clearly v = f∗(w) ∈ im f∗.

Conversely, assume that the second sequence of modules is exact for all D. Let
D = ker f and consider the inclusion map u : D → A. Then f∗(u) = f u = 0 and
as f∗ is injective, we get u = 0, so f is injective.

Next let D = A. Then 0 = g∗ f∗(ι) = g f ι = g f . Letting D = ker g and v : D →
B be the inclusion map, then g∗(v) = gv = 0, so v ∈ ker g∗. By exactness there
exists w ∈ Hom(D, A) with v = f∗(w) = f w. So ker g = imv ⊂ im f and the first
sequence of modules is exact.

If s : C → B splits the first sequence, then s∗ splits the second sequence because
g∗s∗ = (gs)∗ = ι. �
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When R is commutative the second sequence in the proposition above is a
sequence of R-modules.

Given a module map f : A → B, define an additive map

f ∗ : Hom(B,C) → Hom(A,C) by f ∗(u) = u f.

Just as above one can prove the following result.

Proposition 9.2.8 The sequence

A
f−→ B

g−→ C −→ 0

of modules is exact if and only if the sequence

0 −→ Hom(C, D)
g∗−→ Hom(B, D)

f ∗−→ Hom(A, D)

of Z-modules is exact for all modules D. Moreover, if the first sequence is split, then
the second sequence is short exact.

In this case the arrows are reversed. When R is commutative the second sequence
in the proposition above is a sequence of R-modules.

The following example shows that one cannot hope to preserve short exact
sequences in full generality.

Example 9.2.9 Weclaim thatHomZ(Zm, Zn) ∼= Zd ,whered is the greatest common
divisor of m and n. To see this, consider the short exact sequence

0 −→ Z
f−→ Z

g−→ Zm −→ 0

with quotient map g and with f given by f (k) = mk. By the proposition above, we
get an exact sequence

0 −→ Hom(Zm, Zn)
g∗−→ Hom(Z, Zn)

f ∗−→ Hom(Z, Zn)

and Hom(Zm, Zn) ∼= ker f ∗. Define a monomorphism ker f ∗ → Zn by u �→ u(1).
As f ∗(v)(1) = v f (1) = v(m1) = mv(1) for any v ∈ Hom(Z, Zn), we see that the
image of the monomorphism is Zd , which proves the claim.

Picking m = n and using Hom(Z, Zn) ∼= Zn we thus get the exact sequence

0 −→ Zn
g∗−→ Zn

f ∗−→ Zn

with f ∗ = 0, which is not surjective, so we do not get a short exact sequence.
Similarly, applying Proposition9.2.7 with D = Zm to the initial sequence, and

using Hom(Zm, Z) = 0, we get
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0 −→ 0
f∗−→ 0

g∗−→ Zm

that is also not short exact. ♦
Corollary 9.2.10 If A, B,C are modules over a ring R, then

Hom(C, A ⊕ B) ∼= Hom(C, A) ⊕ Hom(C, B)

and
Hom(A ⊕ B,C) ∼= Hom(A,C) ⊕ Hom(B,C)

as Z-modules, and as R-modules if R is commutative.

Proof Apply the two propositions above to the split exact sequence

0 −→ A
ι1−→ A ⊕ B

π2−→ B −→ 0

where ι1 is the inclusion map and π2 is the projection map. �

The first and second isomorphism in the corollary are f �→ (π1 f, π2 f ) for
f ∈ Hom(C, A ⊕ B) and g �→ (gι1, gι2) for g ∈ Hom(A ⊕ B,C), respectively.
Extending this we get the following result.

Proposition 9.2.11 We have as Z-modules that

Hom(⊕Ai ,⊕Bj ) =
∏

i

⊕ j Hom(Ai , Bj )

for any modules Ai and Bj over a ring.

9.3 Projectivity

Definition 9.3.1 A non-empty subset X of a module A over a ring R is linear inde-
pendent, as opposed to linear dependent, if the elements ax ∈ R are zero whenever∑

ax x = 0 for a finite collection of x ∈ X . If in addition X generates A, it is a basis
of A, and then A is a free module over R.

In an R-module A with a basis X any element a ∈ A can be written as a finite R-
linear combination a = ∑

ax x for unique ax ∈ R. Thus A ∼= ⊕x∈X Rx . Conversely,
if R viewed as an R-module contains an element with trivial annihilator, then ⊕i R
over any index set is a free R-module. This holds for instance when R is unital.

Given any module A with basis X , we can uniquely extend any map f : X → B
into a module over the same ring to a module map A → B, and this map will be an
isomorphism if f (X) is a basis of B.
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Vector spaces are free modules over fields as they have a basis by Zorn’s lemma.
If Ai are free modules with bases Xi , then the module ⊕Ai is also free with basis

consisting of all sequenceswith x ∈ Xi in place i , and zeroes in all other components.
For instance, the set {(1, 0), (0, 1)} is a basis for the Z-module Z

2.

Proposition 9.3.2 Any basis of a finitely generated module is finite.

Proof Writing each member of a finite generator set of a free module as a linear
combination of elements in a basis, we see that only finitely many basis elements
generate the module, so the basis must be finite. �
Corollary 9.3.3 Suppose A and B are finitely generated free modules over a
commutative unital ring R. Then

Hom(A, B) ∼= ⊕i j R,

where i and j range over finite bases for A and B, respectively.

Proof From the proposition above we know that A and B have indeed finite bases.
By Corollary9.2.10 we therefore have

Hom(A, B) ∼= Hom(⊕i R,⊕ j R) ∼= ⊕i j Hom(R, R) ∼= ⊕i j R.

�
The following result shows that no finite additive group is a free Z-module.

Proposition 9.3.4 Any free module over an integral domain is torsion-free.

Proof If A is a module with basis X over an integral domain R, and x ∈ Aτ , then
ax = 0 for a non-zero a ∈ R. Writing x = ∑

ai xi for ai ∈ R and xi ∈ X , we get
0 = ∑

aai xi , so aai = 0 for all i . In an integral domain all ai = 0, so x = 0. �
For any ideal I of a commutative ring R to be free, it must be principal because

ab + (−b)a = 0 for a, b ∈ R.

Definition 9.3.5 A short exact sequence

0 −→ A −→ B −→ C −→ 0

of modules with B free is called a free presentation of C .

Proposition 9.3.6 Every module over a unital ring has a free presentation, and can
moreover be chosen to be a quotient of a free module with the same rank.

Proof Suppose X is a generating set for a module C over a unital ring R, we can
always pick X = C . Consider the free module B = ⊕x∈X R. Then f : B → C given
by f ({ax }) = ∑

x ax x is an epimorphism, so C ∼= B/ ker f . Since the image of a
generator set under the quotient map will be a generator set for the quotient module,
the latter cannot have larger rank. Picking X to be of minimal cardinality, we also
see that the rank of C cannot be larger than the rank of B. �
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Definition 9.3.7 A module A is a projective module if for any modules B,C and
anymodule maps f : A → C and g : B → C with g surjective, there exists a module
map h : A → B such that the diagram

A
h

f

B g C 0

commutes, that is, we have f = gh.

Proposition 9.3.8 A module over a unital ring is projective if and only if it is a
direct summand of a free module. Moreover, the statement also holds if we add
‘finitely generated’ on both sides of the equivalence.

Proof Suppose A is a projective module over a unital ring. By the proposition above
there is a free module B of the same rank and an epimorphism g : B → A. In the
diagram above pick f : A → C ≡ A to be the identity map. Then the existence
of h : A → B shows that we get a splitting, so B ∼= A ⊕ ker g, and B is finitely
generated if A is.

Conversely, suppose there exists a module D such that A ⊕ D is free, and that
we are given B,C and f and g as in the diagram above. To get h, pick a basis X for
A ⊕ D, and by the Axiom of choice define a module map r : A ⊕ D → B such that
r(x) ∈ g−1({ f π1(x)}) for all x ∈ X , so gr = f π1. Then h ≡ r ι1 satisfies f = gh
as π1ι1 = ι. And if A ⊕ D is finitely generated, then so is A ∼= (A ⊕ D)/D. �

Corollary 9.3.9 A module A over a unital ring is projective if and only if every
sequence

0 −→ C −→ B −→ A −→ 0

of modules is split exact.

Proof If A is projective, then picking the identity map on A in the sequence above,
we get a module map A → B that splits the sequence.

If every such sequence is split exact, we may split a free presentation of A, to get
A as a direct summand of a free module, so A is projective. �

Corollary 9.3.10 A module A over a unital ring is projective if and only if

f∗ : Hom(D, B) → Hom(D, A)

is surjective for any epimorphism f : B → A and all modules D.

Proof The forward implication is immediate from Proposition9.2.7 since

0 −→ ker f −→ B
f−→ A −→ 0
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is split exact. As for the backward implication, if f∗ : Hom(A, B) → Hom(A, A)

is surjective for an epimorphism f : B → A, then there is a module map s : A → B
such that f s = f∗(s) = ι, so A is projective by the corollary above. �

Cleary free modules are projective, and projective modules over integral domains
are torsion-free by Propositions9.3.4 and 9.3.8. So no finite additive group is pro-
jective as a Z-module. In fact, by Corollary9.9.6 any projective module over a P I D
is free.

Over rings that are not integral domains, torsion does not forbid projectivity. For
instance, the module Z2 over Z6 is projective because Z6

∼= Z2 × Z3, but Z2 is not
free as a Z6-module. Neither is the module R × {0} over R × R with pointwise
operations, yet it is evidently projective.

Remark 9.3.11 The continuous sections of a vector bundle form a finitely gener-
ated projective module over the ring of continuous functions on a compact Hausdorff
manifold, and every such module can be regarded as the sections of some underlying
vector bundle. If the manifold is contractible, then all these modules are free, but
already for the circle this is no longer true. Thus the importance of finitely gen-
erated projective modules in algebraic topology, in formation of K -groups, and in
homological algebra, which measures the failor of sequences being exact.

We include three result without their easy proofs.

Proposition 9.3.12 Each member Ai of a family of modules over a unital ring is
projective if and only if ⊕Ai is projective.

Proposition 9.3.13 If A and B are finitely generated projective modules over a
commutative unital ring R, then so is the R-module Hom(A, B).

Proposition 9.3.14 A module A is finitely generated projective over a unital ring R
if and only if there is a non-negative integer n such that A ∼= eRn for some idempotent
e ∈ End(Rn).

Idempotents are also referred to as projections, hence the name projectivemodule.

Definition 9.3.15 Two elements a and b in a unital ring are conjugate if there exists
an invertible element c in the ring such that a = cbc−1.

Proposition 9.3.16 Let R be a unital ring, and let n be a non-negative integer. Two
idempotents f and g in the ring End(Rn) are conjugate if and only if

f Rn ∼= gRn and (ι − f )Rn ∼= (ι − g)Rn

as modules.

Proof If gh = h f for invertible h ∈ End(Rn), then h1 : f Rn → gRn given by
restriction of h has an inverse given by restriction of h−1. Similarly h restricts to
an isomorphism h2 from (ι − f )Rn to (ι − g)Rn .
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Conversely, if h1 : f Rn → gRn and h2 : (ι − f )Rn → (ι − g)Rn are isomor-
phisms, then h = h1 f + h2(ι − f ) ∈ End(Rn) is invertible with h−1 = h−1

1 g +
h−1
2 (ι − g) and

gh = gh1 f = h1 f = h1 f
2 = h f.

�

One needs both isomorphisms in the proposition above to assure that the
idempotents are conjugate; it is easy to give examples showing that this is required.

9.4 Injectivity

We included here the less common notion of an injective module.

Definition 9.4.1 A module A is an injective module if for any modules B,C and
any module maps f : C → A and g : C → B with g injective, there exists a module
map h : B → A such that the diagram

A

B

h

C

f

g 0

commutes, that is, we have f = hg.

Notice that the diagramatic definition of injectivity is the same as that of projec-
tivity, except that we have changed the direction of all the arrows, so g is injective
rather than surjective. Clearly direct products of injective modules are injective.

It is immediate from Proposition 9.2.8 and the definition of injectivity that a
module A is injective if and only if the sequence

0 −→ Hom(D, A) −→ Hom(B, A)
g∗−→ Hom(C, A) −→ 0

of Z-modules is exact whenever

0 −→ C
g−→ B −→ D −→ 0

is exact.

Definition 9.4.2 The pushout of two module maps f : A → B and g : A → C is a
triple (E, r, s) with module maps r : B → E and s : C → E such that r f = sg, and
whenever we have another triple (F, u, v) with this property, there exists a unique
module map h : E → F such that hr = u and hs = v.
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Lemma 9.4.3 The pushout exists and is unique up to isomorphism.

Proof As for uniqueness, if we have two pushouts (E, r, s) and (F, u, v), then there
are module maps h : E → F and h′ : F → E such that hr = u and hs = v, and
h′u = r and h′v = s. Then h′hr = r and h′hs = s, so h′h = ι by uniqueness in
the case when the triples are chosen to be the same. Similarly we get hh′ = ι, so
h : E → F is an isomorphism that carry one triple to the other.

As for existence, given module maps f : A → B and g : A → C , consider the
module (B ⊕ C)/D, where D is the submodule of B ⊕ C of all ( f (a),−g(a)) with
a ∈ A. Define module maps r : B → E and s : C → E by r(b) = (b, 0) + D and
s(c) = (0, c) + D. Then r f = sg because r f (a) − sg(a) = ( f (a),−g(a)) + D =
D.

Given another triple (F, u, v), then h : E → F given by h((b, c) + D) = u(b) +
v(c) is clearly the unique module map such that hr = u and hs = v. �

We denote the pushout of twomodule maps f : A → B and g : A → C by (B ⊕A

C, r, s). Notice that s is injective if f is injective. To see this consider the construction
in the proof, and note that if s(c) = 0, then (0, c) ∈ D, so c = −g(a) for some a ∈ A
with f (a) = 0. As f is injective, we get a = 0, so c = −g(0) = 0.

Proposition 9.4.4 A module A is injective if and only if every short exact sequence

0 −→ A −→ B −→ C −→ 0

of modules is split exact.

Proof If A is injective, then using the definition of injectivity to the identity map on
A of any sequence of the above type, will produce a split at A.

Conversely, suppose any such short exact sequence is split exact. We need to
produce a module map h making the following diagram

A

B

h

C

f

g 0

commute. Since g is injective the module map s : A → B ⊕C A in the pushout
(B ⊕C A, r, s) of g and f is also injective. By assumption s therefore splits, so
we have a module map q : B ⊕C A → A such that qs = ι. Then the module map
h = qr : B → A satisfies hg = qrg = qs f = ι f = f . �

The following result is known as Baer’s criterion.

Proposition 9.4.5 Let R be a unital ring. An R-module A is injective if and only if
any module map I → A from any left ideal I of R extends to a module map R → A.
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Proof The forward implication is immediate from the definition.
Conversely, supposewe are given a submoduleC of amodule B and amodulemap

f : C → A, which we need to extend to a module map B → A. Partially order the
set of all possible module map extensions D → A of f , where D is any submodule
of A with C ⊂ D. By Zorn’s lemma there is a maximal one h : E → A. If there is
a ∈ B with a /∈ E , consider the left ideal I = {b ∈ R | ba ∈ E} of R. By assumption
themodulemap I → Awhich sends b to h(ba) extends to amodulemap h̃ : R → A.
Define E + Ra → A by c + ba �→ h(c) + h̃(b) for c ∈ E and b ∈ R. This is well-
defined because h(ba) = h̃(b) for b ∈ R with ba ∈ E . But then we have a module
map that is a strictly larger extension of f than h, which contradicts the maximality
of h, so E = B and A is injective. �

Definition 9.4.6 Amodule A over an integral domain R is divisible if for any y ∈ A
and non-zero a ∈ R, there is x ∈ A with ax = y.

Direct sums, direct products and quotients of divisible modules are clearly divis-
ible. Obviously any field of characteristic zero is divisible as a module over any
subring of the field.

Corollary 9.4.7 Any module over a PID is injective if and only if it is divisible. This
is in particular true for additive groups as Z is a PID.

Proof Suppose we have an injective module A over an integral domain R. To see
that A is divisible, consider y ∈ A and a non-zero a ∈ R. Define a module map
f : Ra → A by f (ba) = by for b ∈ R. This is well-defined because if ba = ca for
c ∈ R, then b = c as R is an integral domain, so f (ba) = f (ca). By injectivity
we can extend f to a module map g : R → A. Then with x = g(1) ∈ A, we get
y = f (1a) = g(a1) = ag(1) = ax .

Conversely, if A is divisible over a PID R, then using Baer’s criterion it suffices to
extend any module map f : I → A for any module I ⊂ R to a module map R → A.
In a PID any left ideal is a singly generated ideal, so say I = (a) for some a ∈ I .
Since A is divisible there exists x ∈ A such that ax = f (a). Define g : R → A
by g(b) = bx for b ∈ R. Clearly this is a module map, and g extends f because
g(ba) = bax = b f (a) = f (ba) for b ∈ R. �

Note that Z is not divisible since an odd number can never be even. Thus
submodules of injective modules need not be injective.

We have seen that any module has a free presentation, and so is certainly the
homomorphic image of a projective module. One says there are enough projectives.
Similarly, we would like to see that there are enough injectives, in the sense that
every module sits inside an injective one. To prove this we need some preliminary
results.

Definition 9.4.8 The Pontryagin dual Â of an additive group A is the additive group
HomZ(A, Q/Z) with pointwise operations and addition in Q/Z.
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The following result says that the Pontryagin dual is rich enough. We proved a
similar result when we established Pontryagin’s duality theorem for finite abelian
groups, then with R/Z instead of Q/Z.

Proposition 9.4.9 The additive map η : A → ˆ̂A given by (η(x))( f ) = f (x) is
injective.

Proof Say we have a non-zero element x ∈ A. We need to construct an element of
Â that is not zero at x . To this end let n be the least natural number such that nx = 0,
and set f (mx) = [m/n] for m ∈ Z. If no such n exists, set f (mx) = [m/2]. In both
cases we get f ∈ HomZ(Zx, Q/Z) with f (x) �= 0. To see that f is well-defined,
say mx = 0. In the second case m = 0, so f (mx) = 0. In the first case, there must
be an integer k such that m = kn, so f (mx) = [k] = 0.

We extend f to an element of Â by partially ordering all subgroups of A that
containZx and carry an additive extension of f . By Zorn’s lemma there is a maximal
extension g : B → Q/Z. If B �= A, pick y ∈ A\B. Define h : B + Zy → Q/Z on
Zy by the same procedure as we defined f , and let h be g on B. Then h is a well-
defined additive map because z + y = 0 is impossible with z ∈ B. This contradicts
the maximality of g. �

An immediately consequence of the proposition above is that a module A is trivial
if and only if Â is trivial.

Lemma 9.4.10 Every additive group is a submodule of an injective Z-module.

Proof Let A be an additive group. Every additive group is the homomorphic image
of a free abelian group, and thus of some direct sum of Z. So there exists a Z-
module map f : ⊕i Z → Â that is surjective. By Proposition9.2.8 the Z-module

map f ∗ : ˆ̂A → HomZ(⊕iZ, Q/Z) is injective. But by Proposition9.2.11 we have

Hom(⊕iZ, Q/Z) ∼=
∏

i

HomZ(Z, Q/Z) ∼=
∏

i

Q/Z,

which is divisible and thus injective by the corollary above. By the proposition above

we can regard A as a submodule of ˆ̂A. Then f ∗ restricted to A is an injectiveZ-module
map into an injective Z-module. �

We would like to dualize in a similar fashion in the case of a general module. If R
is a ring and G is an additive group, we may regard the additive group HomZ(R,G)

as an R-module under the operation (a f )(b) = f (ba) for f ∈ HomZ(R,G) and
a, b ∈ R.

Lemma 9.4.11 Suppose R is a unital ring and G is an additive group. Then for any
R-module B, the map

HomZ(B,G) → HomR(B,HomZ(R,G))
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which sends f : B → G to g : B → HomZ(R,G), where (g(x))(a) = f (ax), is an
isomorphism of additive groups.

Proof The map g is plainly an R-module map. The map in the lemma is indeed an
isomorphism with an inverse map

HomR(B,HomZ(R,G)) → HomZ(B,G)

that sends g : B → HomZ(R,G) to f : B → G, where f (x) = (g(x))(1). �

Lemma 9.4.12 Suppose R is a unital ring and G is an additive group. If G is
injective as a Z-module, then HomZ(R,G) is an injective R-module.

Proof By the characterization of injectivity given just below the definition of injec-
tivity, we have an additive surjective map h : HomZ(B,G) → HomZ(C,G) for any
exact sequence 0 −→ C −→ B of R-modules. Composing h on both sides with
the isomorphisms from the previous lemma applied to B and C , we get an additive
surjective map

HomR(B,HomZ(R,G)) → HomR(C,HomZ(R,G)),

which by the same characterization shows that HomZ(R,G) is injective. �

Theorem 9.4.13 Any module over a unital ring is a submodule of an injective
module.

Proof Suppose A is a module over a unital ring R. Regard A as an additive group. By
the first lemma there is an injective additive map f : A → G into an additive group
that is injective as a Z-module. The R-module map A → HomZ(R,G) given by
x �→ fx , where fx (a) = f (ax), is clearly injective, and HomZ(R,G) is an injective
R-module by the last lemma above. �

9.5 Tensor Products and Bimodules

Definition 9.5.1 Let A be a rightmodule over a ring R, let B be a left module over R,
and let C be an additive group. A map f : A × B → C is balanced if it is biadditive
and if f (xa, y) = f (x, ay) for x ∈ A, y ∈ B and a ∈ R. The tensor product of A and
B is an additive group A ⊗R B together with a balanced map u : A × B → A ⊗R B
such that whenever f : A × B → C is a balanced map, there is a unique additive
map g : A ⊗R B → C such that f = gu. We write x ⊗ y for u(x, y).

The following result shows that the tensor product and its accompanying map are
defined only up to isomorphism.

Proposition 9.5.2 The tensor product of a right- and left module over a ring exists
and is unique up to isomorphism.
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Proof The tensor product of a right module A over a ring R with a left module B
over R is formed by considering the free additive group F generated by A × B, so
F consists of all functions A × B → Z that are zero everywhere except on finite
subsets, and is an additive group under pointwise addition. Identify a point in A × B
with the delta function at that point. Let I be the subgroup of F generated by all
elements of the form (x + y, z) − (x, z) − (y, z), (x, z + w) − (x, z) − (x, w) and
(xa, z) − (x, az). Then F/I and the quotient map u : A × B → F/I restricted to
A × B ⊂ F have the desired properties. By definition of I the map u is clearly a
balanced map. And if f : A × B → C is a balanced map, then as A × B is a Z-
basis for F , the map f extends to an additive map F → C , which factors through
F/I because it is balanced. In other words, the additive map g : F/I → C given by
g((x, y) + I ) = f (x, y) is well-defined as f (I ) = {0}. Clearly f = gu, and as the
image of u generates F/I as an additive group, the requirement f = gu uniquely
determines g.

Say D is an additive group and v : A × B → D is a balanced map with the same
properties as A ⊗R B and u. As both u and v are balanced, there are additive maps
r : D → A ⊗R B and s : A ⊗R B → D such that rv = u and su = v. Thus rsu = u
and srv = v, which by uniqueness of such maps means that rs = ι and sr = ι, so r
is an isomorphism that carry D and v to A ⊗R B and u. �

The characterizing property of the tensor product exploited in the last paragraph
of the proof above is called its universal property.

Note that A ⊗R B is generated by x ⊗ y as an additive group. Balancedness of u
means that

(x + y) ⊗ z = x ⊗ z + y ⊗ z, x ⊗ (z + w) = x ⊗ z + x ⊗ w, xa ⊗ z = x ⊗ az.

We would also like to stress that x ⊗ z = y ⊗ w does not imply x = y and z = w

as u has non-trivial kernel I .

Definition 9.5.3 Given two rings R and S, then an RS-bimodule A is a left R-module
and a right S-module with compatibel operations in the sense that a(xb) = (ax)b
for a ∈ R, b ∈ S and x ∈ A. A bimodule map is a map that respects both module
actions.

If A is an RS-bimodule and B is a ST -bimodule, then A × B is clearly an RT -
bimodule under a(x, y)b ≡ (ax, yb). Extending this additively to F in the proof
above, and observing that I is an RT -subbimodule of F , we see that A ⊗S B = F/I
is an RT -bimodule under a(x ⊗ y)b = ax ⊗ yb, and will be regarded as such when
the context suggests so.

Corollary 9.5.4 Suppose A is an RS-bimodule and B is a ST -bimodule. Then A ⊗S

B is an RT -bimodule under a(x ⊗ y)b = ax ⊗ yb, and if f : A × B → C is a
balanced RT -bimodulemap into an RT -bimodule C, there is a unique RT -bimodule
map g : A ⊗S B → C such that f = gu. Moreover, the tensor product is uniquely
determined by this requirement.
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Proof The unique additive map g : A ⊗S B → C such that f = gu, is an RT -
bimodule map. To see this fix a ∈ R and b ∈ T . Then both g(a · b) and ag(·)b
are additive maps for the balanced map a f (·)b when f is an RT -bimodule map, and
by uniqueness they coincide.

As before the tensor product is uniquely determined by this up to an RT -bimodule
isomorphism because the identity maps are always bimodule maps. �

We can be in a situation where for instance A is an RS-bimodule and B is only a
left S-module. Then A ⊗S B is only a left R-module, or what amounts to the same
thing, it is an RZ-bimodule, where B from the outset is considered an SZ-bimodule.

A special case occurs when both A and B are R-modules over a commutative ring
R. Then A and B can be considered as RR-bimodules by letting the right actions of
R be the same as the left actions. Then A ⊗R B is an R-module such that

a(x ⊗ y) = ax ⊗ y = xa ⊗ y = x ⊗ ay = x ⊗ ya = (x ⊗ y)a,

and balanced RR-bimodule maps will simply be R-bilinear maps, so the universal
property of the tensor product holds then for such maps. In the case of vector spaces
over a field we therefore recover the usual vector space tensor product.

Be aware that there can be a great deal of collapse in the formation of tensor
products of modules. For instance, if m and n are relatively prime integers, then
Zm ⊗Z Zn is trivial because for any a ⊗ b in this tensor product, we have

m(a ⊗ b) = ma ⊗ b = 0 = a ⊗ nb = n(a ⊗ b),

so a ⊗ b = 0 as there are k, l ∈ Z such that km + ln = 1.

Proposition 9.5.5 Say f : A → C is an RS-bimodule map and g : B → D is a
ST -bimodule map. Then there is a unique RT -bimodule map

f ⊗ g : A ⊗S B → C ⊗S D

such that ( f ⊗ g)(x ⊗ y) = f (x) ⊗ g(y).

Proof Themap (x, y) �→ f (x) ⊗ g(y) is clearly a balanced RT -bimodulemap from
A ⊗ B intoC ⊗S D, so there is a unique RT -bimodule map f ⊗ g with the required
property. �

The composition of suchmaps evidently satisfies ( f ′ ⊗ g′)( f ⊗ g) = f ′ f ⊗ g′g.

Proposition 9.5.6 If A and B are RR-bimodules with R commutative, then A ⊗R

B ∼= B ⊗R A as RR-bimodules under the flip map x ⊗ y �→ y ⊗ x.

Proof The map (x, y) �→ y ⊗ x is obviously a balanced RR-bimodule map, so we
have a flip map with a flip map as its inverse map. �

We can also form repeated tensor products. The following result says that the
tensor product is associative up to isomorphism.
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Proposition 9.5.7 Suppose Ai is an (Ri , Ri+1) module. Then there exists a unique
R1R3-bimodule isomorphism

(A1 ⊗R1 A2) ⊗R2 A3 → A1 ⊗R1 (A2 ⊗R2 A3)

that sends (x ⊗ y) ⊗ z to x ⊗ (y ⊗ z).

Proof The map (x ⊗ y, z) �→ x ⊗ (y ⊗ z) is a balanced R1R3-bimodule map, and
we get the required map with an obvious inverse map. �

The tensor product behaves well under direct sums, and we skip the easy proof
of the following result.

Proposition 9.5.8 If Ai are RS-bimodules and Bj are ST -bimodules, then

(⊕i Ai ) ⊗S (⊕ j B j ) ∼= ⊕i j (Ai ⊗S B j )

as RT -bimodules.

Proposition 9.5.9 Suppose R is a unital ring. Let A bean RS-bimodule and consider
R as an RR-bimodule under multiplication from left and right. Then there is a unique
RS-bimodule isomorphism R ⊗R A → A such that a ⊗ x �→ ax.

Proof The map (a, x) �→ ax is a balanced RS-bimodule map with inverse map
x �→ 1 ⊗ x . �

Similarly, we have A ⊗S S ∼= A as RS-bimodules when S is a unital ring.

Definition 9.5.10 If R is a subring of a ring S and A is an R-module, then the
S-module S ⊗R A is called extension of scalars, where S is considered as an SR-
bimodule under multiplication from left and right.

When the ring R is unital, then A ∼= R ⊗R A is an R-submodule of S ⊗R A
considered as an R-module. We say that the complex vector space C ⊗R V is a
complexification of a real vector space V .

Proposition 9.5.11 Suppose R is a unital subring of a ring S, and that A is an R-
module. Consider the R-module monomorphism r : A �→ S ⊗R A given by r(x) =
1 ⊗ x. If B is an S-module and f : A → B is an R-module map, then there is a
unique S-module map g : S ⊗R A → B such that f = gr.

Proof The map (a, x) �→ a f (x) is a balanced SZ-bimodule map from S × A to B,
and provides the unique map g such that f = gr . �

The following result shows that induced representation can be seen as extension
of scalars with the role of scalars being played by group rings.
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Theorem 9.5.12 Suppose π is a representation on a vector space V of a subgroup
H of a finite group G. Denote by πG the induced representation of π on the vector
space V G of V -valued functions f on G that satisfy f (ab) = π(a) f (b) for a ∈ H
and b ∈ G, so (πG(b) f )(c) = f (cb) for c ∈ G. Regard the group ring F[G] as an
F[G]F[H ]-bimodule and V as an F[H ]-module and V G as an F[G]-module. Then
there is a unique F[G]-module isomorphism

g : F[G] ⊗F[H ] V → VG

such that g(b ⊗ x) = πG(b)Ax, where b ∈ G ⊂ F[G] and Ax ∈ VG for x ∈ V is
given by (Ax)(c) = π(c)x if c ∈ H and is otherwise zero.

Proof We claim that the map from F[G] × V → VG given by (b, x) �→ πG(b)Ax
is a balanced F[G]-module map. To see that it is balanced take any a ∈ H . Then
it sends (ba, x) to πG(ba)Ax and (b, π(a)x) to πG(b)Aπ(a)x , so we must show
that πG(a)Ax = Aπ(a)x . For c ∈ G we get (πG(a)Ax)(c) = π(ca)x if ca ∈ H , or
c ∈ H as a ∈ H , and is otherwise zero, whereas (Aπ(a)x)(c) = π(c)π(a)x if c ∈ H
and is otherwise zero. So we have equality and therefore balancedness. Clearly the
map has range in VG and is an F[G]-module map. Hence we get the F[G]-module
map g. We leave the construction of the inverse map to the reader. �

The proposition above can be phrased as

HomR(A, B) ∼= HomS(S ⊗R A, B)

under f �→ g, where f = gr . Thus it captures the second version of Frobenius
reciprocity. This can be generalized, see Proposition9.5.15.

Definition 9.5.13 If A is an RS-bimodule and B is an RT -bimodule,we can consider
HomR(A, B) as an ST -bimodule under

a f b = f (·a)b

for a ∈ S and b ∈ T and f ∈ HomR(A, B).

Of course, one should check that a f b ∈ HomR(A, B) and that the axioms for a
bimodule hold, but all this is straightforward. When we discussed injective modules
we tacitly used this bimodule structure.

We have the following generalization of Proposition9.2.7 that we state without
an almost identical proof.

Proposition 9.5.14 The sequence

0 −→ A
f−→ B

g−→ C

of RS-bimodules and bimodule maps is exact if and only if the sequence
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0 −→ Hom(D, A)
f∗−→ Hom(D, B)

g∗−→ Hom(D,C)

of T S-bimodules and bimodule maps is exact for all RT -bimodules D. Moreover, if
the first sequence splits by an RS-bimodule map, then the second sequence is short
exact and splits by a T S-bimodule map.

We obviously have a similar generalized version of Proposition9.2.8. The
following fundamental result is also easily verified.

Proposition 9.5.15 If A is a PQ-bimodule and B is an RP-bimodule and C is an
RS-bimodule, then the map

� : HomP(A,HomR(B,C)) → HomR(B ⊗P A,C)

given by (�( f ))(a ⊗ b) = ( f (b))(a) is a well-defined QS-bimodule isomor-
phism with inverse given by ((�−1(g))(d))(c) = g(c ⊗ d). If f : A1 → A2 is a
PQ-bimodule map, then

�1 f
∗ = (ι ⊗ f )∗�2,

where �i is to Ai as � is to A.

We get the following nice result.

Corollary 9.5.16 If A is a PQ-bimodule and B is an RP-bimodule and both are
projective as left modules, then B ⊗P A is projective as a left R-module. A similar
statement holds for right modules.

Proof We must show that

f∗ : HomR(B ⊗P A,C) → HomR(B ⊗P A, D)

is surjective for any epimorphism f : C → D between R-modules. It is easily veri-
fied that with the isomorphism in the proposition, this amounts to requiring that the
map

( f∗)∗ : HomP(A,HomR(B,C)) → HomP(A,HomR(B, D))

is surjective, but this is obvious since the first induced map is surjective as B is
projective, and then the induced map of this new epimorphism is surjective as A is
projective. �

Proposition 9.5.17 If

A
f−→ B

g−→ C −→ 0

is an exact sequence of RS-bimodules, then for any T R-bimodule D the sequence

D ⊗R A
ι⊗ f−−→ D ⊗R B

ι⊗g−−→ D ⊗R C −→ 0
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is an exact sequence of T S-bimodules. Moreover, if the first sequence is split exact,
then so is the second sequence.

Proof The first part follows immediately from the proposition above and the
alternative version of the proposition before that.

To get the last part, tensor the split map from the initial sequence with the identity
map to get a split map for the second sequence. �

We get a similar result by tensoring with D from the right.

Example 9.5.18 Consider the short exact sequence

0 −→ Z
f−→ Z

g−→ Zm −→ 0

of Z-modules, where g is the quotient map and f (k) = mk with m ∈ N. Then we
get the exact sequence

Z ⊗Z Zn
f ⊗ι−−→ Z ⊗Z Zn −→ Zm ⊗Z Zn −→ 0

for any n ∈ N. Upon identifying Z ⊗Z Zn with Zn , we see that Zm ⊗Z Zn is iso-
morphic as a Z-module to Zn/( f ⊗ ι)(Zn). But ( f ⊗ ι)(Zn) = dZn , where d is the
greatest common divisor of m and n. Thus

Zm ⊗Z Zn
∼= Zn/dZn

∼= Zd

as Z-modules, which again shows that we get a complete collapse when n and m are
relatively prime.

We also note that the tensored sequence above is not short exact whenm = n = 2
as f ⊗ ι is then the zero map. ♦

Evidently we also get a complete collapse ofG ⊗Z Q for any finite additive group
G.

The following device reduces the study of bimodules to modules, albeit over
more complicated rings. Given two rings R and S, we turn R ⊗Z S into a ring with
multiplication

(a ⊗ b)(c ⊗ d) = ac ⊗ bd

which exists thanks to the universal property of the tensor product. Then an addi-
tive group A is an RS-bimodule if and only if it is an R ⊗Z Sop-module under the
operation (a ⊗ b)x = axb for a ∈ R and b ∈ Sop and x ∈ A.

9.6 Diagram Chase

Definition 9.6.1 The cokernel coker f of a module map f : A → B is the module
B/im f .
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Consider a commutative diagram

A1
f

d1

A2

d2

B1 f
B2

of module maps, meaning that d2 f = f d1, and where we have sloppily named both
horizontal maps by f . Then the upper horizontal arrow restricts to a module map
ker d1 → ker d2 since if d1(x) = 0, then d2 f (x) = f d1(x) = 0. While the lower
horizontal arrow induces a module map coker d1 → coker d2 by

x + d1(A1) �→ f (x) + d2(A2)

for x ∈ B1. This is well-defined because if we replace x by x + d1(y), then we get
f (x + d1(y)) = f (x) + d2 f (y).

Definition 9.6.2 A snake diagram is a commutative diagram

A1
f

d1

A2
g

d2

A3

d3

0

0 B1 f
B2 g B3

of modules with exact rows.

The Snake lemma says the following.

Lemma 9.6.3 Suppose we are given a snake diagram as above with quotient map
q : B1 → coker d1. Then the module map

h : ker d3 → coker d1

given by h = q f −1d2g−1 is well-defined, and gives an exact sequence

ker d1 → ker d2 → ker d3
h−→ coker d1 → coker d2 → coker d3

together with the induced maps described above.

Proof The proof is by diagram chasing. Starting with x ∈ ker d3, then as g is sur-
jective, we can pick an element y ∈ A2 such that g(y) = x . By commutativity of the
diagram we get gd2(y) = d3g(y) = d3(x) = 0, and by exactness of the lower row,
there is an element z ∈ B1 such that f (z) = d2(y). Thus z = f −1d2g−1(x). It is easy
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to check that q(z) does not depend on the choice of elements picked in the inverse
images. The map h one then gets is evidently a module map.

Exactness of the long sequence is gotten by numerous diagram chases left to the
reader. To illustrate how these are carried out, let us show that ker h ⊂ g(ker d2). Say
h(x) = 0, so q(z) = 0 with z as above. Then z = d1(w) for some w ∈ A1. Now

d2(y − f (w)) = d2(y) − f d1(w) = f (z) − f (z) = 0

shows that y − f (w) ∈ ker d2, and g(y − f (w)) = g(y) − g f (w) = x − 0 = x , so
x ∈ g(ker d2). �

Definition 9.6.4 A module A is a finitely presented module if there is an exact
sequence

C −→ B −→ A −→ 0

of modules with B and C both finitely generated and free.

Equivalently, a module A is finitely presented if there is a short exact sequence

0 −→ D −→ B −→ A −→ 0

of modules with both B and D finitely generated and with only B free. If the first
statement holds, one gets the second statement by letting D be the quotient module
ofC by the kernel of the map into B. If the second statement holds, letC be a finitely
generated free presentation of D.

If the underlying ring R is unital, in the definition above we can replace C by
Rm and B by Rn and the map C → B by its matrix (ai j ) ∈ Mnm(R). Let {xi } be the
image of the standard basis in Rn under the quotient map Rn → B/C ∼= A. Then
the elements xi generate A and are subject to finitely many relations

∑

j

ai j x j = 0.

Hence the termfinitely presented. The image ofC is to be thought of as the submodule
of relations among the free generators in B.

The following result shows that if we pick any finite collection of generators of a
finitely presented module over a unital ring, then there will always be finitely many
relations between them.

Proposition 9.6.5 If A is a finitely presented module with an epimorphism g : E →
A of a finitely generated (free) module E, then ker g is finitely generated.

Proof Since A is finitely presented, there are finitely generated free modules B and
D making the first row in the following diagram
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0 D B
f

A

ι

0

0 ker g E g A 0

exact. The exactness of the second row is provided by g. Using that B is projective we
get the middle vertical arrow which f factors through making the square diagram
to the right commutative. The leftmost vertical arrow is just the restriction of the
middle vertical arrow to D, which makes the leftmost square diagram commutative.
Thus we have a snake diagram. The long exact sequence of the snake lemma gives
the isomorphism

ker g/imD ∼= E/imB.

As both E/imB and D are finitely generated, we conclude by Proposition9.1.6 that
ker g is finitely generated. We did not use freeness of E in this argument. �

The following result is known as the five-lemma.

Lemma 9.6.6 Suppose we have the following commutative diagram

A1

d1

A2

d2

A3

d3

A4

d4

A5

d5

B1 B2 B3 B4 B5

of modules. If d1 is an epimorphism and d2 and d4 are monomorphisms, then d3
is a monomorphism. Dually, if d5 is a monomorphism and d2 and d4 are epimor-
phisms, then d3 is a epimorphism. Thus d3 is an isomorphisms if d1, d2, d4, d5 are
isomorphisms.

Proof Let fi and gi be the horizontal arrows starting at Ai and Bi , respectively. To
prove the first statement, again by diagram chasing, if x ∈ A3 with d3(x) = 0, then
d4 f3(x) = g3d3(x) = 0, so f3(x) = 0 as d4 is injective. Thus by exactness, there is
y ∈ A2 such that f2(y) = x . As g2d2(y) = d3 f2(y) = 0, by exactness there is z ∈ B1

with g1(z) = d2(y). Since d1 is surjective there is w ∈ A1 with d1(w) = z. Then
d2 f1(w) = g1d1(w) = d2(y), so f1(w) = y as d2 is injective. Hence x = f2(y) =
f2 f1(w) = 0, so d3 is injective.
The proof of the second statement is similar, and the last assertion is a combination

of these two dual statements. Alternatively one can prove the lemma using the snake
lemma. �

The need the following useful result relating to exactness under the formation of
Pontryagin duals.

Proposition 9.6.7 A module map f : A → B is injective if and only if the dual map
f ∗ : B̂ → Â is surjective. Thus the sequence
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0 −→ A
f−→ B

g−→ C −→ 0

of modules is exact if and only if the sequence

0 −→ Ĉ
g∗−→ B̂

f ∗−→ Â −→ 0

of Z-modules is exact. If we cut out the last arrow in the first sequence and the first
arrow of the second sequence, we still have a bijective correspondence between exact
sequences.

Proof If f ∗ is surjective, then f ∗∗ : ˆ̂A → ˆ̂B is injective by Proposition9.2.8. But A
and B are contained in these double duals by Proposition9.4.9, and f ∗∗ restricts to
f on A, so f is injective.
If ker f is trivial, then by Proposition9.2.8 the exact sequence 0 → A → im f →

0 yields and exact sequence 0 → îm f → Â → 0, so any element in Â is of the form
u f for an additive map u : im f → Q/Z. By the proof of Proposition9.4.9 we can
extend u to v ∈ B̂, and then f ∗(v) = v f = u f , so f ∗ : B̂ → Â is surjective.

By Proposition9.2.8 any sequence

A
f−→ B

g−→ C −→ 0

of modules is exact if and only if the sequence

0 −→ Ĉ
g∗−→ B̂

f ∗−→ Â

of Z-modules is exact, so the first part of the proof implies that the first of these
sequences is short exact if and only the second one is short exact. �

The proposition above immediately implies that coker f ∗ ∼= k̂er f for any module
map f : A → B. This is consistent with the fact that f is injective if and only if f ∗
is surjective.

Note that the Pontryagin dual Â of an R-module A is a right R-module under
the operation ( f a)(b) = f (ab). If we have an R-module map f : A → B, then
f ∗ : B̂ → Â will obviously be a right R-module map. So the second sequence in the
proposition above will be a short exact sequence of right R-module maps.

Proposition 9.6.8 Considermodules A and B over a unital ring R. Then the additive
map σ : Â ⊗R B → HomR(B, A)∧ given by (σ ( f ⊗ x))(g) = f g(x) is bijective if
B is a finitely presented module.

Proof Exploiting the isomorphisms Â ⊗R R ∼= R and HomR(R, A) ∼= R, we see
that σ is bijective when B is just R. Since B �→ Â ⊗R B and B �→ HomR(B, A)∧
both preserve finite direct sums, we conclude that σ is also bijective if B is a finite
direct sum of R, or in other words, if B is a finitely generated free module.
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Since B is finitely presented, we have an exact sequence

D −→ C −→ B −→ 0

of modules with C and D both finitely generated and free. Since σ is natural in the
B-variable in that it respects module maps, we therefore get a commutative diagram

Â ⊗R D

σ

Â ⊗R C

σ

Â ⊗R B

σ

0

HomR(D, A)∧ HomR(C, A)∧ HomR(B, A)∧ 0

that has exact rows by Propositions9.5.17, 9.2.8 and 9.6.7. The proof is completed
by prolonging the diagram above trivially to the right and invoking the five-lemma
remembering that the two leftmost vertical arrows are isomorphisms by the first part
of this proof. �

9.7 Flatness

Let us study exactness of the tensor product.

Definition 9.7.1 An R-module A is (faithfully) flat when the sequence of additive
groups

0 −→ B ⊗R A
f ⊗ι−−→ C ⊗R A

g⊗ι−−→ D ⊗R A −→ 0

is exact if (and only if)

0 −→ B
f−→ C

g−→ D −→ 0

is an exact sequence of right R-modules. Flatness and faithful flatness for right
modules are defined analogously.

Clearly a unital ring is flat as a module over itself. It is also easy to see that a
direct sum of modules is flat if and only if each component is flat. So free modules
over unital rings are flat.

In view of the alternative version of Proposition9.5.17, to show flatness of an
R-module A, it is enough to check that

f ⊗ ι : B ⊗R A → C ⊗R A

is injective whenever f is a monomorphism between right R-modules B and C .

Proposition 9.7.2 Projective modules over unital rings are flat.
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Proof Suppose an R-module A is a direct summand of a free module B, so B =
A ⊕ C , and consider a monomorphism f : D → E of right R-modules. As B is flat,
the map

f ⊗ ι : D ⊗R B → E ⊗R B

is injective. If f ⊗ ιA kills some element x ∈ D ⊗R A, then the injective composition

D ⊗R A → (D ⊗R A) ⊕ (D ⊗R C) ∼= D ⊗R B → E ⊗R B ∼= (E ⊗R A) ⊕ (E ⊗R C)

will also vanish at x , so x = 0. �

Later in this section we shall see that the converse is false.

Proposition 9.7.3 A flat module over an integral domain is torsion-free.

Proof If A is a flat module over an integral domain R, then for any non-zero element
a ∈ R, the map f : R → R which sends b to ba is an injective module map. Thus
f ⊗ ι : R ⊗R A → R ⊗R A is injective, and this map sends x ∈ A ∼= R ⊗R A to ax ,
so A has no non-zero torsion elements. �

In Example9.5.18 we saw more directly that Zn is not flat as a module over Z for
n > 1. So the quotient of a flat module by a flat module need not be flat. The second
result below shows that if the quotient of a module by a flat submodule is flat, then
the module itself is flat.

Lemma 9.7.4 Given a short exact sequence

0 −→ A −→ B −→ C −→ 0

of modules over a unital ring R with C flat, then the sequence

0 −→ D ⊗R A −→ D ⊗R B −→ D ⊗R C −→ 0

of additive groups is exact for any right R-module D.

Proof Pick any right R-module free presentation

0 −→ F −→ E −→ D −→ 0

of D. Then we get the following commutative diagram
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0

F ⊗R A F ⊗R B F ⊗R C 0

0 E ⊗R A E ⊗R B E ⊗R C 0

D ⊗R A D ⊗R B D ⊗R C 0

0 0 0

of additive groups with exact rows. The commutativity of the diagram and exactness
of the first and third row is just Proposition9.5.17 and naturality of tensor products.
The upper 0 is flatness ofC , whereas the left 0 is right freeness, and thus right flatness,
of E . But then the kernel-cokernel map in the snake lemma shows that the third row
is short exact. �

Proposition 9.7.5 Given a short exact sequence

0 −→ A −→ B −→ C −→ 0

of modules over a unital ring R with C flat, then B is flat if and only if A is flat.

Proof Let D → E be a monomorphism of right R-modules. Then we have a
commutative diagram

0

0 D ⊗R A D ⊗R B D ⊗R C 0

0 E ⊗R A E ⊗R B E ⊗R C 0

of additive groups with exact rows. The exactness of the two rows is due to the lemma
above, and the upper 0 is flatness of C . If A is flat, then the leftmost vertical map
is injective, and the snake lemma shows that the middle vertical arrow has trivial
kernel, so B is flat. On the other hand, if B is flat, then the middle vertical arrow is
injective, and then the commutativity of the leftmost square shows that the leftmost
vertical arrow is injective. Thus A is flat. �
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Theorem 9.7.6 Suppose A is a module over a unital ring R. Then A is flat if and
only if its Pontryagin dual Â is injective as a right R-module if and only if the
surjective map f : I ⊗R A → I A given by f (a ⊗ x) = ax is an isomorphism of
additive groups for every right ideal I of R.

Proof Consider an inclusion B → C of right R-modules. By the right module
version of Proposition9.5.15 we have a commutative diagram

Hom(C, Â) Hom(B, Â)

(C ⊗R A)∧ (B ⊗R A)∧

of additive groups, where Hom here stands for homomorphisms of right R-modules,
and where the vertical arrows are bijections.

By Propositions9.6.7 and 9.4.9 we thus see that Â is injective if and only if
(C ⊗R A)∧ → (B ⊗R A)∧ is surjective for all monomorphisms B → C if and only
if B ⊗R A → C ⊗R A is injective for all monomorphisms B → C if and only if A
is flat.

By invoking Baer’s criterion we similarly see that Â is injective if and only if
(R ⊗R A)∧ → (I ⊗R A)∧ is surjective for all right ideals I of R if and only if
I ⊗R A → R ⊗R A is injective for all right ideals I of R if and only if f is an
isomorphism for every right ideal I of R. To verify the last equivalence it suffices to
consider the commutative diagram

I ⊗R A

f

R ⊗R A

I A A

of additive groups,where the second vertical arrow is the usual isomorphism,whereas
the first row is induced by I ⊂ R, and the second row is the inclusion map. �

The isomorphism I ⊗R A ∼= I A for a flat module A over a unital ring R with a
right ideal I did involve only the diagram consideration at the end of the proof. As
for the opposite direction, there is another approach that does not use Baer’s criterion
and Pontryagin duals. It is based on the following trivial result, and a more flexible
notion of flatness.

Proposition 9.7.7 Let I be a right ideal of a unital ring R, and let A be an R-
module. Then the map (R/I ) ⊗R A → A/I A that sends (a + I ) ⊗ x to ax + I A is
a well-defined additive map with an inverse map that sends x + I A to (1 + I ) ⊗ x.
When I is an ideal, then (R/I ) ⊗R A → A/I A is an isomorphism of R-modules
and of R/I -modules.
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The reduction map A �→ A/I A ∼= (R/I ) ⊗R A in the proposition above is
regarded as a change of the base ring from R to R/I , normally then in the setting of
commutative rings.

At the risk of confusion with musical terms we now introduce the following
relative notion of flatness.

Definition 9.7.8 An R-module A is B-flat, or flat for B, if for every monomorphism
C → B of right modules, the tensored sequence 0 → C ⊗R A → B ⊗R A is exact.

Lemma 9.7.9 A B-flat module is flat for right submodules and right quotient
modules of B.

Proof The part on submodules is true because if A is an R-module that is B-flat and
D ⊂ C are right submodules of B, then D ⊗R A → C ⊗R A is injective because its
composition with C ⊗R A → B ⊗R A is the monomorphism D ⊗R A → B ⊗R A.

As for the quotient issue, suppose we have a short exact sequence

0 −→ D −→ B −→ C −→ 0

of right R-modules, and let E be a right submodule of C . Say that the kernel of
E ⊗R A → C ⊗R A is the additive group F . We must show that F = 0. Consider
the commutative diagram

0 D

ι

E ′ E 0

0 D B C 0

of right modules with exact rows, where E ′ ⊂ B is the inverse image of E under the
quotient map. This gives the commutative diagram

0 F

D ⊗R A

ι

E ′ ⊗R A E ⊗R A 0

0 D ⊗R A B ⊗R A C ⊗R A

0

of additive groups with exact rows, where we have used B-flatness of A to the right
submodules D and E ′ of B. The snake lemma provides 0 → F → 0, so F = 0. �
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Lemma 9.7.10 A module that is flat for each component of a direct sum of right
modules is flat for the direct sum.

Proof Say A is an R-module that is Bi -flat, and let C be any right submodule of
B ≡ ⊕Bi . Any element of C will be non-zero in only finitely many components,
so to see that C ⊗R A → B ⊗R A is injective, we can assume that the direct sum is
finite. By induction we can therefore assume that B = B1 ⊕ B2. Let C1 = C ∩ B1

and let C2 be the projection of C onto B2. Then the diagram

0 0

C1 C C2 0

0 B1 B B2

of right modules is obviously commutative and has exact rows. Tensoring with A we
then get the commutative diagram

0 0

C1 ⊗R A C ⊗R A C2 ⊗R A 0

0 B1 ⊗R A B ⊗R A B2 ⊗R A

of additive groups with exact rows. The snake lemma shows that the kernel of the
middle vertical arrow is trivial, so A is B-flat. �

Now suppose we have a module A over a unital ring R such that I ⊗R A ∼= I A
for all right ideals I of R. Then by the diagram consideration at the end of the proof
of the theorem above, we know that I ⊗R A → R ⊗R A is an injection of additive
groups, so A is R-flat. But then by the last lemma above, the module A is flat for
any free right module, and thus it is flat for any right quotient module of a right free
module by the lemma before. But any right R-module comeswith a free presentation,
and is therefore such a quotient, so A is flat for any right R-module, in other words,
it is flat; and alternative proof, as promised.

Note that if I is an ideal, then I ⊗R A ∼= I A is an isomorphism of R-modules.
Also, when R is commutative, remember that a right ideal is an ideal.

We include a partial converse of Proposition9.7.3.

Corollary 9.7.11 Any torsion-free module over a PID is flat.
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Proof If A is a torsion-free module over a PID R, then any ideal of R is of the form
I = Ra for a ∈ R, so any element of Ra ⊗R A is of the form b ⊗ x for b ∈ R and
x ∈ A. If the map I ⊗R A → I A kills such an element, then bx = 0, so x = 0 or
b = 0 since A has no torsion. In either case b ⊗ x = 0, so I ⊗R A ∼= I A, and A is
flat by the theorem. �

This means that Q is flat as a Z-module. However, by Corollary9.9.6 we see that
if it was projective, it would be free, and two distinct rational numbers are linear
dependent over Z because (cb2d)a/b + (−abd2)c/d = 0. So it is not projective.
Also, it cannot be finitely generated since if d is the product of the denominators of
a finite collection of generators, then 1/n for n > d does not belong to the Z-span
of the generator set. So it is certainly not finitely presented, which is also confirmed
by the following result.

Theorem 9.7.12 Finitely presented flat modules over unital rings are projective.

Proof Suppose A is a finitely presented flat module over a unital ring R, and say we
are given an epimorphism B → C , so Ĉ → B̂ is a monomorphism. Since A is flat,
the top arrow of the commutative square

Ĉ ⊗R A B̂ ⊗R A

HomR(A,C)∧ HomR(A, B)∧

of additive groups is an injection, and the vertical arrows are isomorphisms by Propo-
sition9.6.8. Thus the bottom arrow is an injection, and then by Propositions9.6.7 and
9.4.9, we deduce that HomR(A, B) → HomR(A,C) is a surjective map of additive
groups. We conclude that A is projective. �

9.8 Duals

Definition 9.8.1 The dual module A∗ of an RS-bimodule A is the SR-bimodule
HomR(A, R). Regarded as an RopSop-bimodule, we define the double dual A∗∗ of
A as the SopRop-bimodule HomRop(A∗, Rop), which is the same thing as an RS-
bimodule. Evidently the formula

(η(x))( f ) = f (x)

defines an RS-bimodule map η : A → A∗∗. The bimodule A is reflexive if η is an
isomorphism.

Not all bimodules are reflexive. The dual bimodule can even be trivial.
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Example 9.8.2 We have HomZ(Zn, Z) = {0} since for f ∈ HomZ(Zn, Z), we have
n f ([m]) = f ([nm]) = f (0) = 0, so f ([m]) = 0. ♦

Normally the dual bimodule is larger.

Example 9.8.3 The dual of the countableQ-module A = ⊕i∈NQ is the uncountable
module A∗ = ∏

i Q. Letting B be the complement of the Q-subspace A of A∗, we
see that A∗∗ = (A ⊕ B)∗ ∼= A∗ ⊕ B∗ is also uncountable, so A is not reflexive. ♦

We have the following result with a straighforward proof and an obvious
generalization.

Lemma 9.8.4 Given two RS-bimodules Ai with projections πi : A1 ⊕ A2 → Ai .
Define h : (A1 ⊕ A2)

∗∗ → A∗∗
1 ⊕ A∗∗

2 by h(x) = (x1, x2), where xi ( fi ) = x( fiπi ).
Then h is an RS-bimodule isomorphism with inverse given by

(h−1(x1, x2))( f ) = x1( f ι1) + x2( f ι2).

Moreover, we have hη = (η1, η2), where ηi : Ai → A∗∗
i are the canonical maps.

Thus η is injective if and only if each ηi is injective. Also, we see that A is reflexive
if and only if each Ai is reflexive.

Definition 9.8.5 Consider a finitely generated free module A over a unital ring with
basis X . Define x∗ ∈ A∗ for x ∈ X by x∗(y) = δx,y for y ∈ X . Then X∗ ≡ {x∗ | x ∈
X} is clearly a basis for the right module A∗ called the dual basis of X .

Finitely generated free modules over unital rings are reflexive as η(x) = x∗∗ for
any element x of a basis X . Alternatively, one can use the lemma above repeatedly.

The bimodule map η : A → A∗∗ is always injective when A is a free module over
a unital ring. To see this, write any non-zero y ∈ A as a finite linear combination
y = ∑

ax x of a basis X with all ax �= 0 and observe that (η(y))(x∗) = ax , where
x∗(y) = δx,y for y ∈ X .

Proposition 9.8.6 If an RS-bimodule A is a finitely generated projective module
with R unital, then the SR-bimodule A∗ is finitely generated and projective as a
right module, and the bimodule A is reflexive.

Proof This is immediate from the lemma above and the remark above on dual bases
together with Propositions9.3.8 and 9.3.6. �

Proposition 9.8.7 Let A be an RS-bimodule and let B be an RT -bimodule with R
unital. Then there is an ST -bimodule map h : A∗ ⊗R B → HomR(A, B) such that
h( f ⊗ x) = f (·)x. Moreover, if A is a finitely generated projective module, then h
is a bimodule isomorphism.
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Proof The map h comes from the balanced ST -bimodule map ( f, x) �→ f (·)x .
Next assume first that A is a free module with a finite basis X . Then any element

of A ⊗S B is clearly of the form
∑

x∈X x∗ ⊗ yx , and if such an element is zero under
h, then evaluating at x ∈ X , we get yx = 0, so the element itself is zero. Thus h
is injective. To see that it is surjective, observe that f ∈ HomR(A, B) is the image
under h of ∑

x∈X
x∗ ⊗ f (x) ∈ A∗ ⊗R B

as can be checked by evaluating at x ∈ X .
If A is a finitely generated projective module, then there is another moduleC such

that D ≡ A ⊕ C is a finitely generated free module, see the proof of the proposition
above. Let hC and hD be the maps in the proposition corresponding to A = C and
A = D, respectively. By the previous paragraph the map hD is an isomorphism, and
it can be checked that hD = h ⊕ hC under the natural isomorphisms

D∗ ⊗R B ∼= (A∗ ⊗R B) ⊕ (C∗ ⊗R B) and HomR(D, B) ∼= HomR(A, B) ⊕ HomR(C, B),

see we conclude that h is an isomorphism as well. �

Corollary 9.8.8 Let A be an RS-bimodule and let B be an T R-bimodule with R
unital. If A is a finitely generated projective module, then the ST -bimodule map

h : A∗ ⊗R B∗ → (B ⊗R A)∗ ; (h( f ⊗ g))(x ⊗ y) = f (y)g(x)

is an isomorphism.

Proof The map in question is given by the isomorphisms

A∗ ⊗R B∗ ∼= HomR(A, B∗) ∼= HomR(B ⊗R A, R)

provided by the proposition above and Proposition9.5.15. �

The following result shows that the tensor product of free modules is free if one
of the rings is unital.

Proposition 9.8.9 If A is an RS-bimodule with module basis X, and B is an ST -
bimodule with module basis Y , then X ⊗ Y is a module basis for A ⊗S B if either S
or R is unital.

Proof By passing elements of S to the left of the tensor product symbol, we see that
any element of A ⊗S B can be written as a finite sum of elements of the form z ⊗ y
with z ∈ A and y ∈ Y , so X ⊗ Y spans A ⊗S B over R.

If a finite sum
∑

ax,y x ⊗ y with x ∈ X and y ∈ Y and ax,y ∈ R is zero, and S is
unital, then by applying ι ⊗ y∗, we get

∑
ax,y x = 0, so ax,y = 0. Similarly, if R is

unital, apply x∗ ⊗ ι, to get ax,y = 0. In either case X ⊗ Y is a basis. �



344 9 Modules

9.9 Modules over PID’s

We have the following fundamental result.

Theorem 9.9.1 All bases of a free module over a commutative unital ring have the
same cardinality, namely the rank of the module.

Proof Given a free module A over a commutative unital ring R, we reduce to the
vector space setting by first observing that the quotient R/I of R by a maximal ideal
is a field by Corollary6.11.4, and maximal ideals do exist by Proposition6.11.7.
Having picked any such ideal, we next observe that R/I ⊗R A is a vector space over
R/I , and by Proposition9.8.9 it has a linear basis 1 ⊗ X for any R-linear basis X of
A. By Theorem3.2.5, if Y was another R-linear basis for A, then 1 ⊗ Y and 1 ⊗ X
would have the same cardinality, so |X | = |Y |. Since a generator set of a vector space
with minimal cardinality is automatically a linear basis, we conclude that 1 ⊗ Z for
a minimal generator set Z of A also has cardinality |X |, so rankA = |X |. �

By Proposition9.7.7 we could alternatively have considered the vector space
A/AI over the field R/I in the argument above, thus avoiding any use of tensor
products. Alternatively one could adapt more directly the proof for vector spaces to
modules.

Corollary 9.9.2 Any two free modules over a PID are isomorphic if and only if they
have the same rank.

Proof This is immediate from the theorem above. �

The existence of a basis for a module cannot be adapted because for any non-zero
element y in the complement of a free submodule B spanned by somemaximal linear
independent set X , the set X ∪ {y} is not linear independent. Setting off to show this,
one can only deduce that ay ∈ B for some non-zero element a of the ring. In the
field case we could divide by a to get a contradiction, but for a general ring this is
not possible. Indeed, the element a could be in the annihilator of y.

However, the following result carries over.

Theorem 9.9.3 Any submodule of a free module over a PID is free, and never of
greater rank than the larger module.

Proof We give a proof only in the case of a submodule A of a module with finite
basis {xi }ni=1 over a PID R. Let Am be the submodule A ∩ 〈{xi }mi=1〉. Since A1 is a
submodule of 〈x1〉, it is of the form 〈ax1〉 for some a ∈ R, so either it is trivial, or it
is free with basis ax1 as bax1 = 0 implies ba = 0, so b = 0 as a �= 0.

Assume inductively that Am is free and of rank not greater than m, which as
we have seen, holds for m = 1. Since R is a PID, the ideal I of all a ∈ R such
that axm+1 ∈ A + ∑m

i=1 Rxi is principal, say with generator c ∈ R. If c = 0, then
Am+1 = Am , so the induction step holds. Thus A = An is free and of rank not greater
than n.
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If c �= 0, pick y ∈ A such that cxm+1 − y ∈ ∑m
i=1 Rxi . Now if z ∈ Am+1, then

its coefficient with respect to xm+1 belongs to I , and must be divisible by c. So
there is d ∈ R such that z − dcxm+1 ∈ ∑m

i=1 Rxi . But then z + dy ∈ Am , so Am+1 =
Am + 〈y〉, and {xi }mi=1 ∪ {y} is linear independent as y has the non-trivial coefficient
c with respect to xm+1. Again the induction step holds, and A = An is free and of
rank not greater than n. �
Corollary 9.9.4 A submodule of a finitely generated module over a PID is finitely
generated, and not of greater rank than the larger module.

Proof By Proposition9.3.6 we know that a finitely generatedmodule A over a PID is
the quotient of a free module B of not greater rank than that of A. IfC is a submodule
of A, then by the theorem above its inverse image in B is a free module of not greater
rank than that of A. The image of a basis for this module will be a generator set for
C with cardinality not greater than rankA. �
Corollary 9.9.5 Any minimal generator set of a finitely generated free module over
a PID is a basis.

Proof Suppose {xi }ni=1 is aminimal finite generator set of a freemodule A over a PID
R. Let {ei } be the standard basis for Rn , and consider the module map f : Rn → A
such that f (ei ) = xi . Then as A is projective, we get the decomposition Rn ∼= A ⊕
ker f by Proposition9.3.8. By the theorem above A is a free module of rank n, and
ker f is a free module of rank n − n = 0, so ker f = {0}. Thus f is an isomorphism
and {xi }ni=1 is a basis for A. �
Corollary 9.9.6 Any projective module over a PID is free.

Proof Combine the theorem above with Proposition9.3.8. �
Wehave also seen that finitely generatedprojectivemodules over aPIDare torsion-

free, which is consistent with the corollary above and the following result.

Theorem 9.9.7 Suppose A is a finitely generated module over a PID. Then A/Aτ

is free and of finite rank, and

A ∼= Aτ ⊕ (A/Aτ ).

Any other free module B such that A ∼= Aτ ⊕ B is isomorphic to A/Aτ .

Proof By Proposition9.1.17 the module A/Aτ is torsion-free, and obviously finitely
generated, say with a finite generator set {xi }ni=1. Among these generators pick a
maximal subset of linear independent generators {yi }mi=1. Then for each x j there
is a non-zero a j in the PID such that a j x j ∈ 〈y1, . . . , ym〉, otherwise x j could be
added to the assumed maximal collection. Hence aA/Aτ ∈ 〈y1, . . . , ym〉, where a =
a1 · · · an �= 0. Thus we have a map A/Aτ → 〈y1, . . . , ym〉 given by x �→ ax . It is a
monomorphism because A/Aτ is torsion-free. Since its image is a submodule of a
free module, the theorem above tells us that this image module is free. But this image
module is isomorphic to A/Aτ , so A/Aτ is free, and we get the decomposition by
Proposition9.3.8. �
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Corollary 9.9.8 A finitely generated flat module over a PID is free.

Proof Combine the theorem with Corollary9.7.3. �

The theorem is evidently also consistent with Corollary9.7.11. More importantly,
it reduces the study of finitely generated modules over PID’s to finitely generated
torsion modules.

9.10 Torsion Modules over PID’s

Definition 9.10.1 Let A be a module over a PID with a prime element p. Denote
by A(p) the submodule of A that consists of all x ∈ A such that pnx = 0 for some
n ∈ N. For any element a of the PID, denote by Aa the submodule consisting of all
x ∈ A such that ax = 0.

Proposition 9.10.2 Suppose A is a non-trivial finitely generated torsion module
over a PID, and let P be a collection of representatives from each prime ideal of the
PID. Then

A = ⊕A(p),

where we sum over all p ∈ P such that A(p) is non-trivial.

Proof Pick a ∈ R such that ax = 0 for all x ∈ A. Such an element exists because
A is a finitely generated torsion module; we may pick the finite product of those
elements that kill each generator. Now every element of the PID is up to units a
product of powers of elements in P . Factorizing a this way, by induction it suffices
to show that if a = bc for relatively prime b and c, corresponding to powers of
different prime elements, then A = Ab ⊕ Ac. This follows because there are ring
elements r, s such that rb + sc = 1, so for any x ∈ A, we have x = rbx + scx with
rbx ∈ Ac and scx ∈ Ab as crbx = rax = 0 = sax = bscx . Thus A is the sum of Ab

and Ac, and if y ∈ Ab ∩ Ac, then y = rby + scy = 0 + 0 = 0, so we have a direct
sum. �

Next we decompose each A(p) into cyclic modules.

Definition 9.10.3 Elements x1, . . . , xn of a module over a PID are independent if∑
ai xi = 0 implies ai xi = 0, or equivalently, if 〈x1, . . . , xn〉 = ⊕〈xi 〉.

Lemma 9.10.4 Suppose A is a module over a PID with pn A = 0 for a prime ele-
ment p and n ∈ N. Assume we have x1 ∈ A with Ann(x1) = (pn) and indepen-
dent elements y2, . . . , yn ∈ A/〈x1〉. Then there are representatives xi ∈ A of yi with
Ann(xi ) = Ann(yi ). The elements are x1, . . . , xn automatically independent.

Proof To get such representatives it suffices to show that a generator pm of the
annihilator of an element y ∈ A/〈x1〉 kills some representative of y. The opposite
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inclusion of annihilators is obvious. For any representative z ∈ A of y, we have
pmz ∈ 〈x1〉. Write pmz = apkx1 for some k ≤ n and a not divisible by p. If m > k,
then apn−(m−k)x1 = pnz = 0, an absurdity as pn cannot divide apn−(m−k). But then
z − apk−mx1 is a representative of y killed by pm .

Therefore we can pick representatives xi of yi with no smaller annihilators. If∑n
i=1 ai xi = 0, then

∑n
i=2 ai yi = 0. By assumption ai yi = 0, so ai xi = 0 for i ≥ 2

by the paragraph above. But then also a1x1 = 0. �

Observe that for any module A over a PID we have Ann(x) = (p) for x ∈ Ap

when p is a prime element of the PID. Recall that R/(p) is a field, and note that Ap

is a vector space over this field.

Lemma 9.10.5 Suppose A is amodule over a PID R with a prime element p, and say
we have x ∈ A withAnn(x) = (pn) for some n ∈ N. Then Ap has greater dimension
than (A/〈x〉)p as vector spaces over the field R/(p).

Proof Consider first n = 1. Say y2, . . . , ym is a basis for (A/〈x〉)p over R/(p). Then
each y2, . . . , ym ∈ A/〈x〉 has annihilator (p). Moreover, they are independent over R
because if

∑
ai yi = 0 for ai ∈ R, then

∑
(ai + (p))yi = 0 as pyi = 0. So ai ∈ (p)

by linear independence of {yi } over R/(p). But then ai yi = 0 as pyi = 0.
Since pAp = 0 andAnn(x) = (p), the lemmaaboveprovides representatives xi ∈

A of yi each with annihilator (p), so xi ∈ Ap, and such that x1, . . . , xm with x1 = x
are independent over R. To see that these elements in Ap are linearly independent
over R/(p), say that

∑
(ai + (p))xi = 0. Then as pxi = 0, we get

∑
ai xi = 0, so

ai xi = 0 and ai ∈ (p). This settles the case n = 1.
Assume by induction that the lemma holds for n. To prove the lemma for n + 1

with Ann(x) = (pn+1), note that Ann(px) = (pn). Thus Ap has greater dimen-
sion than (A/〈px〉)p, which again has greater dimension than (A/〈x〉)p since the
annihilator of x + 〈px〉 ∈ A/〈px〉 is (p), and the case n = 1 has already been proved.

�

Theorem 9.10.6 Suppose A is a finitely generated module over a PID R, and let p
be a prime element of R. If A(p) is non-trivial, then

A(p) ∼=
m⊕

i=1

R/(pni ),

where m, ni ∈ N and ni ≤ n j for i ≤ j . Moreover, the sequence n1, . . . , nm is
uniquely determined by this.

Proof We prove the existence part of the theorem by induction on the dimension of
the vector space A(p)p over the field R/(p).

By Corollary9.9.4 the submodule A(p) of A is finitely generated, so we may pick
an element x1 ∈ A(p) with annihilator (pr1) for a maximal r1.

Suppose A(p)p is trivial. For x ∈ A(p) we know that pnx = 0 for some n, so
pn−1x ∈ A(p)p and pn−1x = 0. But then pn−2x ∈ A(p)p is zero. Continuing this
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we get x = 0, so A(p) is trivial, which contradicts our assumption. So the dimension
of A(p)p over R/(p) is never zero.

If dim A(p)p = 1, then by the last lemma above (A(p)/〈x1〉)p is trivial. If
x ∈ A(p), then pnx = 0 for some n, so pn−1x + 〈x1〉 ∈ (A(p)/〈x1〉)p and pn−1x
belongs to 〈x1〉. Then pn−2x + 〈x1〉 ∈ (A(p)/〈x1〉)p and pn−2x ∈ 〈x1〉. Continuing
this we get x ∈ 〈x1〉. Thus A(p) = 〈x1〉. The map R → A(p) given by a �→ ax1 is
an epimorphism with kernel (pr1), so the existence part of the theorem holds for the
single element sequence r1, and the induction can start.

Assume that the existence part of the theorem holds for each non-trivial module
with prescribed vector space dimension less than dim A(p)p. In particular, by the last
lemma it holds for the module A(p)/〈x1〉. If this is non-trivial, then there are inde-
pendent elements y2, . . . , ym ∈ A(p)/〈x1〉with Ann(yi ) = (pri ) and r2 ≥ · · · ≥ rm .
By the first lemma each yi has a representative xi ∈ A(p) with the same annihilator,
and such that x1, . . . , xm are independent. By choice of r1 we have r1 ≥ r2. Hence
we get the desired decomposition with sequence ni = rm+1−i .

The uniqueness of the sequence will be clear from the next theorem. �
The following result is an obvious generalization of the Chinese remainder theo-

rem to PID’s. Of course it follows from themore general result Theorem6.8.9, but we
nevertheless include a separate proof of this important result adapted to this context.

Lemma 9.10.7 Suppose a = a1 · · · an in a PID R with the ai ’s relatively prime.
Given bi ∈ R, there is a solution x of the system x − bi ∈ (ai ) uniquely determined up
to addition by an element of (a).Moreover, themodulemap f : R → ⊕

R/(ai ) given
by f (b) = (g1(b), . . . , gn(b))with quotientmaps gi : R → R/(ai ), is surjectivewith
kernel (a), so

R/(a) ∼=
⊕

R/(ai ).

Proof Note that c, d ∈ R are relatively prime if and only if [c] ∈ R/(d) is a unit. If
ci are relatively prime to d, so is c1 · · · cn because [c1 · · · cn] = [c1] · · · [cn] is a unit
of R/(d).

Thus ci = a/ai is relatively prime to ai , and there are ri , si ∈ R such that riai +
si ci = 1. Set x = ∑

b j s j c j . Then x = bi si ci + (ai ) = bi + (ai ).
If y is another solution, then y − x ∈ (ai ) for all i , so y − x = (a).
Surjectivity of f is now immediate. Its kernel consists of all b ∈ R such that

b ∈ (ai ), which happens precisely when b ∈ (a). �
When R = Z the surjectivity of f defined above is just a restatement of the Chi-

nese remainder theorem. We could have defined a module map R/(a) → ⊕
R/(ai )

directly, and in the case R = Z, this map would be surjective exactly when it is
injective because both sides are finite sets with the same cardinality.

Lemma 9.10.8 If R is an integral domain, then

aR/(ab) ∼= R/(b)

for non-zero elements a, b ∈ R.
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Proof The epimorphism R → aR/(ab) given by c �→ ac + (ab) has kernel (b)
because if ac ∈ (ab), so ac = abd for some d ∈ R, then c = bd. �

The following result is known as the invariant factor theorem.

Theorem 9.10.9 Suppose A is a non-trivial finitely generated torsion module over
a PID R. Then

A ∼= R/(a1) ⊕ · · · ⊕ R/(an)

for non-zero ai ∈ R such that ai divides ai+1. Moreover, the sequence (a1), . . . , (an)
of ideals is uniquely determined by this.

Proof By Proposition9.10.2 we can write A = ⊕n
i=1A(pi ) for primes pi . By the last

theorem above
A(pi ) ∼=

⊕
R/(p

mi j

i )

for mi j ∈ N with mi j ≤ mi, j+1. Set a j = p
m1 j

1 · · · pmnj
n . Clearly a j divides a j+1, and

by Lemma9.10.7 we have

R/(a j ) ∼= R/(p
m1 j

1 ) ⊕ · · · ⊕ R/(p
mnj
n ),

which gives the required decomposition.
To show uniqueness, first observe that given a decomposition as in the theorem,

then
Ap

∼= (R/(a1))p ⊕ · · · ⊕ (R/(an))p

for any prime p. Now (R/(a))p is a vector space over R/(p) for any a ∈ R. We
claim that its dimension is 1 if p divides a, and is otherwise zero. An element b + (a)

belongs to this space if pb ∈ (a). If p does not divide a, then b ∈ (a) and the space
is trivial. On the other hand, if p divides a, so a = pc for some c, then pb ∈ (a)

exactly when b ∈ (c), again by unique factorization. So in this case (R/(a))p =
cR/(cp) ∼= R/(p) by the lemma above, and its dimension over R/(p) is one. Hence
the dimension of Ap equals the number of ai ’s that has p as a factor.

Saywe had another decomposition of A of the same typewith respect to b1, . . . , bk
such that bi divides bi+1. Pick a prime factor p of a1. Then p divides every ai as
a j divides a j+1, so dim Ap = n by the preceding paragraph. But then p must also
divide at least n of the bi ’s, which is only possible if k ≥ n. Similarly, picking a prime
factor of b1, we conclude that n ≥ k. So n = k. Thus the number of components in
the direct sum is uniquely determined.

The remaining uniqueness assertion certainly holds for n = 1. Assume by induc-
tion that this part holds for all decompositions into less than n components. Suppose
we are given a length n decomposition as in the theorem.

If p is a prime factor of a1, then there are bi ∈ R such that ai = pbi for all i as
a j divides a j+1. By the lemma above, we then get
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pA ∼=
n⊕

i=1

pR/(pbi ) ∼=
n⊕

i=1

R/(bi ),

and evidently bi divides bi+1. Picking a possible prime factor for b1 we can repeat
this until the first component in the direct sum collapses to {0}, which happens when
the generator of the corresponding ideal is a unit. We are then in a situation where

a1A ∼=
n⊕

i=2

R/(ci )

for some ci ∈ Rwithai = a1ci . Byour induction hypothesis the ideals (c2), . . . , (cn),
and hence the ideals (ai ) = a1(ci ) for i ≥ 2, are uniquely determined by a1A.

If we did the same for another length n decomposition of A with respect to di ’s,
then since the length of a decomposition is invariant, wewould get the first collapse at
a1A, and consequently (ai ) = (di ) for i ≥ 2. Returning to the two decompositions of
A, we conclude that R/(a1) ∼= R/(d1) as the remaining components are isomorphic,
so also (a1) = (d1). �

Corollary 9.10.10 Any finitely generated module over a PID R is isomorphic to

Rm ⊕ R/(a1) ⊕ · · · ⊕ R/(an)

for non-zero ai ∈ R such that ai divides ai+1. The number m and the sequence
(a1), . . . , (an) are uniquely determined by the isomorphism class of the module.

Proof This is immediate from Theorems9.9.7 and 9.9.1 and the theorem above. �

This corollary andTheorem9.10.6 are generalizations of the fundamental theorem
for finitely generated abelian groups since such groups are finitely generatedmodules
over the PID Z and Z/(n) = Zn . The proof of the result for modules is a natural
generalization of the one for groups, and the techniques used are similar to those
used to prove the fundamental theorem of arithmetic. In the next section we give a
different proof of the existence part, more in the spirit of linear algebra.

9.11 Smith Normal Form

Recall that we can multiply and add matrices with entries in a ring R just as we did
for fields, and Mn(R) becomes a ring under these operations, and it is unital if R
is unital. We can also define the transpose of a matrix with entries in R as before,
but the transpose of a product is no longer the opposite product of the transposes,
nor is the inverse of a transpose the transpose of the inverse unless we for instance
assume that the unital ring R is commutative. In the commutative case the theory
of determinants works with the same definition. Of course division must be avoided
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when this is senseless. A matrix over a commutative unital ring is invertible if and
only if its determinant is a unit.

Any m × n-matrix over a ring R defines an R-module map Rn → Rm by matrix
multiplication with column vectors. If A and B are free modules with finite bases
X = {x1, . . . , xn} and Y = {y1, . . . , ym}, respectively, and f ∈ HomR(A, B), then
the associated matrix ( f )XY = (ai j ) ∈ Mm,n(Rop) of f is given by f (x j ) = ∑

i ai j yi .
If we let (x)X denote the column vector of the coordinates of x ∈ A with respect to
the basis X , then ( f (x))Y = ( f )XY (x)X . It is also easy to see that if g ∈ HomR(B,C)

and C is free with finite basis Z , then

(g f )XZ = (g)YZ ( f )XY .

Thus ifm = n and R is unital, then f is an isomorphism if and only if ( f )XY is invert-
ible. In general the map f �→ ( f )XX is trivially a ring isomorphism from EndR(A) to
Mn(Rop), which is isomorphic to Mn(R) when R is commutative.

We will soon need two lemmas that do not need proofs.

Lemma 9.11.1 If A and B are two modules with submodules C and D, respectively.
Then A × B → A/C × B/D given by (a, b) �→ (a + C, b + D) is an epimorphism
with kernel C × D, so

(A × B)/(C × D) ∼= A/C × B/D.

Lemma 9.11.2 If R is a unital ring with A ∈ Mn(R) invertible, and if M is a
submodule of Rn, then

ARn/AM ∼= Rn/M

under the map given by Ax + AM �→ x + M.

Definition 9.11.3 Two m × n-matrices A and B over a unital ring R are equivalent
if A = CBD for invertible matrices C ∈ Mm(R) and D ∈ Mn(R). They are similar
if n = m and D = C−1.

Thus A, B ∈ Mm,n(R) are equivalent if they are associated matrices of the same
R-module map Rn → Rm but with respect to different bases of cardinality n and m.

When we performed Gauss-Jordan elimination for matrices over fields we intro-
duced three elementary row operations, namely, interchanging two rows, multiplying
a row by a unit, and multiplying a row by an element and adding this row to another.
Given a unital ring R, let Pi j , Di (a), Ti j (b) ∈ Mn(R) be the matrices obtained from
In respectively by interchanging row i and j , multiplying row i from the left by a
unit a ∈ R, multiplying row j from the left with b ∈ R and adding this row to row
i . It is easy to see that

Pi j = In − Eii − E j j + Ei j + E ji , Di (a) = In + (a − 1)Eii , Ti j (b) = In + bEi j
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where Ei j are the matrix units. It is trivially verified that for any A ∈ Mm,n(R),
the matrix Pi j A is the one obtained by performing the elementary row operation
corresponding to Pi j on A. The same is true for the two other elementary matrices.
Multiplication from the right by n × n-elementarymatrices produces the correspond-
ing elementary column operations on A, then with multiplication by elements of the
ring from the right. For instance, the matrix ADi (a) is the one obtained from A by
multiplying its i th column from the right by the unit a. Also notice that the inverse
of an elementary operation is an elementary operation of the same type.

A fourth row (column) operation, which in general cannot be obtained by repeated
use of the three elementary ones, is to multiply A from the left (right) by an m ×
m-matrix (n × n-matrix) of the form

⎛

⎝
Ik 0 0
0 B 0
0 0 Im(n)−k−2

⎞

⎠

with invertible B ∈ M2(R).

Theorem 9.11.4 Any matrix over a PID is equivalent to a matrix of the form

(
E 0
0 0

)

with E = diag(a1, . . . , ak) having non-zero entries such that ai divides ai+1. The
sequence a1, . . . , ak is unique up to multiplication by units.

Proof The length of an element a in the PID R is the number of prime factors in its
decomposition, so the length of a unit is zero.

We may assume that the m × n-matrix A over R is non-zero. Pick a non-zero
entry with minimal length. Performing elementary row and column operations we
can assume that it is a11.

Two things can happen: Either every entry in the first row except a11 is divisible
by a11, and can therefore be eliminated using the third elementary column operation,
producing a matrix with first row

(
d 0 · · · 0) .

Or a11 does not divide some entry in the first row, which we by the first column
operation may assume is a12. Since a11 and a12 are relatively prime, their greatest
common divisor d has smaller length than that of a11, and there are r, s, u, v ∈ R
such that d = ra11 + sa12 and a11 = du and a12 = dv. Then ru + sv = 1, so

B =
(
r v

s −u

)

is invertible with inverse

(
u v

s −r

)

.

Multiplying our matrix on the right by
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(
B 0
0 In−2

)

we obtain a matrix with first row of the form

(
d 0 b13 · · · b1n

)
.

Next we turn attention to the first column. Two things can occur: Either all entries
in the column other than the one in position (1, 1) is divisible by that entry, and
we can eliminate them by the third elementary row operation. Or some entry in the
column is not divisible by that entry, and we can, after having shifted it to the second
row, multiply the matrix with (

B 0
0 Im−2

)

from the left for an appropriate invertible B, and get a matrix with zeroes at the
second place in the first column, whereas the (1, 1)-entry has length less than that of
d.

Alternating this process between first rows and first columns, then since the length
of the entry in position (1, 1) cannot reduce indefinitely below the length of a11,
sooner or later we will end up with an equivalent matrix C1AD1 of the form

⎛

⎜
⎜
⎝

a1 0 · · · 0
0
· A1

0

⎞

⎟
⎟
⎠

for some a1 ∈ R and A1 ∈ Mm−1,n−1(R) and C1 ∈ Mm(R) and D1 ∈ Mn(R).
Doing the same thing for A1, we can write

C ′
2A1D

′
2 =

⎛

⎜
⎜
⎝

a2 0 · · · 0
0
· A2

0

⎞

⎟
⎟
⎠

for a2 ∈ R and A2 ∈ Mm−2,n−2(R) and invertible matricesC ′
2 ∈ Mm−1(R) and D′

2 ∈
Mn−1(R). Setting

C2 =
(
1 0
0 C ′

2

)

and D2 =
(
1 0
0 D′

2

)

we get
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C2C1AD1D2 =

⎛

⎜
⎜
⎜
⎜
⎝

a1 0 0 · · · 0
0 a2 0 · · · 0
· ·
· · A2

0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Continuing this we get an equivalent matrix of A of the form in the theorem with
E = diag(a1, . . . , ak) for some ai ∈ R. However, the division property between the
ai ’s might not hold.

If a1 does not divide a2, add the second row to the first, so that the first row
becomes (

a1 a2 0 · · · 0) .

Now reduce the length of a1 by resorting to the alternating procedure above. In the
end, we get a new diagonal matrix, where the entry at (1, 1) will divide the entry at
(2, 2), so we can assume that a1 divides a2. By the first elementary row and column
operations we can get a new diagonal matrix where a2 and a3 have swopped places.
Repeating the reduction of the length procedure above, we can assume that a1 also
divides a3. Continuing this we can assume that a1 divides a2, . . . , ak .

Consider next the smaller matrix with a2 in the upper left corner, and repeat the
procedure. We can therefore assume that a2 divides a3, . . . , ak . Considering yet a
smaller matrix with a3 in the upper left corner, we can get an equivalent matrix where
a3 divides a4, . . . , ak , till finally ai divides ai+1 for all i .

Concerning uniqueness, say A = CFD, where F is as prescribed in the theorem
and C ∈ Mm(R) and D ∈ Mn(R) are invertible. Then by the two lemmas above, we
have the following chain

Rm/ARn ∼= C−1Rm/FDRn ∼= Rm/FRn ∼= Rm/((a1) ⊕ · · · ⊕ (ak))
∼= R/(a1) ⊕ · · · ⊕ R/(ak) ⊕ Rm−k

of isomorphisms. By Corollary9.10.10 the sequence a1, . . . , ak is up to multiplica-
tion by units uniquely determined by the left hand side. �

The matrix above is said to be in Smith normal form, and the elements a1, . . . , ak
are the invariant factors of the matrix.

The existence of a Smith normal form works also for matrices over UFD’s since
such rings also have greatest common divisors.

Corollary 9.11.5 Two matrices of the same size over a PID are equivalent if and
only if they have the same sequence of invariant factors up to multiplication by units.

Proof If the matrices have the same invariant factors up to multiplication by units,
they are both equivalent to the same matrix in Smith normal form, and therefore they
are equivalent to each other.

Conversely, if them × n-matrices A and B are equivalent, then their Smith normal
forms are equivalent. Now carry out the argument at the end of the proof of the
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theorem, to get

R/(a1) ⊕ · · · ⊕ R/(ak) ⊕ Rm−k ∼= R/(b1) ⊕ · · · ⊕ R/(bl) ⊕ Rm−l .

By Corollary9.10.10 their invariant factors ai and bi coincide up to multiplication
by units. �

The proof of the theorem above provides an algorithm for how one to a given
matrix A ∈ Mm,n(R) over a PID R can find matrices C ∈ Mm(R) and D ∈ Mn(R)

such that CAD is in Smith normal form. It also gives an alternative proof of the
existence part of the decomposition in Corollary9.10.10.

Namely, any finitely generated module M over R has a free presentation of finite
rank, so by Theorem9.9.3, it can be written as Rm/ f (Rn) for n ≤ m and a monomor-
phism f : Rn → Rm . Let A be the associatedmatrix of f with respect to the standard
bases. According to the theorem above F = CAD is in Smith normal form with
invariant factors ai for some invertible matrices C ∈ Mm(R) and D ∈ Mn(R). Then

M ∼= Rm/C−1FD−1Rn ∼= Rm/FRn ∼= R/(a1) ⊕ · · · ⊕ R/(ak) ⊕ Rm−k

as claimed.
We can rephrase the theorem above in the following way.

Corollary 9.11.6 Suppose M is a finitely generated submodule of a free module N
over a PID R. Then there exists a basis {xi } for N and finitely many elements ai ∈ R
such that ai divides ai+1 and {a1x1, . . . , anxn} is a basis for M. Such a sequence
a1, . . . , an is unique up to multiplication by units.

Proof Pick any basis {xi } for N . By Theorem9.9.3 we know that M is a free
module of finite rank say with basis {y1, . . . , yn}. Let A ∈ Mn(R) be the invert-
ible matrix associated to the module map that sends xi to yi for i = 1, . . . , n. By
the theorem above there are invertible matrices C, D ∈ Mn(R) such that CAD =
diag(a1, . . . , an) for some ai ∈ R such that ai divides ai+1.Wemay therefore assume
that {a1x1, . . . , anxn} is a basis for M .

Uniqueness of the sequence a1 . . . , an is clear from the corollary above. �

Definition 9.11.7 The rank of an m × n-matrix A over a PID R is the rank of the
free submodule ARn of Rm .

Corollary 9.11.8 The rank of a matrix over a PID coincides with the rank of its
transpose.

Proof Say A is anm × n-matrix over a PID R having Smith normal form F = CAD
with diag(a1, . . . , ak}. The rank of A coincides with the rank of F , which is k, and
this is the same as the rank of FT , which again is the rank of AT . �

For Euclidean domains we have the following improvement of the theorem above.
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Corollary 9.11.9 Any matrix over a Euclidean domain can be brought to Smith
normal form by finitely many elementary row and column operations.

Proof In the proof of the theorem above we must be able to bring a matrix over a
Euclidean domain R to Smith normal form without using the fourth operation. That
operation involved multiplying from the left or right by a matrix that contained a
2 × 2-matrix B with determinant ±1. If we can bring such a matrix to the identity
matrix using only elementary row operations, we are done, since then B itself will
be a product of such elementary matrices, which will result in elementary operations
when we multiply the original matrix by the matrix containing B.

Say

B =
(
a b
c d

)

with ad − bc = ±1. In a Euclidean domain we have λ : R\{0} → N ∪ {0} allowing
for a division algorithm. If c �= 0, then a �= 0, so there are elements q, r ∈ R such
that c = qa + r with r = 0 or λ(r) < λ(a). Multiplying the first row of B by−q and
adding the resulting row to the second row of B, we get the row equivalent matrix

(
a b
r d − bq

)

with determinant ±1. If r �= 0, interchange the two rows, thus changing the sign of
the determinant, and repeat the procedure so that the new entry in position (2, 1)
either is zero, or has λ-value less that the entry in position (1, 1). In the second case,
interchange the rows again, changing the sign of the determinant, and repeat the
procedure. After finitely many such steps we get an equivalent matrix of the form

(
a b
0 d

)

with ad = ±1. Multiplying the second row by ∓ab and adding this to the first row
gives diag(a, d) which is obviously equivalent to the unit matrix. �

Acounterexample to this, whichmust necessarily be found among 2 × 2-matrices
over PID that are not Euclidean domains, can be given. But for matrices over inte-
gers or polynomials in one indeterminant over fields, elementary row and column
operations will bring a matrix to Smith normal form.

It is also immediate from the corollary above that any invertible matrix over a
Euclidean domain can be inverted by a finite procedure involving elementary row
and column operations.

Example 9.11.10 The Smith normal form of the matrix

(
1 2 3
4 5 0

)
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with integral coefficients is after a couple of elementary row and column operations
easily seen to be (

1 0 0
0 3 0

)

with invariant factors 1, 3 and rank two. ♦
Example 9.11.11 It is also easy to see that the Smith normal form of

⎛

⎝
−x 4 −2
−3 8 − x 3
4 −8 −2 − x

⎞

⎠ ∈ M3(Q[x])

after some elementary row and column operations is

⎛

⎝
1 0 0
0 1 0
0 0 (x − 2)(x2 − 4x + 20)

⎞

⎠

with invariant factors 1, 1, (x − 2)(x2 − 4x + 20) and rank three. ♦
We can also use the theorem above to characterize modules over PID’s given by

generators and relations. The following result is immediate from the theorem.

Corollary 9.11.12 If xi are elements of aPID R subject to
∑

j ai j x j = 0 for ai j ∈ R,
then the module generated by (x1, . . . , xn) ∈ Rn is isomorphic to

Rn−k ⊕ R/(a1) ⊕ · · · ⊕ R/(ak),

where the Smith normal form of (ai j ) ∈ Mm,n(R) has invariant factors a1, . . . , ak.

Example 9.11.13 Consider the additive group G generated by x1, x2, x3 subject to
Ax = 0, where x = (x1, x2, x3)T and

A =
⎛

⎝
5 9 5
2 4 2
1 1 −3

⎞

⎠ .

Since the Smith normal form of A ∈ M3(Z) is easily seen to be diag(1, 2, 4), we get

G ∼= Z/(1) × Z/(2) × Z/(4) = Z2 × Z4.

♦
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9.12 Applications to Linear Algebra

Suppose A ∈ End(V ) for a non-trivial finite dimensional vector space V over a
field F . The evaluation homomorphism f ∈ F[x] �→ f (A) ∈ End(V ) turns V into
a module over the PID F[x]. For dimension reasons the evaluation homomorphism
has non-trivial kernel. The unique monic polynomial f A that generates this ideal is
called the minimal polynomial of A. Any F-linear basis of V clearly generate V as
an F[x]-module, rendering it finitely generated. It is also a torsion module because
for any v ∈ V , all vectors of the form Aiv will be linear dependent, so there is a
polynomial g such that gv = 0. The following result is therefore immediate from
Theorem9.10.9.

Theorem 9.12.1 Suppose A is a linear map on a finite dimensional vector space V
over a field F. Consider V as an F[x]-module under the action given by f v = f (A)v

for v ∈ V . Then we have a decomposition

V ∼= V1 ⊕ · · · ⊕ Vm

into cyclic modules Vi . If fi is the minimal polynomial of A restricted to Vi ,
then fi divides fi+1, and fm = f A. Moreover, the sequence f1, . . . , fm is uniquely
determined by A.

We refer to f1, . . . , fm above as the invariants of A. We can also describe the
restriction of A to each cyclic submodule Vi . To simplify notation say from the
outset that V is cyclic with generator v and minimal polynomial

f A(x) = a0 + a1x + · · · + an−1x
n−1 + xn.

Then v, Av, . . . , An−1v constitute an F-basis for V . If they were linear dependent,
some polynomial of smaller degree than f A would annihilate V . They span V since
to any polynomial g we have g = q fA + r with deg(r) < deg( f A), so g(A) = r(A).

It is easy to see that the associated matrix of the endomorphism A with respect to
the basis {v, Av, . . . , An−1v} is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
· · · · · ·
0 0 0 · · · 0 −an−2

0 0 0 · · · 1 −an−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

So the theorem above tells us that the associated matrix of A can be decomposed
into matrices of this form; called its rational canonical form. Thus every matrix
over a field is similar to one in rational canonical form with the components in the
decomposition corresponding to matrix blocks along the diagonal.
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Example 9.12.2 The rational canonical form of a matrix A ∈ M6(Q) associated to
an endomorphism with invariants x − 3, (x − 3)(x − 1), (x − 3)(x − 1)2 is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 0 0 0 0 0
0 0 −3 0 0 0
0 1 4 0 0 0
0 0 0 0 0 3
0 0 0 1 0 −7
0 0 0 0 1 5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

♦
Definition 9.12.3 The characteristic polynomial of a linear map on a finite dimen-
sional vector space over a field F is the polynomial f ∈ F[x] of an associated matrix
A given by f (x) = det(x I − A).

The characteristic polynomial of an endomorphism does not depend on the chosen
associated matrix A ∈ Mn(F) since

det(x I − BAB−1) = det(B(x I − A)B−1) = det(x I − A)

for any invertible B ∈ Mn(F).
The following result is known as the Cayley–Hamilton theorem.

Proposition 9.12.4 If f is the characteristic polynomial of a linear map A, then
f (A) = 0.

Proof Let B ∈ Mn(F[x]) be the matrix associated to xι − A, where A acts on a vec-
tor space over F of dimension n. LetC be the quadratic matrix over the commutative
unital ring F[x] given by Cramer’s rule, so CB = f I , and B would be invertible if
f was a unit. Replace x by A in CB = f I to get f (A) = C(A)0 = 0. �

The Cayley–Hamilton theorem is often used together with the division algorithm
to calculate high powers of matrices.

If f is the characteristic polynomial of a linear map on a vector space with
associated n × n-matrix A, then clearly det(A) equals (−1)n times the constant term
f (0) of f , whereas the coefficient of xn−1 in f (x) is easily seen to be −Tr(A).
There is an important connection between the invariants of a linear map A and

its characteristic polynomial. We approach this in two different ways. The present
one is the more direct one, and it also reproves the theorem above using the Smith
normal form of x I − A.

Proposition 9.12.5 The characteristic polynomial of a linear map on a finite
dimensional vector space is the product of its invariants.

Proof Suppose A = (ai j ) is an associated matrix of a linear map on a vector space
V over a field F of finite dimension n with respect to a basis {vi }. Let h : F[x]n → V
be the F[x]-module map that sends the element ei of the standard basis to vi .



360 9 Modules

We claim that ker h = (x I − A)F[x]n . Recalling themodule action on V a simple
computation shows that (x I − A)F[x]n ⊂ ker h. In particular, we have

p j (x) ≡ (x I − A)e j = xe j −
∑

i

ai j ei ∈ ker h.

If y = ∑
j g j e j ∈ ker h, then repeated substitution of xe j from the formula above

with x’s coming from g j ∈ F[x] shows that

y =
∑

p jh j +
∑

b j e j

for some h j ∈ F[x] and b j ∈ F . The first sum belongs to the ideal ker h, so 0 =
h(y) = 0 + ∑

b jv j , which shows that b j = 0. Thus

y = (x I − A)

⎛

⎜
⎜
⎝

h1(x)
·
·

hn(x)

⎞

⎟
⎟
⎠ ∈ (x I − A)F[x]n

establishes our claim.
By Theorem9.11.4 there are invertible C, D ∈ Mn(F[x]) such that

C(x I − A)D = diag( f1(x), . . . , fn(x))

for unique monics fi ∈ F[x] such that fi divides fi+1 for i less than some k.
Remembering that V is a torsionmodule, we get by the first isomorphism theorem

V ∼= F[x]n/ ker h ∼= F[x]n/diag( f1, . . . , fn)F[x]n ∼= F[x]/( f1) ⊕ · · · ⊕ F[x]/( fk),

where we have also discarded possible constant polynomials among the first in the
original sequence of fi ’s. Thus f1, . . . , fk are the invariant factors of A.

Taking the determinant of C(x I − A)D = diag( f1(x), . . . , fn(x)), and using its
multiplicative property of matrices over commutative rings, and the fact that the
determinant of an invertiblematrix over a commutative ring is a unit, we get det(x I −
A) = f1(x) · · · fk(x) by comparing coefficients of the highest power of x . �

The proof of the theorem also tells us that the invariants of a linear map A are
the non-unit invariant factors, that is, the non-unit diagonal elements of the Smith
normal form of the associated matrix to xι − A.

In view of the proposition above the Cayley–Hamilton theorem follows imme-
diately from the fact that the minimal polynomial of an endomorphism on a finite
dimensional vector space annihilates the endomorphism.

Example 9.12.6 The rational canonical form of
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A =
⎛

⎝
−3 2 0
1 0 1
1 −3 −2

⎞

⎠ ∈ M3(Q) is

⎛

⎝
0 0 −3
1 0 −7
0 1 −5

⎞

⎠

because the Smith normal form of x I − A ∈ M3(Q[x]) is diag(1, 1, 3 + 7x + 5x2 +
x3), so A has invariant 3 + 7x + 5x2 + x3 = det(x I − A). ♦

9.13 Generalized Jordan Blocks

Let A be a linear map on a non-trivial finite dimensional vector space V over a field
F . By Theorem9.12.1 we can decompose the finitely generated torsion F[x]-module
V as a direct sum of cyclicmodules Vi = F[x]/( fi )with invariants f1, . . . , fm . Each
fi can be written as a product of powers pk of primes, and by the Chinese remainder
theorem for PID’s, themodule Vi will then be a direct sumof the corresponding cyclic
modules F[x]/(pk). The powers pk occurring in each fi are called the elementary
divisors of A. Since every fi divides the minimal polynomial f A = fm of A, the
powers pk occurring in f A are the highest possible. The direct sum of the cyclic
modules corresponding to the elementary divisors of A that are powers of a fixed
p is the module V (p). The (in general non-cyclic) module V (p) consists of the
elements of V annihilated by the elementary divisor of type pk occurring in the
minimal polynomial.

Proposition 9.13.1 Let F be a field and let f (x) = (x − λ)k ∈ F[x] with k ∈ N.
Then the cyclic F[x]-module F[x]/( f ) has an F-linear basis

{v, (x − λ)v, . . . , (x − λ)k−1v}

with cyclic vector v ≡ 1 + ( f ). The matrix of the module action of x on F[x]/( f )
with respect to this basis in order listet from the left is

⎛

⎜
⎜
⎜
⎜
⎝

λ 0 · · · · 0
1 λ · · · · 0
· · · · · · ·
0 · · · · · 0
0 0 · · · 1 λ

⎞

⎟
⎟
⎟
⎟
⎠

∈ Mk(F).

Proof The vectors in questionmust be linear independent, otherwise a polynomial of
smaller degree than f would annihilate v, and f cannot generate such a polynomial.
Using the division algorithm with steps determined by f , we see that there cannot
be more than k linear independent vectors.

It is straightforward to check that the matrix above is the one associated to the
action of x by componentwise multiplication with respect to the basis above. �

A matrix of the type in the proposition above is called a Jordan block.
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Corollary 9.13.2 Suppose A is a linear map on a finite dimensional vector space V
over an algebraically closed field. Then V has a linear basis such that the associated
matrix of A is a direct sum of Jordan blocks. Such a decomposition is unique up to
reordering of Jordan blocks.

Proof This is immediate from the proposition above and the discussion prior to it
since prime elements are irreducible and thus of order one over an algebraically
closed field. Each elementary divisor pk of A will be of the type described in the
proposition above, and A will act on the corresponding submodule of V just like x
acts on F[x]/(pk), producing a Jordan block of size k.

The uniqueness statement is immediate from the uniqueness of the invariant
factors of A. �

Another way of phrasing the corollary above, is to say that any quadratic matrix
over an algebraically closed field is similar to a matrix with Jordan blocks along its
diagonal, and otherwise has only zero entries. Such a matrix is said to be in Jordan
canonical form. Strictly speaking we do not need an algebraically closed field, all
we need is a field that contains the roots of the irreducible factors in the minimal
polynomial.

Note also that a quadratic matrix over a field is diagonalizable if and only if its
minimal polynomial has only distinct roots in the field, so that the elementary divisors
all have degree one. By Proposition9.12.5 the roots of the minimal polynomial are
exactly the roots of the characteristic polynomial, but their multiplicity in the latter
polynomial is in general larger. If there are as many distinct eigenvalues as the size
of the matrix, then it is diagonalizable, and the minimal polynomial coincides with
the characteristic polynomial.

Also, since the characteristic polynomial f of A above is the product of all the
invariants of A, the dimension of the vector space V (p), called the generalized
geometric multiplicity of an eigenvalue λ of A that is a root of p, coincides with the
multiplicity of λ in f , called the algebraic multiplicity of λ, if and only if deg(p) = 1.
This happens presicely when F contains all the roots of p, which is automatic when
F is algebraically closed. Otherwise the geometric multiplicity of an eigenvalue that
is a root of p is greater than its algebraic multiplicity.

Here is an alternative argument for why the characteristic polynomial of a linear
map on a finite dimensional vector space V over a field F is the product of the
invariants of the linear map. First notice that neither the invariants nor the character-
istic polynomial alter by considering an extension field E of F with corresponding
extension of the linear map to the vector space E ⊗F V . The associated matrix of the
extension will simply be the old matrix over F considered with entries in E . There-
fore we can assume that F is algebraically closed. Next note that the determinant
of a finite direct sum of endomorphisms is the product of the determinants of each
endomorphism. The same will then be true for the characteristic polynomial. By the
corollary above we therefore only need to prove the assertion for Jordan blocks, but
clearly the characteristic polynomial of the Jordan block in the proposition above
coincides with the polynomial in the proposition.
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Example 9.13.3 In Example9.12.2 we had five elementary divisors

x − 3, x − 3, x − 3, x − 1, (x − 1)2,

so the Jordan canonical form of the matrix is almost diagonal, except for a Jordan
block of size 2 corresponding to the double root 1 of theminimal polynomial. Putting
this block in the lower corner, we conclude that the original matrix is similar to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3 0 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

♦
Example 9.13.4 In Example9.12.6 the elementary divisors of the linear map of the
matrix is x + 3, (x + 1)2 since the minimal polynomial is the only invariant, and its
factorization into powers of primes is 3 + 7x + 5x2 + x3 = (x + 3)(x + 1)2. Thus
its Jordan canonical forms are

⎛

⎝
−3 0 0
0 −1 0
0 1 −1

⎞

⎠ and

⎛

⎝
−1 0 0
1 −1 0
0 0 −3

⎞

⎠

corresponding to the two possible positions of the Jordan blocks. ♦
For linear maps on finite dimensional vector spaces over general fields we need

to generalize the proposition above to account for elementary divisors pk with an
irreducible monic p of possibly higher degree.

Proposition 9.13.5 Let

f (x) = a0 + a1x + · · · + an−1x
n−1 + xn

be a polynomial over a field F. Then the cyclic F[x]-module F[x]/( f k) for k ∈ N

has an F-linear basis

{v, xv, . . . , xn−1v} ∪ { f v, f xv, . . . , f xn−1v} ∪ · · · ∪ { f k−1v, f k−1xv, . . . , f k−1xn−1v}

with cyclic vector v ≡ 1 + ( f k). The matrix of the module action of x on F[x]/( f k)
with respect to this basis in order listet from the left is
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J ≡

⎛

⎜
⎜
⎜
⎜
⎝

B 0 · · · · 0
C B · · · · 0
· · · · · · ·
0 · · · · · 0
0 0 · · · C B

⎞

⎟
⎟
⎟
⎟
⎠

∈ Mkn(F),

where C ∈ Mn(F) has 1 in the upper right corner and otherwise zeroes, and B is
the familiar matrix ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
· · · · · ·
0 0 0 · · · 0 −an−2

0 0 0 · · · 1 −an−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Mn(F).

Proof The proof is like that of the previous proposition, with a slighly more tedious
but straightforward identification of the matrix associated to the action of x on the
module with respect to the listed basis. �

The matrix J in the proposition above is called a generalized Jordan block. We
notice that such a block reduces to an ordinary Jordan block when f has degree one,
so that B = −a0 and C = 1.

As before we get the immediate corollary.

Corollary 9.13.6 Suppose A is a linear map on a finite dimensional vector space
V over any field. Then V has a linear basis such that the associated matrix of A
is a direct sum of generalized Jordan blocks. Such a decomposition is unique up to
reordering of generalized Jordan blocks.

When working over real numbers we will occasionally get generalized Jordan
blocks with B,C ∈ M2(R), but nothing larger than that since irreducible polynomial
over R are maximally of second degree. An easy way to see this is to decompose an
irreducible polynomial overR inC[x], and then notice that roots appear in conjugate
pairs, so the product of the two corresponding linear factors is a second order real
polynomial.

Write the minimal polynomial of an endomorphism A on a finite dimensional
vector space V over a field F as

f A =
r∏

i=1

pmi
i

for distinct prime factors pi . Then as we know V ∼= ⊕r
i=1 Vi , where

Vi ≡ {v ∈ V | pmi
i v = 0}
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is a sumof cyclicmodules each having a generalized Jordan block. Since the different
pnii are relatively prime we can find polynomials gi over F such that

r∑

i=1

gi p
mi
i = 1.

Set Pi = ∑
j �=i g j (A)p

m j

j (A). Then Pi (v) = δi jv for v ∈ Vj , so Pi is a projection
onto Vi that is a polynomial in A. Note that although the projections Pi commute, they
are not orthogonal, meaning Pi Pj = δi j , when r ≥ 3 because

∑
i Pi = (r − 1)ι.

9.14 The Jordan–Chevalley Decomposition

The deviation of a quadratic matrix over an algebraically closed field from being
diagonalizable is measured by a nilpotent matrix, that is, a quadratic matrix with
some vanishing positive integer power. This is so because we can write an n × n-
matrix in Jordan canonial form as S + N , where S is a diagonal matrix consisting
of possibly repeated entries of the eigenvalues of the matrix, and N has non-zero
entries only on the shorter diagonal just below the main diagonal, so it is nilpotent
with Nn = 0. Obviously SN = NS. Any quadratic matrix over the field is similar
to such a sum S + N , and the conjugation of S and N by the same invertible matrix
clearly produces twomatrices that are diagonalizable and nilpotent, respectively, and
that commute with each other. We have proved the first existence part of the theorem
below. Before we state it we include some preliminary results that are interesting in
their own right.

Definition 9.14.1 An endomorphism on a finite dimensional vector space is
diagonalizable if it has a basis of eigenvectors.

Note that the restriction of a diagonalizable linear map A on a finite dimensional
vector space V to an invariant subspace is also diagonalizable. This is true because
the minimal polynomial of the restricted endomorphism is obviously a factor of the
minimal polynomial of A, which has only simple roots all belonging to the field.
Note also that if V = U ⊕ W for A-invariant subspacesU and W , then the minimal
polynomial of A is the least common multiplier of the minimal polynomials of A
restricted to U and W . Only as a common multiplier can it annihilated both U and
W , and it obviously has to be the least possible such.

Definition 9.14.2 A set of endomorphisms on a finite dimensional vector space are
simultaneously diagonalizable if we can find a common basis of eigenvectors for
them, in other words, if their associated matrices are all diagonal with respect to this
basis.

The infinite dimensional version of the following result is of interest to quantum
physicists who are keen to measure observables accurately simultaneously.
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Proposition 9.14.3 Two diagonalizable linear maps on a finite dimensional vector
space are simultaneous diagonalizable if and only if they commute.

Proof The forward implication is trivial.
If A and B are commuting linear maps on a finite dimensional space V , then any

eigenvector subspace of A is B-invariant because if Av = av, then ABv = BAv =
aBv. The restriction of a diagonalizable B to an eigenvector subspaces of A is as
we have seen diagonalizable. Collecting the corresponding basis elements for B for
each single eigenvector subspace of a diagonalizable A, we get the desired basis as
the union of these. �

Corollary 9.14.4 A commutative subalgebra of End(V ) for a finite dimensional
vector space V consists solely of diagonalizable linear maps if it is generated by
diagonalizable ones.

Proof Observe that the sum and product of two diagonalizable endomorphisms of
the algebra are diagonalizable because they commute and can therefore be simul-
taneously diagonalized. Extending this result by induction to finite sums of finite
products, we are done. �

Definition 9.14.5 A linear map A on a vector space is nilpotent if An = 0 for some
n ∈ N.

Proposition 9.14.6 A commutative subalgebra of End(V ) for a finite dimensional
vector space V that is generated by nilpotent linear maps consists only of nilpotent
linear maps.

Proof If A, B ∈ End(V ) commute and satisfy An = 0 and Bm = 0, then
(AB)n+m = AnBm = 0 and (A + B)n+m = 0 by the binomial formula. �

Theorem 9.14.7 If A is a linear map on a finite dimensional vector space over an
algebraically closed field, then A = As + An for unique diagonalizable andnilpotent
endomorphisms As and An, respectively, such that As An = An As. In fact, there is a
polynomial f with vanishing constant term over the field such that As = f (A), so
As and An commute with all linear maps that commute with A.

Proof Wehave alreadyproved existence of the decomposition, but for the uniqueness
part we need the stronger existence result involving f .

Say the minimal polynomial of A is

∏

i

(x − λi )
ni

for distinct eigenvalues λi . By the Chinese remainder theorem for PID’s we can find
a polynomial f over the field with zero constant term and such that

f (x) − λi ∈ ((x − λi )
ni ).
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Then f (A) restricted to the subspace Vi of V annihilated by (x − λi )
ni acts as

multiplication by λi . So Vi consists solely of eigenvectors for f (A), and we know
that V = ⊕Vi . Thus As ≡ f (A) is semisimple.

But we can pick a basis for each Vi so that the associated matrix of A has Jordan
blocks with λi along the diagonals. Thus the associated matrix of An ≡ A − f (A)

has non-zero entries only below the diagonal and is therefore nilpotent. Both An

and As are polynomials in A, so they commute with each other and also with all
endomorphisms that commute with A.

As for uniqueness, if also A = S + N for semisimple and nilpotent linear maps
S and N , respectively, that commute, then as both S and N commute with A, they
also commute with As and An . By the last corollary and last proposition above, we
know that As − S is semisimple and An − N is nilpotent. But As − S = N − An ,
and any eigenvalue of a nilpotent linear map is clearly zero, as otherwise no power
of it evaluated at the corresponding eigenvector can vanish, so As − S = 0. Thus
As = S and An = N . �

One referes to the decomposition in the theorem above as the Jordan–Chevalley
decomposition of A. We can strengthen this theorem slightly.

Definition 9.14.8 A linear map on a finite dimensional vector space is semisimple if
every invariant subspace of it has an invariant complementary subspace. It is simple
if the vector space has no invariant subspace apart from itself and the trivial subspace.

Proposition 9.14.9 A linear map on a finite dimensional vector space is semisimple
if and only if any prime factor in its minimal polynomial occur at most once.

Proof By Theorem9.15.5 a linear map A on a finite dimensional vector space V
is semisimple if and only if V is a direct sum of invariant subspaces with simple
restrictions of A.

Thus if A is semisimple, then it restricts to a simple endomorphism B on some sub-
space. Consider the generalized Jordan decomposition of the associated matrix to B.
This matrix cannot havemore than one generalized Jordan block, andmoreover, con-
sidering such a generalized Jordan block of the type displayed in Proposition9.13.5,
we see that k = 1 is the only possibility. Otherwise the subspace consisting of all
column vectors having zeroes everywhere except in the last n coordinates will be an
invariant subspace, and this contradicts simplicity. By uniqueness up to reordering
of the generalized Jordan decomposition of the associated matrix to A, we therefore
conclude that there will be no such blocks with k > 1 in the decomposition. In other
words, no prime factor in the minimal polynomial of A occur more than once.

Conversely, if no prime factor in the minimal polynomial of A occur more than
once, the module V over the polynomials over the field F decomposes into a direct
sum of submodules of the type F[x]/(p), where p is prime. But such modules are
simple by Proposition9.15.2, so the restrictions of A to them are simple, and V is
semisimple by the result recalled at the beginning of the proof. �

Corollary 9.14.10 Suppose A is a linear map on a finite dimensional vector space
V over a field F. Let E be an extension field of F, and let Ã denote the extension
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ι ⊗ A ∈ EndE (E ⊗F V ) of A to E ⊗F V . Then A is semisimple whenever Ã is
semisimple. The converse holds if F is a perfect field. If A is diagonalizable, it is
semisimple. The converse is true if F contains all the roots of the characteristic
polynomial of A.

Proof If A is diagonalizable, its minimal polynomial has only distinct roots, so no
prime factor can occur more than once. By the proposition above A is semisimple.
If F contains all the roots of the characteristic polynomial of a semisimple A, the
minimal polynomial has all its roots in F , and they are distinct by the proposition
above, so A is diagonalizable.

If Ã is semisimple, then by the proposition above no prime factor polynomial
over E in the minimal polynomial of Ã occur more than once. Since A has the
same minimal polynomial as Ã both considered as polynomials over E , and as E
is an extension field of F , these prime factors will be factors of the prime factor
polynomials over F in the minimal polynomial of A. So the prime factors over F in
the minimal polynomial of A cannot occur more than once. Thus A is semisimple
by the proposition above.

Suppose F is a perfect field. By the proposition above, if A is semisimple, no prime
factor in its characteristic polynomial can occur more than once. Prime elements are
irreducible polynomials, and as F is perfect, each of these polynomials have distinct
roots. As Ã has the same minimal polynomial as A, no prime factor polynomial over
E can thus occur more than once. �

In particular, we see that for an algebraically closed field, semisimplicity and
diagonalizability are equivalent notions. Recall that perfect fields include finite fields
and fields of characteristic zero, and of course, any algebraically closed field is
perfect.

Proposition 9.14.11 The theorem above holds for linear maps on finite dimensional
vector spaces over perfect fields provided one replaces the word ‘diagonalizable’ by
‘semisimple’.

Proof Suppose we have a linear map A on a finite dimensional vector space V
over a perfect field. Since F is perfect, it has a Galois extension E that contains
all the roots of the characteristic polynomial of A. We use the same symbol for
an endomorphism and an associated matrix with respect to a fixed basis {xi } of V ,
and also with respect to the basis {1 ⊗ xi } of E ⊗F V . The associated matrix of the
extension Ã of A ∈ EndF (V ) to E ⊗F V is thus denoted A.

The theorem above obviously works with E instead of an algebraically closed
field, so we have a unique Jordan–Chevalley decomposition A = As + An of the
matrix A into commuting diagonalizable and nilpotent matrices with entries pos-
sibly in E . By the corollary above we also know that the endomorphism of As is
semisimple.

Now α ∈ G(E/F) applied to a matrix with entries in E means the matrix with α

applied to each entry. Then α will obviously be an F-linear ring homomorphism on
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Mn(E), and by the fundamental theorem of Galois theory, any matrix fixed under all
such α’s will belong to Mn(F).

But A = α(A) = α(As) + α(An), and obviously α(As) is diagonalizable,
whereas α(An) is nilpotent. By uniqueness of the decomposition as matrices over E ,
we conclude thatα(As) = As andα(An) = An . Since this holds for allα ∈ G(E/F),
we deduce that As and An have entries in F , so both are associated matrices of exten-
sions of endomorphism on V to E ⊗F V . Thus by the corollary above the linear map
A on V is a sum of a semisimple endomorphism As and a nilpotent endomorphism
An that commute.

If A = Bs + Bn is another such decomposition, then by the corollary above the
extensions of Bs and Bn to E ⊗F V will be diagonalizable and nilpotent, respectively,
and they will commute. By uniqueness of the Jordan–Chevalley decomposition on
the level of E , we conclude that Bs = As and Bn = An .

As for the existence of the polynomial, by the theorem above there is f ∈ E[x]
such that f (A) = As . By the division algorithm applied to f , we may assume that

As = a0 + a1A + · · · + am A
m,

where ai ∈ E and m is not greater than the degree of the minimal polynomial of Ã
over E . Then

As = α(As) = α(a0) + α(a1)A + · · · + α(am)Am

and since {Ai }mi=0 are linear independent over E , we conclude that α(ai ) = ai , so
ai ∈ F and f ∈ F[x]. �

We have also the multiplicative Jordan–Chevalley decomposition.

Proposition 9.14.12 Let A be an invertible linearmap on a finite dimensional vector
space over a perfect field. Then A = As Au for unique commuting linearmapswith As

semisimple and Au unipotent, meaning that Au − ι is nilpotent. Both are polynomials
in A and they are invertible.

Proof In the additive Jordan–Chevalley decomposition A = As + An , the endomor-
phism As is invertible because the associated matrix of an appropriate extension of it
has the roots of the characteristic polynomial of A repeated along the diagonal, and
these are non-zero as A is invertible. Clearly Au ≡ ι + A−1

s An commutes with As ,
is unipotent, and A = As Au , so Au is also invertible.

Uniqueness of the decomposition is more tricky. One first needs a polynomial for
an appropriate extension of Au in an extension of A. Proceed as in the proof of the
theorem above, invoking the Chinese remainder theorem for PID’s, and observe that
the Jordan blocks of the extension of Au are obtained from those of the extension of
A by dividing all entries with the diagonal ones. This gives the required polynomial
for the extension of Au . Thus Au will commute with all linear maps that commute
with A.
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Now suppose A = Bs Bu for commuting endomorphisms with Bs semisimple and
Bu unipotent. Both commute with A, and thus commute with Au and As . Hence
some integer power of

Bs − As = As(Au − ι) − Bs(Bu − ι)

vanish as Au − ι and Bu − ι are nilpotent. As appropriate extensions of As and Bs

are simultaneously diagonalizable, we deduce that As = Bs , so Bu = Au .
Combining this with the argument in the proof of the proposition above, involving

the Galois group of the extension field, we conclude that the polynomial of the
extension of Au in the extension of A has coefficients in the non-extended field. So
Au is a polynomial in A over the original field. �

We have the following consequence of the second last proposition above.

Corollary 9.14.13 Let A be a linearmap on a finite dimensional vector space V over
a perfect field. Define ad(B) : End(V ) → End(V ) for B ∈ End(V ) by ad(B)C =
BC − CB. Then ad(As) and ad(An) are the commuting semisimple and nilpotent
parts, respectively, of the Jordan–Chevalley decomposition of ad(A).

Proof There is a basis of eigenvectors xi of an appropriate extension of As with
eigenvalues λi . The corresponding matrix units Ei j is a basis of eigenvectors of the
extension of ad(As) with eigenvalues λi − λ j , so ad(As) is semisimple.

If Am
n = 0, then simple arithmetic shows that ad(An)

2m = 0, so ad(An) is
nilpotent. But ad(A) = ad(As) + ad(An) is then the unique Jordan–Chevalley
decomposition of ad(A) as the two terms obviously commute. �

In particular, the map ad preserves semisimplicity and nilpotency of linear maps
on finite dimensional vector fields over perfect fields.

Beyond perfect fields there are counterexamples to the Jordan–Chevalley decom-
position.

9.15 Semisimple Modules

Definition 9.15.1 A simple module A over a ring R is a module with no submodules
other than itself and the trivial one, and such that RA �= {0}.

The condition RA �= {0} holds for any non-trivial module A over a unital ring R.
For a simple module A over any ring R, we have RA = A as RA is a non-trivial
submodule of A.

Irreducible representations of a finite group on afinite dimensional complex vector
space are exactly the simple modules of the group ring.

Proposition 9.15.2 For a module A over a unital ring R the following conditions
are equivalent:
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(i) The module A is simple;

(ii) The module A is non-trivial and is generated by any non-zero element;

(iii)As modules A ∼= R/I , where I is a maximal left ideal of R.

Proof If A is a simple module, then Rx = A for any non-zero x ∈ A as Rx is a
non-trivial submodule of A. So (i) implies (i i). Conversely, if (i i) holds, any non-
trivial submodule B of A contains a non-zero element that necessarily generates A,
so A = B.

If (i i) holds, then A is cyclic, so A ∼= R/I for some left ideal I of R, which by
the correspondence theorem must be maximal as A is simple. So (i i i) holds. That
(i i i) implies (i) is immediate from the correspondence theorem. �

Minimal left ideals of a unital ring are obviously simple. This is no longer true
in the non-unital case which the additive group Zp for p prime with trivial ring
multiplication shows.

Example 9.15.3 The simple modules of a PID R are all of the form R/(p) for p
prime because the maximal ideals in R are of the form (p). ♦
Definition 9.15.4 A module is semisimple if it is a direct sum of simple modules.

A semisimple R-module A clearly satisfies RA = A.

Theorem 9.15.5 A module over a unital ring is semisimple if and only if every
submodule has a complementary submodule.

Proof Suppose A = ⊕
x∈X Ax with simple submodules Ax , and let B be a submod-

ule of A. Let Y by Zorn’s lemma be a maximal subset of X such that B + ⊕
y∈Y Ay

is a direct sum. Then Ax for any x ∈ X will belong to this direct sum, because
either Ax ∩ Ay = {0} for all y ∈ Y , and then the direct sum is not maximal, or
Ax ∩ Ay �= {0} for some y ∈ Y , and then Ax = Ay since both modules are simple.
Thus

⊕
y∈Y Ay is a complementary submodule to B.

Conversely, assume that A is a non-trivial module such that every submodule has
a complementary submodule. Then any non-trivial B submodule of A must have
at least one simple submodule. To see this, pick a non-zero element x ∈ B, and
consider its cyclic module R/I with left ideal I . Let J be a maximal left ideal of R
that contains I . By the correspondence theorem J x ∼= J/I is a maximal submodule
of Rx ∼= R/I . Let C be a complementary submodule to J x in A. Then obviously

Rx = J x ⊕ (C ∩ Rx)

and C ∩ Rx ∼= Rx/J x is a simple submodule of B.
If the direct sum of all the simple submodules of A is not all of A then a com-

plementary submodule will by the previous paragraph contain a simple submodule,
which is a contradiction. �
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It is clear from the proof of the theorem above that a module is semisimple if and
only if it is a sum of simple modules; the point beeing that the sum need not be direct.

Corollary 9.15.6 Submodules and quotient modules of semisimple modules are
semisimple.

Proof Suppose B is a submodule of a semisimple module A. Let C be the sum of of
all simple submodules of B, and let D be a submodule of A such that A = C ⊕ D.
Clearly B = C ⊕ (B ∩ D), and B ∩ D must be trivial since according to the proof
in the theorem above, it would otherwise have a simple submodule of B, which is
impossible. Thus B = C is semisimple.

Note that A/B can be identified with a submodule of A and is therefore
semisimple. �

We could also have formulated this in terms of an exact sequence of modules.
For representations of finite groups on finite dimensional complex vector spaces

we obtained a decomposition into irreducible subrepresentations with complemen-
tary invariant subspaces gotten from orthogonality with respect to an averaging of
the inner product on C

n .
Schur’s lemma is valid also here.

Lemma 9.15.7 Any non-zero homomorphism between simple modules is an isomor-
phism. If A is a simple R-module then EndR(A) is a division ring.

Proof The kernel and image of a homomorphism between modules are submodules,
so for a non-trivial homomorphismbetween simplemodules, its kernelmust be trivial
and its image must be the whole module.

Any non-zero module map A → A must therefore have an inverse map. �
Any non-trivial module over a division ring has a basis, and two bases of a module

have the same cardinality, which we call the dimension of the module. The reason
why this is true is that the theorems stating this for vector spaces over fields, do not
use commutativity of the field crucially in their proofs.

It is opportune to recall the following result.

Proposition 9.15.8 Consider a direct sum A = ⊕n
i=1 Ai of modules Ai . Let Rn be

the unital ring of n × n-matrices ( fi j ) with entries fi j ∈ Hom(A j , Ai ) under usual
matrix addition and multiplication. Then the map End(A) → Rn that sends f to
( fi j ) with fi j = πi ◦ f ◦ ι j is a ring isomorphism.

Proof The map in question is a unital ring homomorphism because

πi ◦ ( f g) ◦ ι j =
∑

k

(πi ◦ f ◦ ιk)(πk ◦ g ◦ ι j )

as
∑

ιkπk = ι.
If πi ◦ f ◦ ι j = 0 for f ∈ End(A) and all i, j , then f = ∑

i j πi ◦ f ◦ ι j = 0, so
the map is injective. To see that it is surjective, given ( fi j ) ∈ Rn , define f ∈ End(A)

by f = ∑
i j ιi ◦ fi j ◦ π j . Then πk ◦ f ◦ ιl = fkl as πi ι j = δi j ιAi . �
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Definition 9.15.9 The number of times a simple module of a given isomorphism
class occurs in the decomposition of a module A is called the multiplicity of the
simple module in A. By nB we mean the direct sum

⊕n
i=1 B of the module B.

The following result shows that the definition of multiplicity makes sense.

Theorem 9.15.10 Say we have a finite decomposition
⊕

ni Ai of a module A into
pairwise non-isomorphic simple modules Ai . Then the Ai ’s are uniquely determined
up to permutations and isomorphisms by the isomorphism class of A, with multiplic-
ities ni also uniquely determined. Moreover, the ring End(A) is isomorphic to the
ring of matrices with blocks in Mni (End(Ai )) along the diagonal and otherwise with
zero entries.

Proof The last statement is immediate from the proposition above combined with
Schur’s lemma.

Uniqueness of the Ai ’s up to permutations and isomorphisms is also immediate
from Schur’s lemma. The same lemma shows that we are done if we can show that
n = m whenever nA ∼= mA for a module A.

From the last statement of the theorem we know that nA ∼= mA implies
Mn(End(A)) ∼= Mm(End(A))with dimensions n2 = m2 asmodules over the division
ring End(A); the division property is assured by Schur’s lemma. �

9.16 Density

Let A be a module over a ring R. Then A is also a module over the ring R′ ≡
EndR(A) under the operation f x = f (x). Let R′′ ≡ EndR′(A). To a ∈ R define a
map fa : A → A by fa(x) = ax . Then g fa = fag for any g ∈ R′ because g fa(x) =
g(ax) = ag(x) = fag(x). For this reason we call R′ the commutant of R. As fag =
g fa for g ∈ R′, by definition fa ∈ (R′)′, and R′′ ≡ (R′)′ is called the bicommutant
of R. In fact, we see that a �→ fa is a ring homomorphism R → R′′. When this
homomorphism is injective, we say that A is a faithful module. This means that
ax = 0 for all x ∈ A is possible onlywhena = 0. In this case thenaturalmapa �→ fa
embeds the ring R into the bicommutant R′′. Remember that the commutants refer to
a module although our notation suppresses this. To stress the module we sometimes
talk about commutants in the module.

The following result, known as Jacobson’s density theorem, says something about
the denseness of the image of the natural map in the bicommutant.

Theorem 9.16.1 If A is a semisimple module over a unital ring R with x1, . . . , xn ∈
A and f ∈ R′′, then there is a ∈ R such that axi = f (xi ) for all i . Thus if A is finitely
generated over R′, the natural map R → R′′ is surjective.

Proof Since A is semisimple, the submodule Rx1 has a complementary submodule.
Let π : A → A be the projection onto Rx1 ⊂ A with respect to this decomposition.
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As π ∈ R′, we get f (x1) = f π(x1) = π f (x1), so f (x1) ∈ Rx1 and there is b ∈ R
such that f (x1) = bx1.

But we need an element in R that words for all xi ’s simultaneously. To this end
we employ a diagonal trick by von Neumann.

Assume first that A is simple, and consider the map f n : nA → nA given
by f n(y1, . . . , yn) = ( f (y1), . . . , f (yn)). Since f ∈ R′′, we see that f n is an
EndR(nA)-module map as EndR(nA) ∼= Mn(R′) by Theorem9.15.10. Therefore
there is a ∈ R such that

(ax1, . . . , axn) = a(x1, . . . , xn) = f n(x1, . . . , xn) = ( f (x1), . . . , f (xn))

by the first paragraph.
For semisimple A the proof is similar. Since each xi lives in finitely many simple

components in the decomposition of A, and since f commutes with the projection
onto the direct sum of those simplemodules where all the xi ’s are non-zero, it suffices
to repeat the argument above with A a finite direct sum of the type considered in
Theorem9.15.10. �

We get Burnside’s theorem as a corollary.

Corollary 9.16.2 Suppose V is a finite dimensional vector space over an alge-
braically closed field F, and that R is a unital subalgebra ofEnd(V ). If V considered
as an R-module is simple, then R ∼= End(V ) as algebras.

Proof By Schur’s lemmawe know that R′ = EndR(V ) is a division ring. The field F
obviously sits as a subring in the center of R′. We claim it is everything. Let a ∈ R′.
Then the subring F(a) of R′ generated by a and F is a field, and since R′ is finite
dimensional as a vector space over F , we know that F(a) is a finite extension of
F , so it is an algebraic extension. Since F is algebraically closed, we conclude that
F(a) = F . In particular, we have a ∈ F , so R′ = F as claimed.

Since V is finitely generated as a module over R′ = F , the density theorem tells
us that the natural map R → R′′ = End(V ) is surjective. It is also injective since by
assumption R ⊂ End(V ). �

If we have an irreducible representation π of a finite group G on a finite dimen-
sional vector space V over an algebraically closed field F , then V is a simple module
over the ring π(F[G]). Thus the corollary tells us that

π(F[G]) ∼= End(V )

as algebras.
As yet another immediate corollary of the density theorem we get Wedderburn’s

theorem.

Corollary 9.16.3 Let A be a faithful, simplemodule over a unital ring R, and assume
that A is finite dimensional over the division ring R′. Then R = R′′.
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Here is another application of the density theorem.

Corollary 9.16.4 Let R be a unital algebra over a field. Let {Vi }ni=1 be finite dimen-
sional vector spaces over the field, that are pairwise non-isomorphic as simple mod-
ules over R considered as a ring. Then there are elements ei ∈ R that act as the
identity on Vi and such that ei Vj = {0} for i �= j .

Proof Apply the density theorem to a linear basis for A = V1 ⊕ · · · ⊕ Vn and to the
projection πi ∈ R′′ onto Vi ⊂ A. �

We then get yet another corollary.

Corollary 9.16.5 Let R be a unital algebra over a field of characteristic zero. Sup-
pose A and B are finite dimensional vector spaces that are semisimple modules over
R as a ring. Let fa and ga be the linear maps on A and B, respectively, given by the
action of a ∈ R. If Tr( fa) = Tr(ga) for all a ∈ R, then A ∼= B as R-modules.

Proof Both A and B are finite direct sums of simple modules, so we need only check
that a simple module V occurs with the same multiplicity in both decompositions;
say these from the outset are n and m, respectively. Pick by the corollary above an
element e ∈ R that acts as the identity on V and as the zero-map on the other simple
modules in the decompositions of A and B. Then

n dim(V ) = Tr( fe) = Tr(ge) = m dim(V ),

so n = m since we are in characteristic zero. �

In the languageof representationsweget the following statement:A representation
of a finite group that is a finite direct sum of irreducible representations on finite
dimensional vector spaces over a field of characteristic zero is uniquely determined
up to equivalence by its character. To see this just extend the representation and its
character to the group ring.

Decomposability of representations are provided by the following result by
Maschke, which extends Theorem5.4.3 to more general fields and rings. See the
definition below for the notion of a semisimple ring.

Proposition 9.16.6 Let G be a finite group and let R be a semisimple ring such that
|G|1 is a unit in R, which for instance holds for fields with characteristic that does
not divide |G|. Then R[G] is a semisimple ring.

Proof Weshow that any submodule B of amodule A over R[G]has a complementary
submodule. Now B has a complementary R-submodule by semisimplicity of R, see
the proposition below. Let π : A → B be the R-linear projection onto B with respect
to this R-module decomposition. As |G|1 ∈ R is a unit with inverse 1/|G|, we can
define a map f : A → B by

f (x) = 1

|G|
∑

a∈G
aπ(a−1x).
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This is an R[G]-module map because

f (bx) = 1

|G|
∑

a∈G
aπ(a−1bx) = 1

|G|
∑

a∈G
b(b−1a)π((b−1a)−1x) = b f (x),

where we in the last equality replaced a by b−1a in the summation overG. If g : B →
A is the inclusion map of B in A, then f g = ι because πg(a−1x) = a−1x for x ∈ B
and a ∈ G, so that

f g(x) = 1

|G|
∑

a∈G
a(a−1x) = 1

|G| |G|x = x .

Hence for y ∈ A, we see that g f (y) ∈ B ⊂ A and y − g f (y) ∈ ker f with trivial
B ∩ ker f , so A ∼= B ⊕ ker f as R[G]-modules. �

We again used the Haar integral crucially. The reader is encouraged to check
which results in the representation theory of finite groups are valid for more general
fields, especially those whose characteristic does not divide the order of the group.

Proposition9.21.12 shows that the previous result is as good as it gets.

9.17 Semisimple Rings

Definition 9.17.1 A semisimple ring is a non-trivial unital ring that is semisimple
as a left module over itself.

Proposition 9.17.2 Every module over a semisimple ring is semisimple.

Proof Everymodule over a unital ring has a free presentation. The result then follows
because direct sums and quotients of semisimple modules are semisimple. �

The following result is immediate from the proposition above and the character-
ization of semisimple modules in terms of complementary submodules.

Corollary 9.17.3 A non-trivial unital ring is semisimple if and only if every short
exact sequence of modules over it splits.

Corollary 9.17.4 Modules over semisimple rings are projective. A non-trivial unital
ring is semisimple if all its cyclic modules are projective.

Proof The first statement is immediate from the proof of the proposition above and
from the corollary above.

For the second statement observe that the quotient module of the ring R by a left
ideal I is cyclic, and thus projective, so R ∼= I ⊕ (R/I ). Hence every submodule of
the ring has a complementary submodule. �
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In particular, modules over semisimple rings are flat.

Corollary 9.17.5 A non-trivial unital ring is semisimple if and only if every module
over it is injective.

Proof The forward direction is immediate from the second last corollary above and
Proposition9.4.4.

For the opposite direction one considers the short exact sequence given by a left
ideal of the ring. By the same proposition it splits and provides a complementary
submodule to the left ideal. �

In fact, if already the cyclic modules of a non-trivial unital ring are injective, the
ring must be semisimple, but the proof of this is more involved.

We aim to reveal the structure of semisimple rings. Towards this goal it is natural
to consider matrix rings.

Proposition 9.17.6 Suppose R is a unital ring. Then any ideal of Mn(R) is of the
form Mn(I ) for an ideal I of R.

Proof Let Ei j ∈ Mn(R) be the matrix units, so Ei j Ekl = δ jk Eil and thus Ei j AEkl =
a jk Eil for any A = (ai j ) ∈ Mn(R).

Let J be an ideal of Mn(R), and let I be the set consisting of all a ∈ R such
that aE11 ∈ J . Then I is an ideal of R because abE11 = aE11bE11 for a, b ∈ R.
Furthermore, if A = (ai j ) ∈ J , then ai j E11 = E1i AE j1 ∈ J , so J ⊂ Mn(I ). But we
also have Mn(I ) ⊂ J because if a ∈ I , then aEi j = Ei1(aE11)E1 j ∈ J . �

Corollary 9.17.7 Matrix rings over division rings are simple.

Proof This is immediate from the proposition above as division rings are simple. �

However, as modules over themselves matrix rings over division rings are not
simple. Indeed, let R be a division ring, and let Ai be the left ideal ofMn(R) consisting
of all matrices with non-zero entries only along the i th column. Then Ai is a simple
Mn(R)-module. To see this, let B be a submodule, and say we have an element∑

r ar Eri ∈ B with ak ∈ R non-zero. Then a−1
k ∈ R and

E ji = a−1
k E jk

∑

r

ar Eri ∈ B,

so B = Ai . The Mn(R)-module Ai is obviously isomorphic to Rn , so

Mn(R) ∼= A1 ⊕ · · · ⊕ An
∼= nRn

as Mn(R)-modules. By uniqueness of such decompositions, as stated in Theo-
rem9.15.10, all simple submodules of Mn(R) are isomorphic to Rn .

Note that Rn as a product ring is not a division ring since elements with a zero
coordinate are not invertible. Also, we stress that Rn is simple as an Mn(R)-module,
not as an Rn-module.
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In fact, for unital rings S and T , no non-trivial left ideal I of S will be isomorphic
as an S × T -module to a left ideal J of T . Indeed, say f : I → J is an S × T -module
map. Then with πS and πT the projections from S × T onto S and T , respectively,
we have πS f = 0 by assumption. For any non-zero a ∈ I , we have

(πS f (a, 0), 0) = (1, 0) · (πS f (a, 0), πT f (a, 0))

= (πS f ((1, 0) · (a, 0)), πT f ((1, 0) · (a, 0))) = (πS f (a, 0), πT f (a, 0)),

soπT f (a, 0) = 0,which combinedwithπS f (a, 0) = 0 fromabove, gives f (a, 0) =
0. Thus f is manifestly not injective.

Another result which one should keep in mind in the discussion to follow, is the
following.

Proposition 9.17.8 Any finite direct product of semisimple rings is a semisimple
ring.

Proof Suppose Ri is a ring with a simple Ri -module Ai . Then A1 × · · · × An is a
simple R1 × · · · × Rn-module because πi (B) is an Ri -module for any R1 × · · · ×
Rn-module B.

If all Ri are semisimple rings, write each one of them as a direct sum of simple
submodules. Then R1 × · · · × Rn as a module over itself, will after plugging in the
direct sums for Ri and expanding, be a direct sum of simple modules of the type
described above. �

Suppose Ri are division rings, then by the proposition above, and by the discussion
prior to it, the product ring

Mn1(R1) × · · · × Mnm (Rm)

is semisimple. As a module over itself it is a direct sum

n1R
n1
1 ⊕ · · · ⊕ nm R

nm
m

of simple modules Rni
i that occur with multiplicity ni since those corresponding to

different ni ’s are not isomorphic as we pointed out above.
Below we shall see that any semisimple ring is of this form.
A unital ring cannot be an infinite direct sum of non-trivial subrings since any

element of the ring can only have finitely many non-zero components by definition
of direct sums. The projections of the identity of the ring will then be identities of
the component rings in a finite decomposition.

The following lemma is straightforward.

Lemma 9.17.9 For any ring R the transpose of a matrix with entries in R gives an
isomorphism

Mn(R)op ∼= Mn(R
op)

of rings.
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Lemma 9.17.10 If R is a unital ring, then EndR(R) ∼= Rop as rings.

Proof The homomorphism Rop → EndR(R) given by a �→ ha with ha(x) = xa
for a, x ∈ R is evidently injective, and it is surjective because h f (1) = f for any
f ∈ EndR(R). �

Theorem 9.17.11 If R is a semisimple ring, then

R ∼= Mn1(R1) × · · · × Mnm (Rm)

as rings, where the Ri ’s are division rings uniquely determined up to isomorphisms
and permutations along with the numbers ni .

Proof By the remark above we can write R as a finite direct sum of simple sub-
modules. Consider the R-endomorphism ring of this direct sum, and use the last
lemma above in combination with Theorem9.15.10. Then one obtains an expression
for Rop of the type in the theorem with division rings Si . Take opposites, use that
the opposite of a direct product of rings is the direct product of the opposite rings,
together with the second last lemma above, to get R as a product of matrix rings over
Sopi . It remains to observe that the opposite of a division ring is again a division ring,
so let Ri = Sopi . �

Note that the matrix rings Mni (Ri ) in the theorem above are two-sided ideals
of R; not merely left ideals. Any right module over a left semisimple ring can be
decomposed into a direct sum of simple right modules. Indeed, for a semisimple
ring R with a decomposition as in the theorem, these simple right modules are the
right ideals of Mni (Ri ) having non-zero entries only along a given row (rather than a
column), and they occur with multiplicity ni in R, being all isomorphic to the right
module Rni of row vectors acted upon from the right by elements of Mni (Ri ).

By the dimension of an algebra we mean its dimension as a vector space. When
we talk about modules over algebras we mean modules over them considered as
rings. When we write down properties of algebras that we have defined for rings, we
mean that they have these properties as rings.

Corollary 9.17.12 Any semisimple algebra over an algebraically closed field is iso-
morphic to a finite direct sum of matrix algebras over the field, and these components
are unique up to permutations.

Proof From the first part of the proof of Burnside’s theorem, we see that the division
rings Ri occurring in the proof of the theorem above, then as endomorphism rings
of simple modules, are all isomorphic to the field. �

Proposition 9.17.13 There exists no finite dimensional division algebra over an
algebraically closed field other than the field itself.

Proof Say R is such an algebra over a field F , and let a ∈ R. Since R is finite dimen-
sional as a vector space over F , there is a polynomial f over F of minimal degree
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such that f (a) = 0. As F is algebraically closed, we may write f (x) = g(x)(x − b)
for b ∈ F and g ∈ F[x]. Then g(a)(a − b) = 0, and g(a) �= 0 by minimality of f .
Hence a = b ∈ F since g(a) has an inverse in the division ring R. �

There is perhaps a more intrinsic approach to the submodule structure of a
semisimple ring, which we now present. We refer to left ideals of a ring that are
simple as modules as simple left ideals.

Lemma 9.17.14 Let I be a simple left ideal of a unital ring R, and let A be a simple
module over R. Then either I ∼= A as modules, or I A = {0}.
Proof Clearly I A is a submodule of A, so by simplicity of A, either I A is trivial,
or I A = A. Assume I A = A. As A is non-trivial, we can pick x ∈ A such that I x
is non-trivial. But I x is a left ideal of A, and so again by simplicity of A, we get
I x = A. Thus the map a �→ ax from I to A is an epimorphism. Its kernel, which is
a left ideal of the simple module I , must be trivial since it cannot be all of I . So the
map is an isomorphism. �
Theorem 9.17.15 Let R be a semisimple ring. Then R has only finitely many pair-
wise non-isomorphic simple left ideals I1, . . . , Im. There is only a finite number ni
of simple left ideals of R isomorphic to Ii , and the sum Si of these left ideals is a
two-sided ideal of R. The ring R is isomorphic to the direct product S1 × · · · × Sm
of the unital rings Si .

Proof Assume from the outset that R has arbitrary many pairwise non-isomorphic
simple left ideals Ii with associated Si .

By the lemma above Si S j = {0} for i �= j . In particular, as R is unital and R =∑
i Si , we get Si ⊂ Si R = Si Si ⊂ Si , so Si is a two-sided ideal of R.
We can obviously write the identity element 1 of R as

1 = e1 + · · · + em

for a finite m and non-zero ei ∈ Si . For any x ∈ R, we have x = x1 = xe1 + · · · +
xem with xei ∈ Si . Hence the total number of Si ’s is m, showing that there are only
m pairwise non-isomorphic left ideals Ii of R.

Let xi ∈ Si . Since Si S j = {0} for i �= j , we get ei xi = 1xi = xi and xi ei = xi1 =
xi , so ei is an identity element for the ring Si . Also if x1 + · · · + xm = 0, then

xi = ei xi = ei (x1 + · · · + xm) = ei0 = 0,

so R ∼= S1 × · · · × Sm .
Since R is a direct sum of simple left ideals, the identity element ei of Si will be a

finite sum of non-zero elements from simple left ideals of R isomorphic to Ii . Again
we see that every element of Si has non-zero coordinates only in these simple left
ideals, so say there are ni simple left ideals of R isomorphic to Ii . �

Of course, in this theorem Si ∼= Mni (R
op
i ) and Ri

∼= EndR(Ii ). The identity
elements ei of these matrix rings from an orthogonal family of idempotents.



9.17 Semisimple Rings 381

Theorem 9.17.16 Every simple module of a semisimple ring R is isomorphic to one
of the finitely many pairwise non-isomorphic simple left ideals Ii of R. Every non-
trivial module of R is a direct sum of simple submodules, each of which is isomorphic
to some Ii .

Proof By Proposition9.17.2 we know that any non-trivial module A can be written
as a direct sum of simple submodules.

Suppose B is a simple submodule of A. If I B = {0} for every simple left ideal I
of R, then B = RB is trivial. Since this cannot be the case, by the lemma above we
conclude that B ∼= I for some simple left ideal I of R. �

Suppose R is a semisimple ring, say with an exhaustive family I1, . . . , Im of
pairwise non-isomorphic simple left ideals. Let Si be the sum of the simple left
ideals of R isomorphic to Ii . We claim that for a non-trivial R-module A, we have

A ∼= S1A ⊕ · · · ⊕ Sm A,

and that Si A is the sum of the simple submodules of A isomorphic to Ii . To verify
this, observe that A = RA = ∑

Si A. And if B is a simple submodule of Si A, we
have B = RB = Si B as Si S j = δi j Si , so B ∼= Ii by the lemma above.

From the discussion earlier in this section we record the following corollary.

Corollary 9.17.17 For a division ring R every simple Mn(R)-module is isomorphic
to Rn. In particular, they are all faithful.

Be aware that unital simple rings need not be semisimple. According to The-
orem9.17.11 the semisimple simple rings are matrix rings over division rings. Of
course, commutative unital simple rings are semisimple as left ideals are then two
sided ideals. As anymatrix ring over a ring with a non-trivial product, like non-trivial
unital rings, are noncommutative, except the case of 1 × 1-matrices, we conclude
that commutative semisimple rings are finite products of fields.

The converse of the following result is obvious.

Proposition 9.17.18 If R is a non-trivial unital subalgebra of End(V ) for a finite
dimensional vector space V that is semisimple as an R-module, then R is semisimple.

Proof We can obviously find vectors vi ∈ V such that V ∼= Rv1 ⊕ · · · ⊕ Rvn as
R-modules. Then a �→ (av1, . . . , avn) is an injective R-module map from R to V .
Thus R is semisimple, being a submodule of a semisimple module. �

Suppose we have an endomorphism A acting on a finite dimensional vector space
V over a field F . Then obviously A is semisimple if and only if V is semisimple
as a module over the unital subalgebra F[A] of End(V ) generated by A. By the
proposition above this happens if and only if the ring F[A] is semisimple. Since this
ring is commutative, we deduce from the discussion prior to the proposition above,
that the algebra F[A] is isomorphic to a finite direct product of fields. Let f A ∈ F[x]
be the minimal polynomial of A. Then
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F[A] ∼= F[x]/( f A).

If
f A =

∏

i

pmi
i

is a factorization of f A into primes pi , then the Chinese remainder theorem for PID’s
tells us that

F[A] ∼=
⊕

i

F[x]/(pmi
i )

asmodules. By uniqueness of decompositions of semisimplemodules, we see that all
F[x]/(pmi

i ) must be fields, and this can only happen if all mi = 1. This is consistent
with Proposition9.14.9.

Proposition 9.17.19 Let I be a non-trivial left ideal of a simple unital ring R. Then
the natural map R → R′′ is an isomorphism.

Proof The kernel of the natural map f : a �→ fa is a proper ideal of R, so f is
injective.

As I R is a non-trivial ideal of R, we must have I R = R and f (I ) f (R) = f (R).
If g ∈ R′′ and x, y ∈ I , then

g fx(y) = g(xy) = g(x)y = fg(x)(y),

wherewe in the second step used that themap x �→ xy belongs to R′ and that g ∈ R′′.
Thus g fx = fg(x), so R′′ f (I ) ⊂ f (I ). Therefore as the rings f (R) and R′′ are unital,
we get

R′′ = R′′ f (R) = R′′ f (I ) f (R) = f (I ) f (R) = f (R).

�

We can generalize this proposition.

Definition 9.17.20 Amodule A is a generator if every module is the homomorphic
image of a (possibly infinite) direct sum of A with itself. A module over a unital ring
R is balanced if the natural map R → R′′ is an isomorphism.

A unital ring as a module over itself is a generator because every module over a
unital ring has a free presentation

The left ideal I in the proposition above is a generator for modules over R because
R = I R, so we can write the identity 1 ∈ R as a finite sum

1 = x1a1 + · · · + xnan,

which shows that (y1, . . . , yn) �→ y1a1 + · · · + ynan is an R-module map from I ⊕
· · · ⊕ I onto R. Then we use that R is a generator.
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Clearly, if a module is a generator, then finitely many copies of it will do to cover
by a homomorphism any finitely generated module.

Theorem 9.17.21 If a module over a unital ring R is a generator, then it is balanced
and finitely generated projective as a module over R′.
Proof Suppose we have an R-module A that is a generator. Then there is some
n ∈ N such that R is the homomorpic image of nA. As R is free, there is a module
B such that nA ∼= R ⊕ B. This direct sum is in fact balanced. The presence of R
with its identity element assures that the natural map here is injective. This map is
also surjective since for g in the bicommutant of R in R ⊕ B we have for a ∈ R and
x ∈ B, that

π1g(a + x) = gπ1(a + x) = g(a) = g(1 · a) = g(1)a

and
π2g(a + x) = gπ2(a + x) = g(x) = g(1 · x) = g(1)x

as the maps b + y �→ ab + y and b + y �→ bx and the projections πi belong to the
commutant of R in R ⊕ B. Thus g(a + x) = g(1) · (a + x), which shows that g
belongs to the image of the natural map. Hence nA is balanced.

We can now show that the natural map f : R → R′′ is an isomorphism. Suppose
h ∈ R′′. Then its diagonal amplification hn : nA → nA belongs to the bicommutant
of R in nA since the commutant of R in nA consists of the n × n-matrices with
entries in R′. Since nA is balanced, there is a ∈ R such that hn = f na , so h = fa . But
f is also injective because if ax = 0 for all x ∈ A, then also ab = 0 for all b ∈ R as
A is a generator, so a = 0.

The last part is immediate from the usual isomorphisms

nR′ ∼= HomR(R, A) ⊕ HomR(B, A) ∼= A ⊕ HomR(B, A)

as additive groups, since these are actually R′-isomorphisms. �
The reader will have noticed that a lot of the ingredients from the density theorem

are found in the previous proof. The converse of the theorem is also true, and we
leave this as an exercise.

9.18 Noetherian and Artinian Modules

Definition 9.18.1 A module is noetherian if it has the ascending chain condition
for submodules, that is, any ascending chain

A1 ⊂ A2 ⊂ · · ·

of submodules stabilizes in the sense that An = An+1 = · · · for some n. A module
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is artinian if it satisfies the same property with inclusions reversed, and we then talk
about a descending chain condition. We can also talk about noetherianess (artini-
aness) for bimodules, and also with the prefix left or right if we look at chains of
such submodules. A ring is a noetherian (artinian) ring if it is noetherian (artinian)
as a left module over itself; if it is so as a bimodule we rather speak of left and right
noetherian (artinian).

Remember that the submodules of a ring are the left ideals.
By Lemma6.14.4, or the theorem below, any PID is noetherian. A PID that is not

a field cannot be artinian. To see this pick a prime element p of the PID. Then the
descending chain

(p) ⊃ (p2) ⊃ · · ·

of ideals cannot break off, because if (pn) = (pn+1) for some n, then pn = apn+1

for some element a of the ring, so p would be a unit. In fact, replacing p by any
non-zero element in the argument above, we see that an artinian integral domain is
a field.

Proposition 9.18.2 In an artinian commutative ring prime ideals are maximal.

Proof If I is a prime ideal in an artinian commutative ring R, then R/I is an integral
domain, and so is a field. Thus I is a maximal ideal. �

Theorem 9.18.3 For a module A the following conditions are equivalent:

(i) The module A is noetherian;

(ii) Each submodule of A is finitely generated;

(iii)Any non-empty family of proper submodules of A has a maximal element.

Proof If (i) holds and A has a submodule B that is not finitely generated, we can
inductively pick elements ai ∈ B such that

(a1) ⊂ (a1, a2) ⊂ · · ·

with only proper inclusions, which is a contradiction. So (ii) must hold.
Conversely, if we assume that (ii) holds, and A1 ⊂ A2 ⊂ · · · is an ascending chain

of submodules of A. Then ∪Ai is a submodule of A, which by assumption is finitely
generated, by say X . Since X is finite it will be contained in An for some n, and then
An = An+1 = · · · , so (i) holds.

Assume that (i) holds. If we have a non-empty family of proper submodules of
A with no maximal submodule, it must contain a submodule A1. Since this is not
a maximal element of the family, it is properly contained in another member of
the family, and then in another member, and so on, so (i) is violated, which is a
contradiction. Thus (iii) must hold.
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Conversely, if we assume that (iii) holds, then the family of proper submodules
in any ascending chain must have a maximal element, which stabilizes the chain. �

Corollary 9.18.4 In a noetherian ring each ideal contains a finite product of prime
ideals.

Proof Let F be the family of ideals in R that do not contain any finite product of
prime ideals. IfF is non-empty, then by the theorem above it has a maximal element
A which is certainly not a prime ideal. So there are ideals B and C that are not
contained in A but such that BC ⊂ A. By maximality of A both B + A and C + A
will contain a finite product of prime ideals, and (B + A)(C + A) ⊂ A, so A also
contains a finite product of prime ideals, which is absurd. �

Definition 9.18.5 A module is finitely cogenerated if each family of submodules
with trivial intersection has a finite subcollection with trivial intersection.

The proof of the following result is ‘dual’ to the proof in the theorem above, and
is left out.

Theorem 9.18.6 For a module A the following conditions are equivalent:

(i) The module A is artinian;

(ii) Each quotient module of A is finitely cogenerated;

(iii)Any non-empty family of non-trivial submodules of A has a minimal element.

The following result is immediate from the two theorems above.

Corollary 9.18.7 Submodules and homomorphic images of noetherian (artinian)
modules are noetherian (artinian).

Proposition 9.18.8 Let 0 → A → B → C → 0 be an exact sequence of modules.
Then B is noetherian (artinian) if and only if both A and C are noetherian (artinian).

Proof The forward implication is the corollary above.
For the opposite direction assume A is a noetherian submodule of B with a

noetherian quotient module C = B/A.
If D is a submodule of B, then the module D/(A ∩ D) ∼= (D + A)/A is a finitely

generated submodule of B/A by Theorem9.18.3, so there are elements xi ∈ D such
that

D = (x1) + · · · + (xn) + A ∩ D.

But since by Theorem9.18.3, we know that A ∩ D is a finitely generated submodule
of A, say with generators y1, . . . , ym . Then {xi } ∪ {y j } will generate D. Thus B is
noetherian by Theorem9.18.3.

The proof in the artinian case is similar. Alternatively one can use the five lemma.
�
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Corollary 9.18.9 A finite direct sum of modules is noetherian (artinian) if and only
if every component in the sum is noetherian (artinian). Any finitely generated module
over a noetherian (artinian) unital ring is noetherian (artinian).

Proof The first statement is by the proposition above true for a direct sum of two
modules, and thus holds by induction for finite direct sums. A finitely generated
module over a noetherian (artinian) unital ring R is a quotient module of the noethe-
rian (artinian) ring Rn for some n. Thus by the proposition above it is noetherian
(artinian). �

Definition 9.18.10 A module is completely reducible if it is a finite direct sum of
simple modules.

Completely reducible modules are obviously semisimple, and semisimple rings
are completely reducible.

Corollary 9.18.11 Completely reducible modules are noetherian and artinian. A
semisimple module is completely reducible if it is noetherian or artinian.

Proof Any ascending or descending chain with proper inclusions in a simplemodule
cannot have more than one inclusion, so the first statement in the proposition follows
from the corollary above.

In a countable direct sum ⊕∞
i=1Ai of simple modules Ai we have the infinite

ascending and descending chains A1 ⊂ A1 ⊕ A2 ⊂ · · · and ⊕∞
i=1Ai ⊃ ⊕∞

i=2Ai ⊃
· · · of submodules with only proper inclusions. �

Proposition 9.18.12 In a noetherian ring every one-sided inverse is a two-sided
inverse.

Proof Suppose we have ab = 1 but ba �= 1 in a noetherian ring R. Then

ei j ≡ bi−1a j−1 − bia j �= 0

and satisfies
ei j ekl = δ jkeil

for i, j, k, l ∈ N. Hence R contains the submodule
⊕

i Reii and has an infinite chain
of submodules with only proper inclusions. �

Corollary 9.18.13 Given a module A and a finite chain

{0} ≡ A0 ⊂ A1 ⊂ · · · ⊂ An ≡ A

of submodules. Then A is noetherian (artinian) if and only if every quotient module
Ai+1/Ai is noetherian (artinian).
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Proof Apply the second last proposition above inductively to the exact sequence

0 −→ Ai −→ Ai+1 −→ Ai+1/Ai −→ 0

for i ≥ 0. �

Example 9.18.14 Any finite dimensional vector space is both noetherian and
artinian because there are no ascending or descending chains with more proper
inclusions than the dimension of the vector space. Clearly finite dimensionality of the
vector space is equivalent to noetherianess or artinianess. Despite the fact that F[x]
over a non-trivial field F is not an artinian ring, any proper quotient ring F[x]/( f )
of it is artinian because F[x]/( f ) is a finite dimensional vector space with dimen-
sion deg( f ), and every left ideal of it is a vector subspace. More generally, finite
dimensional algebras are noetherian and artinian because subalgebras are subspaces.

♦
Example 9.18.15 Pick a prime number p. Let R be the set of rational numbers
m/pn for all non-negative integers m and n such that m/pn ∈ [0, 1〉. We turn R into
a commutative non-unital ring by trivial multiplication and with addition defined
modulo integers.

Let I be a non-trivial proper ideal in R. Remember that any integer times an
element of I will belong to I since I is closed under addition and subtraction.

Denote by k the least natural number such that l/pk /∈ I for some integer l.
Consider natural numbers m and n such that n ≥ k and gcd (m, p) = 1. If

m/pn ∈ I , then m/pk = pn−km/pn ∈ I . And 1/pk−1 ∈ I by definition of k. There
are a, b ∈ Z such that am + bp = 1. Thus l/pk = lam/pk + lb/pk−1 ∈ I , which is
impossible. Therefore m/pn /∈ I . Hence

Ik−1 ≡ I = {0, 1/pk−1, 2/pk−1, . . . , (pk−1 − 1)/pk−1}.

Since all proper ideals are finite the ring R is obviously artinian, but it is not
noetherian because I1 ⊂ I2 ⊂ · · · is an infinite ascending chain of ideals with only
proper inclusions. ♦
Proposition 9.18.16 A surjective (injective) endomorphism of a noetherian
(artinian) module is an isomorphism.

Proof Say f is a surjective endomorphism of a noetherian module A. The ascending
chain ker f ⊂ ker f 2 ⊂ · · · of submodules must stabilize, say from ker f n onward.
Write x ∈ ker f as x = f n(y). Then y ∈ ker f n+1 = ker f n , so x = 0.

The argument in the artinian case is similar. �

Corollary 9.18.17 All bases of a finitely generated free module over a noetherian
or artinian ring have the same cardinality.

Proof Let {xi }ni=1 and {yi }mi=1 be two bases with n ≥ m of a finitely generated free
module A over a noetherian ring. Let f be the surjective endomorphism of A that
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sends xi to yi for i ≤ m and the remaining xi to zero. By the proposition above the
kernel of f is zero, so there cannot be any remaining xi ’s.

The proof in the artinian case is similar. �

Definition 9.18.18 The length of a series

{0} = A0 ⊂ · · · ⊂ An = A

of submodules Ai of amodule A is the number of proper inclusion, so the lengthmight
be less than n ∈ N. The series is a composition series of A if each factor Ai+1/Ai is a
simple module. The length l(A) of A is the length of a composition series with least
length among all composition series of A; if A has no (finite) composition series we
set l(A) = ∞.

A refinement of a series is a series obtained by inserting a finite number of addi-
tional submodules in the original series. Two series are equivalent series if there
is a bijection between their non-trivial factors such that the corresponding factors
are isomorphic as modules. Obviously a composition series is maximal among all
possible refinements of a series.

We have the following straightforward generalization of the results of Schreier
and Jordan–Hölder for groups. The proof would involve a butterfly lemma adapted
to the context of modules.

Theorem 9.18.19 Any two series of a module have equivalent refinements. In
particular, all composition series of a module are pairwise equivalent.

Since the length of a composition series of a module is the number of factors of
the series, all composition series of a module have the same length, which is then
the length of the module.

Proposition 9.18.20 A module has finite length if and only if it is both noetherian
and artinian.

Proof If a module A has finite length it has a composition series with simple,
hence noetherian and artinian factors, so A is both noetherian and artinian by
Corollary9.18.13.

Suppose A from the outset is both noetherian and artinian. If A is non-trivial, then
by Theorem9.18.6 it has a minimal non-trivial submodule A1, which obviously is
simple. If A1 �= A, then by the same theorem there is a submodule A2 that is minimal
among all submodules of A that properly contains A1, so A2/A1 is a simple module.
If A2 �= A, there is an A3 such that A3/A2 is simple, and so on. Since A is noetherian,
the ascending chain {0} ≡ A0 ⊂ A1 ⊂ A2 · · · must terminate with A after finitely
many steps. The result is a composition series, so A has finite length. �

It is easily verified that l(B) = l(A) + l(C) for the modules in Proposition9.18.8.
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Example 9.18.21 Subrings of artinian rings need not be artinian because Q is
artinian while the subring Z is not artinian as the infinite descending chain Z ⊃
2Z ⊃ 22Z ⊃ 23Z ⊃ · · · has only proper inclusions.

Also, subrings of noetherian rings need not be noetherian. For instance, the ring
M2(Q) is noetherian because every submodule of it is also a vector space over Q

under the change of ring homomorphismQ → M2(Q) that sendsa ∈ Q to diag(a, a).
However, the subring

R =
(

Z Q

0 Q

)

≡ {
(
a b
0 c

)

| a ∈ Z and b, c ∈ Q}

of M2(Q) is not noetherian because

In = {
(
0 m/2n

0 0

)

|m ∈ Z }

form an infinite ascending chain I1 ⊂ I2 ⊂ · · · of left ideals of R with only proper
inclusions.

So R is not (left) noetherian, but it is actually right noetherian. To see this, consider
the right ideal I of R consisting ofmatrices having rational numbers in the right lower
corner and otherwise only zero entries. The right R-module I has clearly no non-
trivial proper right R-submodules, so it is right noertherian. The additive group R/I
is a right R-module and is isomorphic to

A ≡
(

Z Q

0 0

)

as a right R-module. Let B be a non-trivial right R-submodule of A. Then

J = {a ∈ Z |
(
a b
0 0

)

∈ B for some b ∈ Q}

is an ideal in the PID Z, so J = aZ for some a ∈ Z. Evidently

B ⊂
(
aZ Q

0 0

)

.

Suppose b ∈ Q is such that (
a b
0 0

)

∈ B.

If a �= 0, then (
ac d
0 0

)

=
(
a b
0 0

) (
c d/a
0 0

)

∈ B,
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for any c ∈ Z and d ∈ Q, so

B =
(
aZ Q

0 0

)

.

If a = 0, one checks that

B =
(
0 Q

0 0

)

.

Thus any ascending chain A1 ⊂ A2 ⊂ · · · of right R-submodules of A with only
proper inclusions produce an ascending chain J1 ⊂ J2 ⊂ · · · of ideals of Z with
only proper inclusions except perhaps in the first step. But Z is noetherian, so A
is right noetherian. By the right-module-version of Proposition9.18.8, we conclude
that also R is right noetherian.

Consider the ring

S =
(

Q Q

0 0

)

and the ideal

K =
(
0 Q

0 0

)

.

Then both K and S/K are artinian as S-modules, so the ring S is artinian. But S is
not right artinian because we have an infinite descending chain

(
0 2Z

0 0

)

⊃
(
0 22Z
0 0

)

⊃
(
0 23Z
0 0

)

⊃ · · ·

of right S-submodules with only proper inclusions. ♦
Definition 9.18.22 A boolean ring is a unital ring that consists entirely of idempo-
tents.

Boolean rings are commutative and have characteristic two if they are non-trivial.
To see this, consider elements a and b in a boolean ring. Then 2a = (2a)2 = 4a, so
2a = 0 and a = −a. Thus a + b = (a + b)2 gives ab = ba.

Example 9.18.23 The arctypical example of a boolean ring is the power set P(X)

of a set X with addition and multiplication defined as

a + b = (a ∪ b) − (a ∩ b) and ab = a ∩ b

for a, b ∈ P(X). Here X is the identity element and the empty set is the zero element.
Unital subrings of P(X) are also boolean rings. ♦
Proposition 9.18.24 In a boolean ring any prime ideal is maximal. Any boolean
noetherian ring is a finite direct product of the field Z2 with itself, so its cardinality
is a power of two.



9.18 Noetherian and Artinian Modules 391

Proof If P is a proper prime ideal of a boolean ring R, then R/P is a boolean ring
and an integral domain. The only idempotents in an integral domain are 0 and the
identity element, so R/P is the field Z2 and P is maximal.

If a non-trivial boolean ring R is noetherian, then by Corollary9.18.4 the zero
ideal contains a finite product P1 · · · Pn of distinct proper prime ideals Pi . Then

R ∼= R/{0} ∼= R/P1 × · · · × R/Pn ∼= Z
n
2

by Proposition6.11.8 and Theorem6.8.9. Here |R| = 2n . �

Here is a change of rings result which is often applied to quotient maps for rings.

Proposition 9.18.25 Let f : R → S be a ring homomorphism, and let A be an S-
module. If A is noetherian (artinian) as an R-module via f , then A is noetherian
(artinian) as an S-module. The converse holds if f is surjective.

Proof Any S-submodule of A is an R-submodule via f , which proves the first
statement. When f is surjective, then every additive subgroup of A that is invariant
under f (R) is obviously also an S-submodule, which proves the second statement.

�

The following result is known as the Hilbert basis theorem.

Theorem 9.18.26 Polynomial rings over noetherian unital rings are noetherian.

Proof Let E and F be the families of left ideals in a noetherian ring R and in the
polynomial ring R[x], respectively. For each non-negative integer n define fn : F →
E by letting fn(A) consist of the zero-element and of the non-zero leading coefficients
of all nth degree polynomials in the left ideal A of R[x].

We claim that if fn(A) = fn(B) for A ⊂ B and all n, then A = B. To see this
suppose g ∈ B has degree n. By assumption there is gn ∈ A with the same leading
coefficient as g. Either g − gn = 0, and we are done, or g − gn has degree less
than n. Since g − gn ∈ B, we can repeat the argument and find gn−1 ∈ A such that
g − gn − gn−1 ∈ B either is zero or has degree less than n − 1. After at most n steps
the only option is zero, and then g is a finite sum of elements gi ∈ A. Thence g ∈ A
and A = B.

Let A1 ⊂ A2 ⊂ · · · be an ascending chain of left ideals in R[x]. For each n we
get an ascending chain

fn(A1) ⊂ fn(A2) ⊂ · · ·

of left ideals in R. Since R is noetherian, there are integers m(n) such that the above
chain stabilizes at fn(Am(n)).

Again because R is noetherian the collection { fi (A j )} has amaximal element, say
f p(Aq). For any left ideal C of R[x] we have fi (C) ⊂ f j (C) when j ≥ i because
we can multiply a polynomial in C of degree i by x j−i ∈ R[x], and get a polynomial
in C of degree j that has the same leading coefficient. Hence we get the equalities
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f p(Aq) = fn(Aq) = fn(A j )

for n ≥ p and j ≥ q. Set r = m(1)m(2) · · ·m(p − 1)q. Then

fn(Ar ) = fn(Ar+1) = · · ·

for all non-negative n. By the first paragraph in the proof we get Ar = Ar+1 = · · · .
In other words, the ring R[x] is noetherian. �

Theorem 9.18.27 Formal power series rings over noetherian unital rings are
noetherian.

Proof Let R be noetherian, and consider a left ideal A in the formal power series
ring R[[x]]. For any non-negative n let Bn denote the left ideal of R generated by the
leading coefficients of the elements in the left ideal A ∩ (xn) of R[[x]]. Since R is
noetherian, the ascending chain B0 ⊂ B1 ⊂ · · · stabilizes, say at Bm , and byTheorem
9.18.3 we can moreover assume that each Bn is finitely generated, say with finitely
many generators ani . Choose fni ∈ A ∩ (xn) having ani as leading coefficient. Again
by Theorem 9.18.3 we have completed the proof if we can show that the finitelymany
elements fni for n ≤ m generate A as a left ideal.

Take any g ∈ A. Then we can certainly find an R-linear combination f0 of f0i ’s
such that g − f0 ∈ A ∩ (x). Proceeding like this we can find an R-linear combination
f j of f ji ’s such that

g − f0 − · · · − f j ∈ A ∩ (x j+1).

For j ≥ m we may write f j = ∑
i b ji x j−m fmi with b ji ∈ R because Bm = Bm+1 =

· · · and then

g = f0 + · · · + fm−1 +
∞∑

j=m

∑

i

b ji x
j−m fmi = f0 + · · · + fm−1 +

∑

i

⎛

⎝
∞∑

j=m

b ji x
j−m

⎞

⎠ fmi .

�

Corollary 9.18.28 In a noetherian unital ring R both R[x1, . . . , xn] and
R[[x1, . . . , xn]] are noetherian.

9.19 Nilpotence

Definition 9.19.1 An element a of a ring is nilpotent if an = 0 for some n ∈ N. A
nil ideal of a ring is an ideal consisting only of nilpotent elements. An ideal I of a
ring is nilpotent if I n = {0} for some n ∈ N. Left and right nil and nilpotent ideals
are defined similarly.

If e is a nilpotent idempotent in a ring with en = 0 for some n, then e = en = 0.
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If a is a nilpotent element of a unital ring with an = 0, then 1 − a is invertible
with

(1 − a)−1 = 1 + a + · · · + an.

The ideal I = {0, 2} of Z4 is nilpotent with I 2 = {0}.
Here is a non-commutative example.

Example 9.19.2 If I is any ideal of a ring R, then

J =
(
0 I
0 0

)

is a nilpotent ideal of (
R R
0 R

)

with J 2 = {0}. ♦
The off diagonalmatrix units of amatrix ring over a division ring are nilpotent. Yet

the matrix ring is simple, so it has no non-trivial nil ideals. It has also no non-trivial
nilpotent left ideals due to the following result.

Proposition 9.19.3 Simple unital rings have no non-trivial left or right nilpotent
ideals.

Proof Suppose I is a left ideal of a simple unital non-trivial ring R with I n = {0}
for some n ∈ N. Then I R is a nilpotent ideal with (I R)n ⊂ I n R = {0}, and since R
is unital and non-trivial we must have I R �= R. As R is simple, we conclude that
I R = {0}, and again since R is unital, the left ideal I must be trivial. �

Clearly any nilpotent ideal is a nil ideal, but as the next example shows, the
converse is not in general true, although in this case the nilpotent elements in the
ring form an ideal.

Example 9.19.4 Let p be a prime number and consider the ring
⊕∞

n=1 Z/(pn). The
subset of nilpotent elements form an ideal I because the ring is commutative. But
this nil ideal in not nilpotent because if I m = {0} for some m, then the element
a of the ring that has p + (pm+1) as its (m + 1)th coordinate and otherwise has
only zero coordinates is nilpotent with am+1 = 0, so a ∈ I , but am �= 0, which is a
contradiction. ♦

However, we will see that nil ideals are nilpotent when the ring is artinian or
noetherian.

Proposition 9.19.5 Nil left ideals of artinian rings are nilpotent.
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Proof Suppose A is a nil left ideal of an artinian ring and that A is not nilpotent.
Since the ring is artinian, the family {An | n ∈ N} has aminimal element, say B ≡ An .
Then B2 = B as A2n ⊂ An .

LetF be the family of left idealsC of the ring that are contained in B and such that
BC is non-trivial. Since B2 = B �= {0}, the family F in non-empty, and as the ring
is artinian, the family has a minimal element C . Thus there is a ∈ C such that Ba is
non-trivial. But Ba ⊂ C and B(Ba) = B2a = Ba �= {0}, so Ba ∈ F . Byminimality
of C we get Ba = C . Thus there is b ∈ B such that ba = a. But b is nilpotent as
A is nil, say with bm = 0. Thus a = bma = 0a = 0, which is a contradiction, so A
must be nilpotent. �

Lemma 9.19.6 In noetherian rings sums of nilpotent ideals are nilpotent.

Proof Let
∑

i Ii be an arbitrary sum of nilpotent ideals in a noetherian ring. Then as
a left ideal the sum is finitely generated. But each generator lies in finitely many Ii ’s
and therefore the sum is contained in a sum of finitely many Ii ’s. So we may assume
that the initial sum above is finite.

By induction it therefore suffices to show that I + J is nilpotent for ideals I
and J with I n = Jm = {0} for some n and m. But (I + J )m ⊂ I + Jm = I and
(I + J )n+m = I n = {0}. �

Proposition 9.19.7 A noetherian ring with no non-trivial nilpotent ideals has no
non-trivial nil ideals.

Proof Let I be a non-trivial nil ideal of a noetherian ring R. Since R is noetherian, the
family F of annihilators of non-zero elements of I has a maximal left ideal Ann(a)

for some a ∈ I . Let b ∈ R. Then ab ∈ I . Either ab = 0, and we can jump to the next
paragraph of this proof, or ab �= 0. Then, and as I is nil, there exists a least n ∈ N such
that (ab)n = 0. Since (ab)n−1 is a non-zero element of I , we haveAnn((ab)n−1) ∈ F
which clearly containsAnn(a). Bymaximality of the latter left ideal we conclude that
Ann((ab)n−1) = Ann(a). But (ab)n = 0 shows that ab ∈ Ann((ab)n−1), so aba =
0 by definition of Ann(a). Thus (RaR)2 = RaRRaR = {0} and since R has no
non-trivial nilpotent ideals, we deduce RaR = {0}.

If R is unital, we therefore get a = 0, which is a contradiction. If R is non-unital,
the ideal (a) generated by a is nilpotent since RaR = {0}, so (a) = {0} and a = 0.

�

Proposition 9.19.8 Nil ideals in noetherian rings are nilpotent.

Proof Let I be a nil ideal in a noetherian ring R.
If J is the sum of all nilpotent ideals in R, then R/J has no non-trivial nilpotent

ideals because by the correspondence theorem any such ideal is of the form K/J for
an ideal K of R, and if (K/J )n = {0} for some n, then Kn ⊂ J . But Jm = {0} for
some m by the lemma above, so Km+n = {0}, and the nilpotent ideal K must belong
to J , which entails that K/J is trivial.

Hence the nil ideal I/J in R/J is trivial by the proposition above. So I ⊂ J and
I must be nilpotent. �
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We know that matrix rings over divisions rings are noetherian and right noetherian
as well as artinian and right artinian, so the same is true for semisimple unital rings
since these are finite directs sums of such matrix rings.

In Example9.18.21 we exhibited rings that where only one-sidedly noetherian or
artinian.

Lemma 9.19.9 If A is a simple left ideal in a ring R, then either A2 is trivial or
A = Re for an idempotent e.

Proof Suppose A2 is non-trivial. Then there is a ∈ A such that Aa is non-trivial.
Since Aa is a left ideal contained in A, we must have Aa = A because A is simple.
So there is e ∈ A such that ea = a. Then the left ideal Ann(a) is strictly contained
in A because e does not belong to it, so Ann(a) is trivial since A is simple. As
(e2 − e)a = a − a = 0, we thus get e2 − e = 0. But Re is a left ideal contained in
A that is non-trivial because 0 �= e = e2 ∈ Re. Hence A = Re by simplicity of A.

�

Theorem 9.19.10 We have the following equivalent statements for a unital ring:

(i) It is artinian and has no non-trivial nilpotent ideals;

(ii) Each left ideal is generated by an idempotent;

(iii) It is completely reducible;

(iv) It is a finite direct product of matrix rings over division rings.

Proof Let R be a unital ring.
Assume that (i) holds for R, and let A be a non-trivial left ideal of R. Since

R is artinian, the left ideal A contains a minimal non-trivial left ideal B, which is
obviously a simple left ideal, so by the lemma above, either B2 is trivial, or B = Ra
for an idempotent a ∈ R.

If B2 is trivial, then BR is an ideal of R and (BR)2 ⊂ B2R = {0}. By assumption
BR must therefore be trivial, so B is trivial as R is unital, and this is absurd. So
B = Ra and A contains a non-zero idempotent.

Hence the family F consisting of all left ideals of the form R(1 − a) ∩ A for
some non-zero idempotent a ∈ A is non-empty, and since R is artinian, it must have
a minimal element, say R(1 − a) ∩ A. We claim that this left ideal is trivial.

Otherwise R(1 − a) ∩ A contains a non-zero idempotent, say b. Notice that ba =
0. Let c = a + b − ab. Then c is an idempotent of A that is non-zero because bc =
b �= 0.Also, since 1 − c = (1 − a) − (1 − a)b and b ∈ R(1 − a), we see that R(1 −
c) ∩ A ⊂ R(1 − a) ∩ A. The inclusion is proper because b /∈ R(1 − c) ∩ A as bc �=
0, and this contradicts minimality of R(1 − a) ∩ A.

Let d ∈ A. Then d(1 − a) ∈ R(1 − a) ∩ A = {0}, so d = da and A = Ra. Thus
(ii) holds.
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To see that (ii) implies (iii), note that if A is a submodule of R, then A = Re
for some idempotent e ∈ R. But then R(1 − e) is a complementary submodule of
A in R, so R is by Theorem 9.15.5 semisimple as a module over itself, and thus
completely reducible by Theorem9.17.15 since R is unital.

The implication (iii) to (iv) is Theorem9.17.11.
The implication (iv) to (i) is clear since amatrix ring over a division ring is artinian

as it is a finite dimensional algebra over the division ring, and the finite direct product
of artinian rings is obviously artinian. As matrix rings over division rings are simple,
the only ideals in R are direct subproducts of such matrix rings. But they have units
so any non-trivial ideal of R has non-trivial idempotents and thus cannot be nilpotent.

�

The step (iv) ⇒ (iii) above is immediate from the fact that Mn(R) ∼= nRn as
modules over Mn(R), whereas the step (iii) ⇒ (ii) is Proposition9.2.6.

9.20 The Jacobson Radical

Recall that a maximal submodule of a module is a proper submodule that is not
strictly contained in another proper submodule.

Definition 9.20.1 The Jacobson radical rad(A) of a module A is the intersection of
the maximal submodules of A. If there are no maximal submodules, we set rad(A) =
A. The Jacobson radical of a ring is the Jacobson radical of the ring considered as a
module over itself.

Note that rad(A) is a submodule of A. When A is noetherian it has a maximal
submodule, so in this case rad(A) �= A.

Example 9.20.2 If pm1
1 · · · pmn

n is the prime number factorization of a ∈ Z, then

rad(Z/aZ) = p1 · · · pnZ/aZ

by Proposition6.11.8 since piZ/aZ are the maximal submodules of the Z-module
Z/aZ. ♦
Proposition 9.20.3 The Jacobson radical of a semisimple module is trivial.

Proof Themaximal submodules of a semisimplemodule are the direct sumsobtained
by setting one simple component to zero. The intersection of all these is obviously
trivial. �

Proposition 9.20.4 The Jacobson radical of a direct product of rings is the direct
product of the Jacobson radical of each ring.
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Proof The result is immediate from the trivial observation that a left ideal A of a
direct product of rings is maximal if and only if the projection of A on each ring is
maximal. �

Say Ai are the maximal submodules of a module A, so rad(A) = ∩Ai . Then the
map A → ∏

A/Ai which sends a ∈ A to i �→ a + Ai has kernel ∩Ai , so

A/rad(A) ⊂
∏

A/Ai

and each A/Ai is a simple module.

Proposition 9.20.5 When the Jacobson radical of a module A is a finite intersection
of maximal submodules, then A/rad(A) is completely reducible. Any artinianmodule
with vanishing Jacobson radical is completely reducible.

Proof The first statement is immediate from the discussion above since submodules
of completely reducible modules are completely reducible.

The second statement follows from the first provided we show that the radical
of an artinian module is a finite intersection of maximal submodules. To this end
note that intersections of an increasing collection of maximal submodules form a
descending chain, which in an artinian module must stabilize. �

The kernel of a non-zero module map from A to any simple module is clearly a
maximal submodule of A. Thus we get the following result.

Proposition 9.20.6 The radical of a module A is given by

rad(A) = ∩ ker f,

where the intersection is taken over all module maps f from A to simple modules.

Corollary 9.20.7 If g : A → B is a module map, then g(rad(A)) ⊂ rad(B). Thus
the radical rad(A) is invariant under the action of any module map A → A. The
Jacobson radical of a ring is an ideal.

Proof If f : B → C is a module map into a simple module, then f g : A → C is
also a module map into C , so f g(rad(A)) = 0 by the proposition above, which by
the same proposition gives the first result.

For a ring R the left ideal rad(R) is invariant under the action of the module map
a �→ ab on R for any b ∈ R. Thus rad(R) is an ideal. �
Corollary 9.20.8 For any R-module A we have rad(R)A ⊂ rad(A).

Proof Let x be an element of a simple R-module B, and consider the module map
f : R → B given by f (a) = ax . Then f (rad(R)) = 0 by the proposition above, so
rad(R)B vanishes. If g : A → B is a module map, then

g(rad(R)A) ⊂ rad(R)B = {0},

and the result follows from the proposition above. �
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Corollary 9.20.9 An element a of a ring belongs to rad(R) if and only if aA vanishes
for every simple R-module A.

Proof The proof is immediate from the proof of the corollary above, and by
considering quotients of R. �

Corollary 9.20.10 If R is a ring and A is a module over R with composition series
of length not greater than n, then (rad(R))n A is trivial.

Proof Say {Ai } is a composition series of A of length n. For x ∈ Ai write
[x] ∈ Ai/Ai−1. Let ai ∈ rad(R). Apply the corollary above successively to Ai/Ai−1

starting with y ∈ A = An . Then a1[y] = [0], so a1y ∈ An−1. Thus a2[a1y] = [0],
so a2a1y ∈ An−2. Thus a3[a2a1y] = [0], so a3a2a1y ∈ An−3, arriving finally at
an · · · a1y ∈ {0}. If the length was less than n we would arrive at zero even faster. �

The following result comes with a trivial proof.

Proposition 9.20.11 Let A be a module with a submodule B ⊂ rad(A), and let
f : A → A/B be the quotient map. The correspondence theorem provides a one-
to-one correspondence C → f (C) between maximal submodules of A and maxi-
mal submodules of A/B. Thus rad(A/B) = f (rad(A)). In particular, the radical of
A/rad(A) vanishes.

The following consequence is immediate.

Corollary 9.20.12 The simple R-modules correspond to quotients by maximal
ideals I of R, and R/I are also the simple R/rad(R)-modules.

Proposition 9.20.13 For an artinian ring R the ring R/rad(R) is completely
reducible.

Proof Note that rad(R) is an ideal, so R/rad(R) is indeed a ring. It is artinian as an
R-module since it is a quotient module of an artinian ring. By Proposition9.18.25 it
is therefore also artinian as amodule over itself, so R/rad(R) is artinian as a ring. But
the radical of R/rad(R) vanishes by the previous proposition. By Proposition9.20.5
it is therefore completely reducible. �

Corollary 9.20.14 For any module A over an artinian ring R, we have rad(A) =
rad(R)A. The module A is semisimple if and only if rad(R)A vanishes.

Proof By Corollary9.20.8 we have rad(R)A ⊂ rad(A). For the opposite inclusion
observe that A/rad(R)A is a module over R/rad(R) which is semisimple by the
proposition above. Thus A/rad(R)A is a semisimple module over R/rad(R) and
thus also over R by the complementary submodule property of semisimple modules.
So its Jacobson radical as an R-module vanishes by Proposition9.20.3. But then
rad(A) ⊂ rad(R)A by Corollary9.20.7 applied to the quotient R-module map A →
A/rad(R)A. �

There is a slightly different way of looking at the Jacobson radical.
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Definition 9.20.15 An element x of a module A is a non-generator of A if whenever
A is generated by x and any X ⊂ A, then X alone will generate A.

We write 〈X, x〉 for the submodule generated by a subset X and an element x of
a module.

Lemma 9.20.16 Suppose A is a module generated by a subset X and an element x,
but that 〈X〉 �= A. Then A has a maximal submodule that contains X but not x.

Proof Consider the family of submodules of A that contain X but not x . This family
is not empty since 〈X〉 belongs there. Ordered under inclusion by Zorn’s lemma it
has a maximal member. This is a maximal submodule since any submodule strictly
larger than it must contain x , and would therefore have to be all of A. �

Proposition 9.20.17 The subset of non-generators of a module is the Jacobson
radical of the module.

Proof Any non-generator x of a module A must belong to any maximal submodule
B otherwise 〈B, x〉 = A and yet B �= A. Thus x ∈ rad(A).

Conversely, if x is not a non-generator of A, then there is some subset X of A such
that 〈X, x〉 = A but 〈X〉 �= A. By the lemma above there is a maximal submodule B
that contains X but not x . So x /∈ rad(A). �

The following useful result is known as Nakayama’s lemma.

Theorem 9.20.18 If A is a finitely generated module with a submodule B such that
A = rad(A) + B, then A = B.

Proof If A is generated by {a1 + b1, · · · , an + bn} with ai ∈ rad(A) and bi ∈ B,
then

A = 〈b1, . . . , bn, a1, . . . , an〉 = 〈b1, . . . , bn, a1, . . . , an−1〉 = · · · = 〈b1, . . . , bn〉 ⊂ B

by the characterization of the Jacobson radical in the proposition above. �

Corollary 9.20.19 Let A be a finitely generated module with a submodule C. Then
C ⊂ rad(A) if and only if A = B whenever B is a submodule of A such that A =
C + B.

Proof The forward implication is immediate from the theorem.
For the opposite implication observe that if B is a maximal submodule of A, then

the submodule C + B cannot be A, as B would then have to be A. So C + B = B,
again by maximality of B. Thus C ⊂ B and C ⊂ rad(A). �

Corollary 9.20.20 If A is a finitely generated R-module with a submodule B such
that A = rad(R)A + B, then A = B. A finitely generated module A vanishes if A =
rad(R)A.
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Proof By Corollary9.20.8 we have rad(R)A ⊂ rad(A), so A = rad(A) + B and
A = B by the theorem above. This proves the first statement.

The second statement follows from the first by setting B = {0}. �

As above we can obviously replace rad(R) in this corollary by any left ideal C of
R contained in rad(R). The case A = CA + B ⇒ A = B can be obtained from the
special case A = CA ⇒ A = {0} by considering the module A/B.

If R is a unital ring considered as a finitely generated module over itself, then the
inclusion R ⊂ rad(R) is only possible when R is trivial, which is consistent with the
fact that any non-trivial ring contains maximal ideals.

We can also relate the Jacobson radical of a unital ring to invertible elements.
Notice that if R is a unital ring with a left ideal A, then the subset 1 + A is closed

under multiplication and inverses when they exist. To see this, suppose b ∈ R is a
left inverse of 1 + a with a ∈ A. Then b(1 + a) = 1, so b = 1 + (−b)a ∈ 1 + A.

Proposition 9.20.21 Let A bea left ideal in aunital ring R. Then1 + A is a subgroup
of U (R) if and only if A ⊂ rad(R).

Proof By the discussion prior to the propositionwe need only show that the elements
of 1 + A are invertile if and only if A ⊂ rad(R).

For the forward implication, if A is not contained in some maximal left ideal B,
then R = A + B by maximality of B, so 1 = a + b for some a ∈ A and b ∈ B. By
assumption b = 1 − a is invertible, and thus B = A, which is a contradiction. Hence
A ⊂ rad(R).

Conversely, consider c ≡ 1 + a with a ∈ A ⊂ rad(R). Then R = A + Rc. By the
corollary above, we get R = Rc, and 1 = dc for some d ∈ R. But d = 1 − da and
−da ∈ A, so d like c, has also a left inverse, which necessarily must be c. Thus c
has both a left and a right inverse. �

The following result displays a left-right symmetry in the Jacobson radical of a
unital ring.

Corollary 9.20.22 The Jacobson radical of a unital ring is the intersection of the
maximal right ideals in the ring.

Proof By Corollary9.20.7 the Jacobson radical of a unital ring R is an ideal. Thus
rad(R) is a left ideal of the opposite unital ring Rop. By the proposition above 1 +
rad(R) is a subgroup ofU (R) = U (Rop). By the same proposition we get rad(R) ⊂
rad(Rop). Replacing R by Rop we get rad(Rop) = rad(R). �

Thus for instance the previous proposition holds also for right ideals.

Proposition 9.20.23 Let R be a unital ring, and let Q be the set of all a ∈ R such
that 1 + ba has a left inverse for every b ∈ R. Then Q = rad(R).
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Proof If a ∈ rad(R) and 1 + a has no left inverse, then R(1 + a) �= R, so R(1 + a)

is contained in a maximal left ideal B. But since the radical is the intersection of
all such ideals, and a ∈ rad(R), we know that a ∈ B, and clearly 1 + a ∈ B. But
then also 1 ∈ B, which is impossible. So 1 + a has a left inverse. Since Q obviously
contains any left ideal that consists only of elements a such that 1 + a has a left
inverse, we conclude that rad(R) ⊂ Q.

The opposite inclusion follows by the proposition above and the remark prior to it
provided we can show that Q is a left ideal, and we only need to show that a + b ∈ Q
for a, b ∈ Q since closedness under multiplication with ring elements from the left
is built into the definition of Q.

Sincea ∈ Q, then to c ∈ Rwecanfind an element d ∈ R such that d(1 + ca) = 1.
Thend(1 + c(a + b)) = 1 + dcb has a left inverse asb ∈ Q. But then also 1 + c(a +
b) has a left inverse, so a + b ∈ Q. �

Note that Q above is the largest left ideal consisting of elements a ∈ R such that
1 + a has a left inverse.

Similarly, by left-right symmetry, the Jacobson radical of a unital ring R coincides
with the set of all a ∈ R such that 1 + ab has a right inverse for every b ∈ R.

Proposition 9.20.24 The Jacobson radical of a unital ring R vanishes ifU (R) ∪ {0}
is a ring.

Proof Note that S = U (R) ∪ {0} is a division ring if it is a ring, and that S ∩ rad(R)

is a proper ideal in S if R is non-trivial. Thus S ∩ rad(R) is trivial.
Now if a ∈ rad(R), then 1 + a ∈ U (R) by Proposition9.20.21, so 1, 1 + a ∈ S,

and therefore a ∈ S ∩ rad(R) = {0}. �

Corollary 9.20.25 Any polynomial ring R[x1, . . . , xn] over a division ring R has
trivial Jacobson radical.

Proof Arguing by degrees it is clear that an element of R[x1, . . . , xn] is invertible
if and only if it is a non-zero element of R, so U (R[x1, . . . , xn]) ∪ {0} = R, and the
result follows from the proposition above. �

In the next section we will generalize this result.

Proposition 9.20.26 We have

rad(Mn(R)) = Mn(rad(R))

for any unital ring R.

Proof Since the radical of a ring is an ideal we may by Proposition9.17.6 write
rad(Mn(R)) = Mn(J ) for an ideal J of R. Let a ∈ J . By Proposition9.20.21 the
element (1 + a)In = In + aIn is invertible in Mn(R), so 1 + a is invertible in R, and
by the same proposition a ∈ rad(R). Thus rad(Mn(R)) ⊂ Mn(rad(R)).

For the opposite inclusion it it enough to show that aEi j ∈ rad(Mn(R)) for any
a ∈ rad(R) and any matrix unit Ei j . By Proposition9.20.21 this amounts to showing
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that In + aEi j is invertible. Let S be the commutative unital subring of R generated
by a. The determinant of In + aEi j ∈ Mn(S)makes sense. It is 1 if i �= j and 1 + a if
i = j . By Cramer’s rule for matrices over commutative rings In + aEi j is invertible
since both 1 and 1 + a are units by Proposition9.20.21. �

9.21 The Wedderburn Radical

The set Nil(R) consisting of all nilpotent elements of a ring R is an ideal, known as
theWedderburn radical, when R is commutative, but otherwise this is not always true
as we have seen. The following result shows that for an artinian unital commutative
ring R we have Nil(R) = rad(R). This suggests that the natural generalization of the
Wedderburn radical to non-commutative artinian unital rings is the Jacobson radical.

Proposition 9.21.1 The Jacobson radical of a unital ring contains all left and right
nil ideals. If in addition the ring is artinian, the Jacobson radical is a nilpotent ideal.

Proof Any element a of a nil left ideal A in a unital ring R is nilpotent, so 1 + a ∈
U (R) and thus A ⊂ rad(R) by Proposition9.20.21. The right ideal case holds by the
comment below Corollary9.20.22.

Assume in addition that the ring R is artinian. Then the descending chain rad(R) ⊃
(rad(R))2 ⊃ · · · of left ideals stabilizes, say at some power I of the Jacobson radical.

If I is non-trivial, then among all left ideals B such that I B is non-trivial, there
is again by artinianess, a minimal one, say B. Pick b ∈ B such that I b is non-
trivial. As I 2b = I b, we get I b = B by minimality of B. Hence b = cb for some
c ∈ I . Then (1 − c)b = 0 implies the absurdity b = 0 because 1 − c ∈ U (R) by
Proposition9.20.21. �

The proposition above tells us that left (right) nil ideals of artinian rings are left
(right) nilpotent; a fact we have already established in Proposition9.19.5.

The following characterization of artinian unital rings goes under the name of the
Hopkins-Levitzki theorem, and is an exercise in change of rings.

Theorem 9.21.2 A unital ring R is artinian if and only if it is noetherian and has
nilpotent Jacobson radical and such that R/rad(R) is completely reducible.

Proof By Propositions9.21.1 and 9.20.13 it suffices to show that R is artinian if and
only if it is noetherian under the common assumption that rad(R) is nilpotent and
R/rad(R) is completely reducible. We prove this by induction on the smallest n ∈ N

such that (rad(R))n is trivial.
Consider S = R/(rad(R))n−1. Then (rad(S))n−1 = {0} by Proposition9.20.11.

Clearly the natural composition R/rad(R) → S → S/rad(S) is a well-defined ring
epimorphism. Now S/rad(S) is completely reducible as an R/rad(R)-module since
the ring R/rad(R) is artinian and semisimple, and thus S/rad(S) is completely
reducible as a ring over itself.
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By our induction hypothesis the ring S is artinian precisely when it is noetherian.
By Proposition9.18.25 this is equivalent to the assertion that S as an R-module is
artinian precisely when it is noetherian. Thus by Proposition9.18.8 it is enough to
show that (rad(R))n−1 as an R-module is artinian precisely when it is noetherian.

But to show this observe that (rad(R))n−1 is an R/rad(R)-module because
(rad(R))n is trivial. By Proposition9.18.25 we only need to show that (rad(R))n−1 as
an R/rad(R)-module is artinian preciselywhen it is noetherian. ByCorollary9.18.11
this is true since the ring R/rad(R) is semisimple. �

Proposition 9.21.3 The Jacobson radical of the upper triangular n × n-matrices
over a division ring consists of the matrices that are zero on the diagonal.

Proof Let R be the upper triangular n × n-matrices over a division ring S. Let J
be the nilpotent ideal of R consisting of the matrices that are zero on the diago-
nal. Then by the previous proposition J ⊂ rad(R). By Proposition9.20.11 we have
rad(R)/J = rad(R/J ) = {0} as R/J ∼= Sn is semisimple. �

Definition 9.21.4 An element in an algebra over a field F is algebraic over F if it
is a root of a polynomial with coefficients in F . The algebra is algebraic if every
element of it is algebraic over F .

Finite dimensional algebras over fields are clearly algebraic, and any algebraic
algebra is a union of such algebras since any subalgebra generated by one element
is finite dimensional. Infinite algebraic field extensions of a field F are algebraic
algebras over F . The group ring over a field of a torsion group is algebraic. The
same is true for locally finite groups, that is, groups such that their finitely generated
subgroups are finite.

Proposition 9.21.5 Suppose a belongs to the Jacobson radical of a unital algebra
over a field F. Then a is nilpotent if and only if a is algebraic over F.

Proof The forward implication is obvious. For the opposite direction, suppose a is
an element in the Jacobson radical of the algebra that satisfies

am + b1a
m+1 + · · · bnam+n = 0

for bi ∈ F . By Proposition9.20.21 we know that 1 + b1a + · · · bnan is invertible, so
am = 0. �

The following result is now immediate.

Corollary 9.21.6 The Jacobson radical of a unital algebraic algebra is the largest
nil ideal.

Theorem 9.21.7 If the vector space dimension of a unital algebra over a field F
has cardinality less than |F |, then the Jacobson radical of the algebra is the largest
nil ideal.
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Proof By Proposition9.21.1 it suffices to show that the Jacobson radical of the
algebra R in question is a nil ideal. The same proposition tells us that the theorem
holds when F is finite since then R is finite and is certainly artinian.

So by the proposition above it is enough to show that every a ∈ rad(R) is algebraic
over an infinite field F . By Proposition9.20.21 we see that b − a = b(1 − b−1a) ∈
U (R) for any non-zero b ∈ F . By our cardinality assumption the elements b − a as
b varies over F∗ cannot be linear independent over F . So there are distinct elements
b1, . . . , bn ∈ F∗ such that

n∑

i=1

ci (bi − a)−1 = 0

with ci ∈ F not all zero. Clearing denominatorswe see that a is a root of a polynomial
f over F which is non-zero as f (bi ) = ci

∏
j �=i (b j − bi ) �= 0 for some i . �

Corollary 9.21.8 For countably generated unital algebras over uncountable fields
the Jacobson radical is the largest nil ideal.

Proof Any algebra of the type in question obviously has a countable linear basis as
a vector space over the field, so the theorem above applies. �

The corollary above is useful when one studies group rings of countable groups
over real and complex fields.

Definition 9.21.9 An element a of a ring R is von Neumann regular if a ∈ aRa,
and the ring R is a von Neumann regular ring if this holds for every element.

Clearly quotients and arbitrary direct products of von Neumann regular rings are
von Neumann regular. Any unital ring in which every element a satisfies an = a for
some n ≥ 2 is von Neumann regular, like Boolean rings for instance.

Proposition 9.21.10 For a unital ring the following statements are equivalent:

(i) It is von Neumann regular;

(ii) Every principal left ideal of it is generated by an idempotent;

(iii)Every finitely generated left ideal of it is generated by an idempotent.

Proof If (i) holds for a unital ring R, then given a principal ideal Ra, we can pick
b ∈ R such that aba = a. Then e = ba is an idempotent such that Re = Ra, so (ii)
holds.

Conversely, if (ii) is assumed and a ∈ R, then Ra = Re for some idempotent
e ∈ R. Thus e = ca and a = de for c, d ∈ R, and aca = dee = a, so (i) holds.

It only remains to check that (ii) implies (iii) since the converse is obvious. By
induction it suffices to show that for any idempotents a, b ∈ R, the left ideal A =
Ra + Rb is generated by an idempotent. Write A = Ra + Rb(1 − a) with Rb(1 −
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a) = Rc for some idempotent c such that ca ∈ Rb(1 − a)a = {0}. Then A = Ra +
Rc = R(a + c) because Rc = Rc(a + c) as c = c(a + c) and Ra ⊂ R(a + c) as
a = (1 − c)(a + c). So A is principal and is generated by an idempotent. �

Due to the left-right symmetry in the definition of von Neumann regular rings the
proposition above is also true for right ideals.

Corollary 9.21.11 A unital semisimple ring is von Neumann regular. The radical of
a von Neumann regular unital ring is trivial.

Proof The first assertion is the last proposition and Theorem9.19.10.
As for the second assertion, note that if a = aba in a unital ring R, then a(1 −

ba) = 0. If a ∈ rad(R), then 1 − ba ∈ U (R) by Proposition9.20.21, and therefore
a = 0. �

We have the following converse result of Maschke’s theorem.

Proposition 9.21.12 Let G be a finite group and let R be a unital ring such that
R[G] is a semisimple ring. Then R is semisimple and |G|1 is a unit in R.

Proof The ring R is the image of the ring homomorphism f : R[G] → R given by∑
ass �→ ∑

as , so R is semisimple since the homomorphic image of any semisimple
ring is semisimple.

To prove that |G|1 is a unit, by the fundamental theorem of arithmetic it is enough
to show that p1 is a unit in R for any prime number p that divides |G|. By Cauchy’s
theorem the groupG has an element s of order p. By the corollary above the ring R[G]
is vonNeumann regular, so there is an element a ∈ R[G] such that (1 − s)a(1 − s) =
1 − s, or (1 − (1 − s)a)(1 − s) = 0.

We claim that if b(1 − s) = 0 for b ∈ R[G], then b = c(1 + s + · · · + s p−1) for
some c ∈ R[G]. We prove this by induction on the number n of non-zero bs in
b = ∑

bss. It is certainly true for n = 0. Assume it is true for all natural numbers
less than n. Pick any t with bt �= 0. If no such t exists there is nothing to prove. Since
b1 = bs = bs2 = · · · , the elements t, ts, . . . , ts p−1 all have the coefficient bt in b.
Thus

b = bt t (1 + s + · · · s p−1) + d

for some d ∈ R[G] that obviously has less non-zero coefficients than b. The claim
follows now by the induction hypothesis.

Setting b = 1 − (1 − s)a, we get 1 − (1 − s)a = c(1 + s + · · · + s p−1) for some
c ∈ R[G]. Applying f to this identity yields 1 = f (c)(1 + · · · + 1) = f (c)p. �

Proposition 9.21.13 A unital ring is completely reducible if and only if it is
noetherian and von Neumann regular.

Proof The forward implication is immediate from Corollary9.18.11 and the
corollary above.

Since every left ideal in a noetherian ring is finitely generated, the second last
proposition above and Theorem9.19.10 give the backward implication. �
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Together with Corollary9.18.11 the proposition above tells us that noetherian von
Neumann regular unital rings are artinian.

Proposition 9.21.14 The ring of endomorphisms of a semisimple module is von
Neumann regular.

Proof Let f be an endomorphism of a semisimple module A. Let B and C be com-
plementary submodules of ker f and im f , respectively. Define an endomorphism g
of A to be zero on C and the inverse of f |B on im f . Then f g f = f . �

Of course any module over a division ring is semisimple, so matrix rings over
division rings are von Neumann regular. Any product of such matrix algebras is also
von Neumann regular, and this includes completely reducible rings in accordance
with Proposition9.21.13.

9.22 Radicals Under Change of Rings

We want to relate the Jacobson radical of a ring to that of a subring.

Proposition 9.22.1 Let R be a subring of a unital ring S sharing the same identity. If
R is a direct summand of S considered as an R-module, then R ∩ rad(S) ⊂ rad(R).
The same conclusion holds if there is a group G of automorphisms of the ring S such
that R consists of the elements in S fixed under the action of G.

Proof Assumefirst that R is a direct summand of S, so thatwe have a complementary
R-submodule A of R in S. Let a belong to the left ideal R ∩ rad(S) of R. Then
1 + a ∈ U (S) by Proposition9.20.21, and by the same proposition it suffices to show
1 + a ∈ U (R), which is accomplished by showing that 1 + a has a right inverse in
R. Pick b + c with b ∈ R and c ∈ A such that 1 = (1 + a)(b + c). Since 1 ∈ R and
(1 + a)b ∈ R, whereas (1 + a)c ∈ A, we get 1 = (1 + a)b.

If a ∈ R ∩ rad(S), then by Proposition9.20.21 we can write (1 + a)d = 1 for
some d ∈ S. Let α ∈ G. Then 1 = (1 + a)α(d). Now 1 + a has a left inverse in S.
Using this we get α(d) = d, so d ∈ R, and thus d ∈ rad(R). �

The following result generalizes the fact that f (rad(R)) ⊂ (rad(S) for any ring
epimorphism f : R → S, in the case when the rings are unital.

Proposition 9.22.2 Suppose we have a ring homomorphism f : R → S and finitely
many elements ai ∈ S that commute with every element of f (R) and such that

S =
∑

f (R)ai .

Then f (rad(R)) ⊂ rad(S).
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Proof By Corollary9.20.9 it is enough to show that f (rad(R))A vanishes for every
simple S-module A. Write A = Sx for some x ∈ A. Then A = ∑

f (R)ai x shows
that A is finitely generated as an R-module via f . Since A is non-trivial we have a
proper inclusion f (rad(R))A ⊂ A by Corollary9.20.20.

At the same time f (rad(R))A is an S-module because

ai f (rad(R))A = f (rad(R))ai A ⊂ f (rad(R))A,

and since A is simple as an S-module, the proper submodule f (rad(R))A must
vanish. �

From the proof above it is clear that we can dispense with the assumption that ai
should commute with f (R) as long as ai f (rad(R)) ⊂ f (rad(R))S.

One often talks about algebras over commutative rings rather than just fields.

Definition 9.22.3 By an R-algebra S over a commutative ring R we mean a ring S
together with a homomorphism R → S into the center of S.

Normally we suppress the map R → S in the definition above. Note that S
becomes an R-module, and that the ring multiplication in S is R-bilinear.

Corollary 9.22.4 Let S be an R-algebra that is finitely generated as an R-module.
Then rad(R)S ⊂ S.

If F is a field with an extension field E and R is a an algebra over F , then the
extension of scalar ring E ⊗F R is an algebra over E under multiplication uniquely
determined by (a ⊗ b)(c ⊗ d) = ac ⊗ bd. We write RE for the algebra E ⊗F R and
will regard R as a subring of RE under the identification R ∼= F ⊗F R.

Proposition 9.22.5 Suppose F is a field with an extension field E and R is a unital
algebra over F. Then R ∩ rad(RE ) ⊂ rad(R). Equality is achieved if R is a finite
dimensional algebra or if E is an algebraic extension of F. If E is a finite extension
of F then

(rad(RE ))[E :F] ⊂ E ⊗F rad(R).

Proof Picking a linear basis {xi } for the vector space E over F , we see that RE ∼=⊕
xi R and xi R ∼= R as R-modules. So R is a direct summand of RE and R ∩

rad(RE ) ⊂ rad(R) by Proposition9.22.1.
If R is finite dimensional as a vector space over F , then it is artinian, so rad(R) is

nilpotent by Proposition9.21.1. But then E ⊗F rad(R) is a nil ideal of RE , and by the
same proposition, we get E ⊗F rad(R) ⊂ rad(RE ). Thus rad(R) ⊂ R ∩ rad(RE ),
and equality is obtained by the first part of the proof.

Suppose E is a finite extension of F . Then {xi } is finite and each xi commutes
with R ⊂ RE , so rad(R) ⊂ rad(RE ) by Proposition9.22.2.

If E is an algebraic extension field of F , write E = ∪X F(X), where the union
is taken over all finite subsets X of E and F(X) is the subfield of E generated by
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X and F . By the previous paragraph we have rad(R) ⊂ rad(RF(X)) for every finite
subset X of E .

Now A ≡ ∪X rad(RF(X)) is a left ideal of RE because if a ∈ rad(RF(X)) and b ∈
rad(RF(Y )), then a + b ∈ rad(RF(X∪Y )) by the previous observation as F(X ∪ Y )

is a finite extension of F(X) and of F(Y ). And if c ∈ RE , say c ∈ RF(Z), then
ca ∈ rad(RF(X∪Z)) as c ∈ RF(X∪Z) and a ∈ rad(RF(X∪Z)).

By Proposition9.20.21 we have A ⊂ rad(RE ) if 1 + a ∈ U (RE ), but the same
proposition gives 1 + a ∈ U (RF(X)). Hence rad(R) ⊂ A ⊂ rad(RE ), and thus
rad(R) = R ∩ rad(RE ) by the first paragraph in the proof.

To prove the last assertion, let A be a simple R-module. Then the RE -module
AE ≡ E ⊗F A has a composition series of length [E : F] viewed as an R-module.
So AE viewed as an RE -module, cannot have a composition series of length greater
than [E : F]. By Corollary9.20.10 we have aAE = {0} for any a ∈ (rad(RE ))[E :F].
Say a = ∑

xi ⊗ bi with bi ∈ R. Then for any y ∈ A we have

0 =
(∑

xi ⊗ bi
)

(1 ⊗ y) =
∑

xi ⊗ bi y ⇒ bi y = 0,

which by Corollary9.20.9 tells us that bi ∈ rad(R). Thus a ∈ E ⊗F rad(R). �

The following result shows that the inclusion rad(R) ⊂ R ∩ rad(RE ) does not
hold if rad(R) is not a nilpotent ideal of R, which of course can happen for a non-
algebraic extension E of F .

Proposition 9.22.6 Let E be a non-algebraic extension of a field F. Then R ∩
rad(RE ) is a nil ideal of R for any unital algebra R over F.

Proof Let a ∈ R ∩ rad(RE ) and pick u ∈ E which is transcendental over F . By
the first part of the previous proposition applied to the extension F(u) ⊂ E , we get
a ∈ R ∩ rad(RF(u)), so to prove that a is nilpotent we might as well assume that
E = F(u) from the beginning. Since rad(RE ) is an ideal in RE and u ∈ RE , we get
1 − au ∈ U (RE ) by Proposition9.20.21. So there are

f (u) = b0 + · · · + bnu
n ∈ R[u] and g(u) = c0 + · · · + cn+1u

n+1 ∈ F[u]

with bn �= 0 and such that (1 − au) f (u)/g(u) = 1.
Hence ci = bi − abi−1 upon comparing coefficients of powers of u. Solving this

gives bi = aic0 + ai−1c1 + · · · + ci . Thus

0 = an+1c0 + anc1 + · · · + cn+1

and as bn �= 0, the ci ’s are not all zero, so a is algebraic over F and certainly over
E . Thus a is nilpotent by Proposition9.21.5. �

Proposition 9.22.7 Let E be a separable algebraic extension of a field F, and let
R be a unital algebra over F. Then rad(RE ) = {0} if rad(R) = {0}.



9.22 Radicals Under Change of Rings 409

Proof Any a ∈ rad(RE ) is a finite sum of elementary tensors with the first factors
in E . Let K be the subfield of E generated by F and these factors. Then K is a
finite field extension of F , and obviously a ∈ RK , so a ∈ rad(RK ) by the first part
of Proposition9.22.5. Since K ⊂ E , the field extension K of F is evidently also
separable. By Proposition7.8.2 we know that K is a simple extension of F generated
by a separable element z. The splitting field L = F(z1, . . . , zn) over F of theminimal
polynomial of z1 = z is a Galois extension of F ; it is a separable extension of F by
repeated application of Proposition7.8.4 since the minimal polynomial of zi over
F(z1, . . . , zi−1) divides the minimal polynomial of zi over F , and the latter is a
separable polynomial. Since L is a finite (and thus an algebraic) extension of K , we
have

rad(RK ) ⊂ rad((RK )L)

by Proposition9.22.5. Obviously (RK )L = RL , so we are done if we can show that
rad(RL) vanishes. Therefore we may from the outset assume that E is a Galois
extension of F .

Define an F-linear map f : E → F by f (x) = ∑
α(x), where we are summing

over all α ∈ G(E/F). That f (x) ∈ F is clear from the fundamental theorem of
Galois theory because

∑
βα = ∑

α for any β ∈ G(E/F). The F-linearity is imme-
diate from the definition of G(E/F). By Lemma8.1.5 it is clear that f is non-zero,
say with f (x) �= 0. In fact, it is non-degenerate in the sense that z = 0 whenever
f (yz) = 0 for all y otherwise we may pick y = xz−1. Since F is a field the map f is
also surjective. In fact, the map E → E∗ given by y �→ f (·y) is a vector space iso-
morphism because its kernel is trivial, and the dual space E∗ has the same dimension
as E . Thus to any basis {xi } of E there are elements yi ∈ E such that f (yi x j ) = δi j .

The Galois group acts on RE by α ⊗ ι. Write a = ∑
x j ⊗ a j . Then

1 ⊗ ai = 1 ⊗
∑

f (yi x j )a j =
∑

f (yi x j ) ⊗ a j =
∑

(α ⊗ ι)((yi ⊗ 1)a) ∈ R ∩ rad(RE )

since rad(RE ) is an ideal of RE invariant under all automorphisms of RE . Thus
ai ∈ rad(R) by the first part of Proposition9.22.5, so ai = 0 and a = 0. �

Theorem 9.22.8 If E is a separable algebraic extension of a field F, then rad(RE ) =
E ⊗F rad(R) for any unital algebra R over F.

Proof The inclusion rad(R) ⊂ rad(RE ) is clear from Proposition9.22.5, and since
rad(RE ) is an ideal in RE , we get

E ⊗F rad(R) ⊂ (E ⊗ 1)rad(R) ⊂ (E ⊗ 1)rad(RE ) ⊂ rad(RE ).

We evidently have a ring isomorphism

RE/(E ⊗F rad(R)) ∼= E ⊗F (R/rad(R)),
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and rad(E ⊗F (R/rad(R))) = {0} by the proposition above as rad(R/rad(R)) van-
ishes by Proposition9.20.11. Thus rad(RE ) ⊂ E ⊗F rad(R) by the same proposi-
tion. �

The following example shows that separability is essential in the previous result.

Example 9.22.9 Let F be a field of prime characteristic p that has an element not
in F p. Let a be a pth root of this element. The minimal polynomial of a divides
x p − a p, and x p − a p = (x − a)p in characteristic p. Hence the finite extension
F(a) of F is normal but not separable.

Now the Jacobson radical of the algebra F(a) over F vanishes as F(a) is a
vector space over F and is therefore semisimple. However, the Jacobson radical of
F(a) ⊗F F(a) is not trivial. As

F(a) ⊗F F(a) ∼= F(a) ⊗F F[x]/(x p − a p) ∼= F(a)[x]/(x p − a p) = F(a)[x]/(x − a)p

we see that rad(F(a) ⊗F F(a)) is the nilpotent ideal generated by (x − a)/(x − a)p.
♦

The previous proposition implies that if R is a finite dimensional semisimple alge-
bra over a field F , then the algebra RF over the algebraic closure of F is semisimple
when F is perfect, which guarantees that F is a separable extension of F . This
should be compared with Corollary9.14.10, where the algebra is generated by a
single endomorphism, and is studied from the point of view of Jordan canonical
forms.

Definition 9.22.10 An algebra over a field is absolutely semisimple if its extension
by scalars to the algebraic closure is semisimple.

Proposition 9.22.11 If R and S are finite dimensional absolutely semisimple
algebras over a field F, then R ⊗F S is semisimple.

Proof By assumption the algebras RF and SF are semisimple, so they are direct
products of matrix algebras, and so is evidently RF ⊗F SF . Thus its Jacobson radical
vanishes. But

RF ⊗F SF ∼= F ⊗F (R ⊗F S),

so rad(R ⊗F S) vanishes by Proposition9.22.5. �

9.23 Radicals of Polynomial Rings

The following result is useful.

Proposition 9.23.1 Let S be a multiplicatively closed subset of a commutative ring
R. Then any ideal of R which is maximal among the ideals that do not intersect S is
a prime ideal. In particular, such an ideal exists when S �= R by Zorn’s lemma.
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Proof Let a, b /∈ I for an ideal I maximal among all ideals that do not intersect S.
By maximality of I both I + (a) and I + (b) intersect S. If ab ∈ I then by commu-
tativity, some element of (I + (a))(I + (b)) will belong to both the multiplicative
set S and the ideal I , which is absurd. �

Definition 9.23.2 Say R is a ringwith an ideal I . Let rad I (R) denote the intersection
of the maximal ideals of R that contain I , and let NilI (R) be the set of a ∈ R such
that an ∈ I for some natural number n.

Clearly rad{0}(R) = rad(R) and Nil{0}(R) = Nil(R). While rad I (R) by Zorn’s
lemma is always an ideal for I proper, the set NilI (R) need not be an ideal in
general; it is of course when R is commutative. In unital rings maximal ideals are
prime, so for a proper ideal I in a unital ring R we have ∩P ⊂ rad I (R), where the
intersection is over the prime ideals that contain I .

Definition 9.23.3 A commutative ring is a Hilbert ring if every prime ideal is an
intersection of maximal ideals.

Proposition 9.23.4 If R is a unital commutative ring with a proper ideal I , then

NilI (R) = ∩P ⊂ rad I (R),

where we intersect over all prime ideals that contain I . The last inclusion is evidently
an equality when R is a unital Hilbert ring.

Proof If a ∈ NilI (R), then an ∈ I for some n ∈ N. Thus an ∈ P for any prime ideal
P that contains I . By repeated use of the definition of primeness in the commutative
case we get a ∈ P , so NilI (R) ⊂ ∩P .

If a /∈ NilI (R), then by the proposition above there is a prime ideal P that contains
I and does not meet the multiplicatively closed subset {an | n ∈ N} of R, so a1 /∈ P .
Thus NilI (R) = ∩P . �

Corollary 9.23.5 If R is a commutative ring, then Nil(R) is the intersection of all
prime ideals of R.

Theorem 9.23.6 Let R[X ] be the polynomial ring over a commutative unital ring
R with indeterminants in a non-empty set X. Then

rad(R[X ]) = Nil(R[X ]) = Nil(R)[X ].

In particular, the Jacobson radical of R[X ] vanishes if and only if R has no non-zero
nilpotent elements.

Proof Clearly Nil(R)[X ] ⊂ Nil(R[X ]). As R/Nil(R) has no non-zero nilpo-
tent members, neither has R[X ]/Nil(R)[X ] ∼= (R/Nil(R))[X ], so Nil(R)[X ] =
Nil(R[X ]).

Now Nil(R[X ]) ⊂ rad(R[X ]) by Proposition9.21.1. To prove the opposite
inclusion, let f ∈ rad(R[X ]), and write



412 9 Modules

f = a0 + a1s1 + · · · + ansn,

where ai ∈ R and si are members of the free abelian monoid generated by X . Pick
x ∈ X . Then 1 + x f ∈ U (R[X ]) by Proposition9.20.21. Let P be a prime ideal of
R with quotient map h : R → R/P . Extend this to a unital ring homomorphism
h : R[X ] → (R/P)[X ] which fixes the monoid elements. Then

1 + h(a0)x + h(a1)xs1 + · · · + h(an)xsn = h(1 + x f ) ∈ U ((R/P)[x]),

and since R/P is an integral domain, this is only possible if all h(ai ) = 0. So ai ∈ P ,
and ai ∈ Nil(R) by the corollary above. Thus f ∈ Nil(R)[X ]. �

Here is a kind of generalization to non-commutative rings.

Theorem 9.23.7 Consider the polynomial ring R[X ] over a unital ring R with
indeterminants in a non-empty set X. Then R ∩ rad(R[X ]) is a nil ideal in R and
rad(R[X ]) = (R ∩ rad(R[X ]))[X ]. So R[X ] has vanishing Jacobson radical if R
has no non-trivial nil ideals.

Proof Let a ∈ R ∩ rad(R[X ]) and pick x ∈ X . Then 1 − ax ∈ U (R[X ]) by Propo-
sition9.20.21, say with inverse f , so (1 − ax) f = 1. Applying to this identity the
unital ring homomorphism that evaluates all the indeterminants different from x at
zero, we get

(1 − ax)(a0 + a1x + · · · + anx
n) = 1

for some ai ∈ R and n. Comparing coefficients of x gives

a0 = 1, a1 = aa0 = a, . . . , an = aan−1 = an, 0 = aan = an+1,

so R ∩ rad(R[X ]) is a nil ideal in R.
The inclusion (R ∩ rad(R[X ]))[X ] ⊂ rad(R[X ]) is clear as rad(R[X ]) is an ideal

of R[X ]. The opposite inclusion, which remains to be proven, means that if f ∈
rad(R[X ]), then all its coefficients must also belong to rad(R[X ]). We prove this by
induction on the finite number m of indeterminants appearing in f . The case m = 0
is obvious. Suppose we have proved such a statement for the polynomial ring in
one variable over any unital ring. Picking any y ∈ X that appears in f , and writing
f = ∑

fi yi for fi ∈ R[X\{y}], we conclude that all fi belong to the Jacobson
radical of (R[X\{y}])[y] = R[X ]. The number of variables appearing in fi is less
than m. Hence, by the induction hypothesis, the coefficients in R of fi belong to
rad(R[X ]), and so do the coefficients of f .

We can therefore assume that X consists of a single element x . We assert that
if f (x) = b0 + · · · + bnxn ∈ rad(R[x]), then all bi xi ∈ rad(R[x]). This will suffice
because

bi + ibi x + · · · + bi x
i = bi (1 + x)i ∈ rad(R[x])

by Corollary9.20.7 as x �→ x + 1 defines a module automorphism on R[x], and then
by the assertion applied to this new polynomial, we get bi = bi x0 ∈ rad(R[x]).
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We prove the assertion by induction on n. It is trivially true for n = 0, and we
assume that it is true for all polynomials of degree less than n over any unital ring.

Pick any prime number p larger than n, and consider the quotient ring

S = R[u]/(1 + · · · + u p−1).

Then u p − 1 = (u − 1)(1 + · · · + u p−1) = 0 in S, where u also denotes the equiva-
lence class of u ∈ R[u] in S. For any positive integer j less than p we have [u] j = 1
in the quotient ring S/(u j − 1). This entails [u] = 1 for the unit [u] because if j > 1,
then j and p are relatively prime, so there are integers r, s such that 1 = r j + sp, and
thus [u] = [u]r j+sp = 1.Hence p1 = 1 + [u] + · · · + [u]p−1 = [1 + · · · + u p−1] =
0, so p1 belongs to the ideal (u j − 1) in S.

Since
S[x] = R[x] ⊕ uR[x] ⊕ · · · ⊕ u p−2R[x]

and u is central in S[x], we get R[x] ∩ rad(S[x]) = rad(R[x]) by Propositions9.22.1
and 9.22.2. By acting on f (x) ∈ rad(S[x]) with the module automorphism on S[x]
given by x �→ ux , we get f (ux) ∈ rad(S[x]) by Corollary9.20.7. Hence

b0(u
n − 1) + b1(u

n − u)x + · · · + bn−1(u
n − un−1)xn−1 = un f (x) − f (ux) ∈ rad(S[x])

as rad(S[x]) is an ideal. By the induction hypothesis applied to the above polynomial
over S, we get bi (un − ui )xi ∈ rad(S[x]) for i < n. Since rad(S[x]) is an ideal, we
also get bi (un−i − 1)xi = u−i bi (un − ui )xi ∈ rad(S[x]). Now p1 ∈ (un−i − 1) by
the previous paragraph, so pbi xi belongs to the ideal rad(S[x]).

Thus qbi xi ∈ rad(S[x]) also for a prime number q > n different from p. As p
and q are relatively prime, there are integers k, l such that 1 = kp + lq. Again by the
ideal property we see that bi xi = kpbi xi + lqbi xi ∈ rad(S[x]) for i < n. But since
f ∈ rad(S[x]), we also get bnxn ∈ rad(S[x]). We have proved the induction step, so
the assertion is verified, and the theorem holds. �

From the previous result we know that R ∩ rad(R[X ]) is a nil ideal of R. A natural
question is whether it is the largest nil ideal in R, that is, the sum of all nil ideals in
R. In other words, will N [X ] ⊂ rad(R[X ]) for every nil ideal N of R? When N is
nilpotent this is true because if Nn is trivial, then so is (N [X ])n , and the inclusion
holds by Proposition9.21.1. But in general this is an open problem.

We have the following analogue of the theorem above when the ring is an algebra.

Theorem 9.23.8 Let R be a unital algebra over a field F. Let F(X) be the field
of fractions of the polynomial ring F[X ] over F with indeterminants in a non-
empty set X. Consider the unital algebra R(X) ≡ F(X) ⊗F R over F(X). Then
R ∩ rad(R(X)) is a nil ideal in R and rad(R(X)) = F(X) ⊗F (R ∩ rad(R(X))).
Thus the Jacobson radical of R(X) vanishes if R has no non-trivial nil ideals.

Proof That R ∩ rad(R(X)) is a nil ideal is immediate from Proposition9.22.6 since
F(X) is a non-algebraic extension of F .
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The proof of rad(R(X)) = F(X) ⊗F (R ∩ rad(R(X))) in the one-variable case
is analogous to that of the theorem above. So we will take for granted that whenever
ai ∈ R and

∑
ai xi ∈ rad(R(x)), then ai ∈ rad(R(x)).

As for the many variable case consider a typical element f/g ∈ rad(R(X)) with
f ∈ R[X ] and a non-zero g ∈ F[X ]. We must show that the coefficients of f/g are
in rad(R(X)), but since f ∈ g rad(R(X)) ⊂ rad(R(X)), it suffices to show this for
f . As in the proof of the previous theorem we prove this by induction on the number
of variables appearing in any such f . Write f = ∑

fi x i for an x ∈ X appearing
in the expression for f , where all fi belong to the algebra R(Y ) over F(Y ) with
Y = X\{x}. Since

R(X) ∼= F(X) ⊗F(Y ) F(Y ) ⊗F R ∼= F(Y )(x) ⊗F(Y ) R(Y ) ∼= R(Y )(x),

the paragraph above yields fi ∈ rad(R(X)). As each fi have one variable less than
f , the induction hypothesis implies that their coefficients belong to rad(R(X)). �

9.24 Radicals of Groups Rings

ByMaschke’s theoremwe know that any group ring of a finite group over a field with
characteristic not dividing the order of the group is semisimple. For infinite groups
this breaks down.

Proposition 9.24.1 The group ring of any infinite group over a unital non-trivial
ring is never semisimple.

Proof Let G be an infinite group over a unital non-trivial ring R. Consider the unital
ring homomorphism f : R[G] → R given by

∑
ass �→ ∑

as .
Suppose R[G] is semisimple. Then the ideal ker f of R[G] has a complementary

left ideal A with a such that at �= 0 for some t . As (ker f )a ⊂ A ∩ ker f = {0} and
1 − s ∈ ker f for all s ∈ G, we get (1 − s)a = 0, so sa = a. Hence ast = at �= 0
for infinitely many s ∈ G, rendering an element a that does not belong to the group
ring. �

Here we shall study the weaker property of vanishing Jacobson radical. Let us
first include an elementary result of a more general nature.

Proposition 9.24.2 Let R be a unital ring and let H be a subgroup of a group G.
Then R[H ] ∩ rad(R[G]) ⊂ rad(R[H ]). If R[H ] has vanishing Jacobson radical for
any finitely generated subgroup H of G, then rad(R[G]) vanishes.
Proof Suppose a ∈ R[H ] ∩ rad(R[G]). By Proposition9.20.21 there is b ∈ R[G]
such that b(1 + a) = 1. By the same proposition we aim to remove terms from b till
b ∈ R[H ] and in such a way that we still have b(1 + a) = 1. Write a = ∑

s∈H ass
and b = ∑

t∈G bt t , where only finitely many as’s and bt ’s are non-zero. Since the
cosets of H form a partition of G, we have
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e = b(1 + a) =
∑

r∈G/H

∑

t∈r H
bt (t +

∑

s∈H
asts).

Thus, keeping only the terms in b with bt corresponding to r = e, we get the desired
inclusion.

For the last statement, if c ∈ rad(R[G]), then c ∈ R[H ], where H is the subgroup
of G generated by the finitely many group elements with non-zero coefficients in c.
Assuming that rad(R[H ]) vanishes, we get c ∈ R[H ] ∩ rad(R[G]) ⊂ rad(R[H ]) =
{0}. �

Definition 9.24.3 An involution on a ring R is an additive anti-multiplicative map
∗ : R → R such that a∗∗ = a.

The identitymap on a commutative ring is an involution. The transpose in amatrix
ring over a commutative ring is an involution, and so is the complex conjugate on
the field of complex numbers.

Proposition 9.24.4 Suppose R is a ring with an involution such that ai = 0 when-
ever

∑
a∗
i ai = 0. Then the group ring R[G] of any group G has only trivial nil left

ideals. Thus group rings over rational, real and complex numbers have no non-trivial
nil left ideals.

Proof Define the trace tr : R[G] → R to be the R-linear map that picks out the
coefficient of the unit element of the group. Define an involution on R[G] by f ∗(s) =
f (s−1)∗ for f ∈ R[G] and s ∈ G. Then tr( f ∗ f ) = ∑

f (s)∗ f (s), so by assumption
f = 0 if tr( f ∗ f ) = 0.
Now if R[G] has a non-trivial nil left ideal A, say with non-zero f ∈ A, then

g ≡ f ∗ f ∈ A is also non-zero by the first paragraph. Pick the greatest n ∈ N such
that gn is non-zero. Then (gn)∗gn = g2n = 0, so gn = 0 by the first paragraph, which
is impossible. �

Definition 9.24.5 The spectrum of an element a in a unital algebra over a field F is
the subset sp(a) of F consisting of all scalars x such that x1 − a is not invertible.

The spectrum of an element in Mn(F) consists of all its eigenvalues, which is
non-empty if the field F is algebraically closed. In the direct product FX over a set
X considered as a commutative algebra over a field F , the spectrum of an element
f : X → F is its image.
Keep in mind that the spectrum of an element referes to the algebra it is a member

of. If R is a unital subalgebra of a unital algebra S, meaning that they have the same
identity, then the spectrum of a ∈ R contains the spectrum of a ∈ S since it is easier
to find an inverse of x1 − a in S than in the smaller algebra R.

Proposition 9.24.6 If R is a unital algebra over a field, then sp(a) vanishes for
a ∈ rad(R).
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Proof Since rad(R) is a ideal in R, which is proper by the definition of maximal
ideals, none of its elements can be invertible, so 0 ∈ sp(a).

If x is a non-zero scalar, then x1 − a is invertible with inverse x−1(1 − x−1a)−1,
which exists by Proposition9.20.21. �

Remark 9.24.7 This is a digression for readers with background in functional anal-
ysis. A unital complex C∗-algebra is a complex involutive unital algebra which is
a Banach space for a submultiplicative norm that satisfies ‖a‖2 = ‖a∗a‖ for every
element. By complex function theory it follows that ‖a‖2 = sup sp(a∗a).

The Jacobson radical of a complex involutive unital subalgebra R of a unital C∗-
algebra vanishes. Indeed, if a ∈ rad(R), then a∗a ∈ rad(R) since R is involutive and
the Jacobson radical is an ideal. But then by the proposition above and the remark
prior to it, the spectrum of a∗a in the C∗-algebra is trivial, so ‖a‖ = 0 and a = 0.
This covers a fairly broad class of algebras.

Using the Haar integral with respect to the counting measure, one may complete
the group ring C[G] with involution f ∗(s) = f (s−1) to a unital C∗-algebra. Hence
the Jacobson radical of C[G] vanishes, which incidentally implies the last part of
Proposition9.24.4. ♦

We have seen that the Jacobson radical of the complex group ring of any group
vanishes. This can be generalized.

Theorem 9.24.8 Let G be a group, and let F be a non-algebraic field extension of
Q. Then the Jacobson radical of the group ring F[G] vanishes.
Proof By Zorn’s lemma there is a maximal subset X of F such that no x ∈ X is
algebraic over the subfield of F generated by Q and X\{x}. Clearly the subfield of
F generated by Q and X is then isomorphic to the field Q(X) of fractions of the
polynomial ring Q[X ], and F is an algebraic extension of Q(X).

By Theorem9.23.8 we know that Q[G] ∩ rad(Q(X) ⊗Q Q[G]) is a nil ideal of
the group ring Q[G], and that

rad(Q(X) ⊗Q Q[G]) = Q(X) ⊗Q (Q[G] ∩ rad(Q(X) ⊗Q Q[G])).

Since Q[G] has no nil ideals by Proposition9.24.4, the Jacobson radical of the ring
Q(X) ⊗Q Q[G] must therefore vanish.

Sincewe are in characteristic zero, the algebraic extension F ofQ(X) is separable,
and therefore by Proposition9.22.7, the Jacobson radical of the group ring F[G] ∼=
F ⊗Q(X) (Q(X) ⊗Q Q[G]) must also vanish. �

One might conjecture that the result above holds for the group ring over any field
of characteristic zero, that is, also for algebraic extensions of Q. Since any algebraic
extension of a field of characteristic zero is automatically separable, the conjecture
would follow from Proposition9.22.7, if one could prove that the Jacobson radical
of Q[G] vanishes for any group G. However, this has not yet been verified.

We consider now the case when the characteristic of the field is not zero.
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Definition 9.24.9 A p′-group is a group that has no elements of prime number
order p.

ByCorollary4.20.3 and Lagrange’s theorem, a group is a p′-group presicelywhen
the prime number p does not divide its order.

Proposition 9.24.10 Let F be a field of prime characteristic p. Then the group ring
of a p′-group over F has no non-trivial nil left ideals.

Proof Say G is a p′-group and assume that F[G] has a nil left ideal with a non-zero
element a = ∑

ass. By multiplying from left with a suitable group element we may
assume that tr(a) = ae �= 0. Then

tr(a p) =
∑

as1 · · · asp ,

where we sum over the set X of all tuples (s1, . . . , sp) such that s1 · · · sp = e.
The cyclic group 〈 f 〉 of order p acts on X by f · (s1, . . . , sp) = (sp, s1, . . . sp−1)

and partitions X into orbits with 1 or p elements. The tuples in an orbit with p
elements contribute to tr(a p) with the same scalar, so each such orbit produces a
scalar p times, which in characteristic p vanishes. A singular orbit consists of a tuple
with s1 = · · · = sp ≡ s. Thus s p = e. As p is prime, we get s = e since we are in a
p′-group. So we actually have only one single orbit, which then contributes with a p

e .
Thus tr(a p) = tr(a)p.

Repeated use of this identity gives tr(a pn ) = tr(a)p
n
for all n ∈ N. Eventually the

left hand side will vanish, whereas the right hand side will never vanish, and this is
absurd. �

Proposition 9.24.11 Suppose E is an algebraic extension of a field F of prime
characteristic p. If G is a p′-group, then rad(E[G]) vanishes whenever rad(F[G])
is trivial.

Proof By Proposition9.22.5, if E is a finite extension of F then

(rad(E[G]))[E :F] ⊂ E ⊗F rad(F[G]) = {0},

and the nilpotent ideal rad(E[G]) must vanish by the proposition above.
If E is not a finite extension of F , any a ∈ rad(E[G]) will belong to K [G] for

the subfield K of E generated by F and the coefficients of a. By Corollary7.2.12
the field K is a finite extension of F , and by Proposition9.22.5 we have a ∈ K [G] ∩
rad(E[G]) ⊂ rad(K [G]), and rad(K [G]) is trivial by what we have already proved.

�

Theorem 9.24.12 Suppose F is a non-algebraic extension field of Zp. Then the
group ring over F of any p′-group has trivial Jacobson radical.

Proof LetG be a p′-group. By Proposition9.24.10 we know thatZp[G] has no non-
trivial nil left ideals. Repeating the first two paragraphs in the proof of the previous
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theoremwithQ replaced byZp, we conclude that the Jacobson radical ofZp(X) ⊗Zp

Zp[G] vanishes. Applying the proposition above to the algebraic extension F of
Zp(X), we get the desired result. �

One might conjecture that the result above holds for any field of prime charac-
teristic p, that is, also for algebraic extensions of Zp. Since any algebraic extension
of Zp is automatically separable, the conjecture would hold by Proposition9.22.7,
if the Jacobson radical of Zp[G] vanishes for any p′-group G; but this is unsettled
despite various results pointing to such a property.

9.25 Units in Group Rings

It is easy to see that the units of the monoid ring over a unital ring R of a free monoid
are the units of R. For group rings the situation is more complicated since group
elements are obviously also units.

Definition 9.25.1 In the group ring R[G] of a group G over a unital ring R the
trivial units are the elements as with a ∈ U (R) and s ∈ G.

Example 9.25.2 If 〈x〉 is the cyclic group of order 5, then f = 1 − x2 − x3 and
g = 1 − x − x4 are non-trivial units in the group ring of 〈x〉 over Z with f g = 1. ♦

The presence of torsion in a group also prevents the group ring even over a field
from being a domain because if a is a group element of order n, then

(a − 1)(an−1 + · · · + 1) = an − 1 = 0.

Proposition 9.25.3 Group rings over domains of torsion-free abelian groups are
domains with only trivial units.

Proof Since one or two elements in a group ring has only finitely many non-zero
coefficients, we may by restricting to the subgroup generated by the corresponding
group elements, assume that the group in question is finitely generated. Since there
is no torsion we may assume that it is a finitely generated free abelian group, and
then its group ring is the ring of Laurent polynomials in finitely many indeterminants
over a domain. By induction we can reduce to one indeterminant, and in this case a
simple degree-argument will do. �

By Theorem4.34.8 we know that among abelian groups the torsion-free groups
are exactly the ordered groups. The following result is therefore a generalization of
the proposition above.

Proposition 9.25.4 The group ring over a domain of an ordered group has only
trivial units and is a domain.
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Proof Let a and b be two non-zero elements of the group ring in question, say with
s and t the least group elements with non-zero coefficients as and bt in a and b,
respectively. Since the coefficients belong to a domain, in ab the least group element
with non-zero coefficient asbt is st . So ab �= 0 and the group ring is a domain. Also,
if ab = 1 = ba, we can only have one non-zero term in a and in b, and st = e = ts
and asbt = 1 = btas . So a and b are trivial units. �

Obviously the Jacobson radical of any domain vanishes and there are no non-trivial
nilpotent elements in a domain. The following converse result is less obvious.

Proposition 9.25.5 Suppose the group ring R[G] of a non-trivial group over a non-
trivial unital ring has only trivial units. Then R[G]has nonon-zero nilpotent elements
provided R has no non-zero nilpotent elements and G has no elements of order two.
And R[G] has vanishing Jacobson radical unless |G| = |R| = 2.

Proof Let a ∈ R[G]with a2 = 0. The first claim follows if we can show that a = 0.
Since 1 − a is a unit with inverse 1 + a, there are by assumption s ∈ G and b ∈ U (R)

such that 1 − a = bs. If bs �= 1, then as 0 = a2 = 1 − 2bs + b2s2 and s2 �= 1 by
assumption, we get a contradiction. Thus a ∈ R and a = 0 as R has no non-zero
nilpotent elements.

For the second claim, first note that if |G| = |R| = 2 with a generator s ∈ G, then
R[G] = {0, 1, s, s + 1} and rad(R[G]) = {0, s + 1}.

So assume that either |G| or |R| is greater than two. Let a ∈ rad(R[G]). By
Proposition9.20.21 we know that 1 − a ∈ U (R[G]), so by assumption 1 − a = bs
for some s ∈ G and b ∈ U (R).

If |R| ≥ 3, there is a non-zero c ∈ R with c �= 1. Again by Proposition9.20.21
the element 1 − ca = 1 − c + cbs is a unit, and it will be non-trivial unless s = 1.

If |G| ≥ 3, there is t ∈ G with t �= 1 and t �= s−1. Now 1 − at = 1 − t + bst is
a non-trivial unit unless s = 1.

In either case a ∈ R. But then for any r ∈ G with r �= 1, the unit 1 − ar must be
trivial, so a = 0. �

Corollary 9.25.6 The group ring over a domain of a non-trivial ordered group has
vanishing Jacobson radical.

Proof This is evident from the previous two propositions. �

We have the following satisfactory situation for abelian groups.

Theorem 9.25.7 Let F be a field and let G be an abelian group. Then F[G] has
vanishing Jacobson radical when F has characteristic zero. When F has prime
characteristic p, then F[G] has vanishing Jacobson radical if and only if G is a
p′-group.

Proof If the characteristic of F is p and F[G] has vanishing Jacobson radical, then
G must be a p′-group, because if G has an element s of order p, then by abelianess
of G, the left ideal F[G](s − 1) is nilpotent as
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(s − 1)p = (s p − 1)(1 + · · · + s p−1) = 0.

Thus {0} �= F[G](s − 1) ⊂ rad(F[G]) by Proposition9.21.1.
Assume next that F has characteristic zero, or that it has characteristic p and that

G is a p′-group. By Proposition9.24.2 we may assume that G is finitely generated.
Then by the fundamental theorem for finitely generated abelian groups, we can write
G = K × H , where K is a finite torsion group and H is a free abelian group of
finite rank. Since the characteristic of F does not divide the order of K , we know
that R = F[K ] is semisimple by Maschke’s theorem. Thus R ∼= F1 × · · · × Fn for
suitable fields Fi as R is commutative. Evidently F[G] ∼= R[H ], and

F1[H ] × · · · × Fn[H ] → R[H ]; (as1s1, . . . , asn sn) �→ as1 · · · asn s1 · · · sn
is an isomorphism. Hence by Proposition9.20.4 it suffices to see that the Jacobson
radical of each Fi [H ] vanishes, and this is clear from Proposition9.25.3. �

Wewill presently show that if the group ring of a torsion free-group over a domain
has only trivial units, then the group ring itself is a domain.

Let H be a subgroup of a group G, and let R be a unital ring. Under left- and
right multiplication both R[G] and R[H ] are obviously R[H ]R[H ]-bimodules, and
the projection map f : R[G] → R[H ] given by

f

(
∑

s∈G
ass

)

=
∑

s∈H
ass

is clearly an R[H ]R[H ]-bimodule map.

Lemma 9.25.8 Let notation be as in the previous paragraph. If A is a left ideal of
R[G], then A ⊂ R[G] f (A). Thus f (A) is non-trivial when A is non-trivial.

Proof WriteG = ∪x∈X xH for a set X of coset representatives. Thus for a ∈ A there
are ax ∈ R[H ] such that a = ∑

x∈X xax . Multiplying this from left by x−1 and using
the definition of f , we get ax = f (x−1a) ∈ f (A) since A is a left ideal. �

Proposition 9.25.9 Let R be a unital ring, let G be a group and let H be the
subgroup of all elements having finitely many distinct conjugates. Let f be the R-
linear projection map R[G] → R[H ] that fixes the elements of H and kills those in
G\H. Then f (a) f (b) = 0 for any a, b ∈ R[G] with aR[G]b trivial.

Proof Since f (a) f (b) = f ( f (a)b) by the bimodule property of f , let us assume
f (a)b �= 0 and derive a contradiction. Fix s ∈ G having a non-zero coefficient in
f (a)b. Pick a finite set F of elements in G implementing a conjugation whenever
there is one between group elements having non-zero coefficients in f (a) − a and s
times the inverse of those with non-zero coefficients in b.

Form the intersection K = ∩N (t) over the finitely many t ∈ H having a non-zero
coefficient in f (a). Then [G : K ] < ∞ by the assumption on H . Let u ∈ K . Since
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aR[G]b = {0}, we have f (a)b = u( f (a) − a)u−1b, so s = uvu−1w for some v and
w having non-zero coefficients in f (a) − a and b, respectively. So sw−1 = xvx−1

for some x ∈ F . Hence u = x(x−1u) ∈ xN (v) and K ⊂ ∪ xN (v), where the union
is over x ∈ F and the finitely many v with non-zero coefficients in f (a) − a. As G
is a finite union of K -cosets, we see that G is finite union of N (v)’s each having
infinite index in G as v ∈ G\H , and this contradicts Proposition4.4.4. �

Theorem 9.25.10 The group ring over a domain of a torsion-free group is a domain
if it has no non-zero nilpotent elements.

Proof Let R be a domain andG a torsion-free group such that R[G] has no non-zero
nilpotent elements. If R[G] is not a domain, there are non-zero elements a, b ∈ R[G]
such that ba = 0. Then for any c ∈ R[G]wehave (acb)2 = 0, soacb = 0 since R[G]
has no non-zero nilpotent elements.

Let H be the subgroup of G of all elements having finitely many distinct conju-
gates, and let f be the R-linear projectionmap R[G] → R[H ] that fixes the elements
of H and kills those in G\H . Note that H is abelian by Corollary4.29.5 and hence
R[H ] is a domain by Proposition9.25.3.

Since b �= 0we have f (R[G]b) �= 0 by the previous lemma, so there is b′ ∈ R[G]
with f (b′b) �= 0. Similarly, there isa′ ∈ R[G]with f (aa′) �= 0.Yet f (aa′) f (b′b) =
0 by the proposition above as aa′b′b = 0 by the first paragraph. This contradicts the
fact that R[H ] is a domain. �

Corollary 9.25.11 The group ring over a domain of a torsion-free group is a domain
if it has only trivial units.

Proof Since domains cannot have non-zero nilpotent elements, the corollary is
immediate from the theorem above and Proposition9.25.5. �

Remark 9.25.12 Here we will use elementary functional analysis and complex
function theory to conclude that the Jacobson radical of any complex unital algebra
A is trivial if it is a subalgebra of a unital Banach algebra A.

Suppose we have a non-zero a ∈ rad(A), so 1 − xa ∈ U (A) for any x ∈ C by
Proposition9.20.21. For any norm bounded functional g on Awe can therefore define
a complex function f : C → C by f (x) = g((1 − xa)−1).

This function is entire. To see this first note that ‖a(1 − xa)−1‖ �= 0 since

0 < ‖a‖ = ‖a(1 − xa)−1(1 − xa)‖ ≤ ‖a(1 − xa)−1‖ · ‖(1 − xa)‖

by submultiplicativity of the norm. Then for any y ∈ Cwith |y| < ‖a(1 − xa)−1‖−1

we have by recognizing a Neumann series, that

(1 − (x + y)a)−1 = ((1 − xa)(1 − ya(1 − xa)−1))−1 = (1 − xa)−1
∞∑

n=0

(ya(1 − xa)−1)n

with convergence in norm. Hence
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f (x + y) =
∞∑

n=0

g(an(1 − xa)−n−1) yn

by linearity and continuity of g. This shows that f is holomorphic on the entire
complex plane.

When |x | < ‖a‖−1, then by recognizing more Neumann series, we have

|x f (x)| ≤ |x | · ‖g‖ · ‖
∞∑

n=0

(xa)n‖ ≤ |x | · ‖g‖
∞∑

n=0

‖xa‖n = |x | · ‖g‖ (1 − |x | · ‖a‖)−1,

which is zero for x = 0. So we have an entire complex function x �→ x f (x) that is
identically zero by Liouville’s theorem, which is a contradiction due to the richness
of bounded functionals supplied by the Hahn–Banach theorem. ♦

9.26 Division Rings

In view of Theorem9.17.11 it is important to understand division rings well. The
theory of division rings is rich and uses both field theory and group theory. This
is due to the facts that the center Z(R) of a division ring R is a field, and that its
non-zero elements R∗ is a group under multiplication. The following beautiful result
illustrates this interplay.

Theorem 9.26.1 Finite division rings are fields. In particular, finite unital subrings
of division rings are fields.

Proof The center of a finite non-trivial division ring R is a finite field, say with
cardinality m ≥ 2 as it must be a power of its characteristic. Let n be the dimension
of R as a vector space over its center. Suppose n ≥ 2.

The class formula for the finite group R∗ is

|R∗| = Z(R∗) +
∑

a∈D
[R∗ : N (a)],

where D is a subset of R∗ that contains exactly one element from each non-single
conjugacy class. Let k(a) be the dimension of N (a) ∪ {0} as a vector space over the
center of R, so k(a) is less than n and divides n. The class formula becomes

mn − 1 = m − 1 +
∑

a

(mn − 1)/(mk(a) − 1).

Since k(a) divides n, we have

xn − 1 = (xk(a) − 1) fa(x)�n(x)
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for some fa ∈ Z[x]. Thus m − 1 is divisible by the cyclotomic polynomial �n

evaluated at m. So
|�n(m)| =

∏
|m − b| ≤ m − 1,

where b ranges over all primitive roots of xn − 1. As m ≥ 2, geometrically it is
easy to see that |m − b| > m − 1 ≥ 1 for any complex number b on the unit circle
different from 1. But for n ≥ 2 no primitive roots are 1, which contradicts the last
formula above. Hence n must be one, so R coincides with its center and is a field.

For the last statement in the theorem, if a �= 0 belongs to a finite subring S of
R, we may assume that an = am for some natural numbers n > m. Then a−1 =
an−m−1 ∈ S, so S is a finite division ring, and is therefore a field. �
Corollary 9.26.2 Given a division ring R of positive characteristic, then any finite
subgroup of R∗ is cyclic.

Proof The subring S of R generated by the subgroup G in question and the prime
field of R is finite as the characteristic of R is positive. By the theorem above S is a
field. Then G, being a subgroup of S∗, must be cyclic. �

The corollary breaks down for division rings R of characteristic zero, but the
possible finite subgroups of R∗ can be characterized also in this case.

Example 9.26.3 Thequaternions H is isomorphic toR1 ⊕ Ri ⊕ R j ⊕ Ri j as rings,
where

1 =
(
1 0
0 1

)

, i =
(
i 0
0 −i

)

, j =
(
0 −1
1 0

)

,

so i2 = −1 = j2 and i j = − j i . It is a division ring of characteristic zero, in fact,
a real division algebra over its center, and H∗ has the finite non-cyclic subgroup
{±1,±i,± j,±i j}. ♦
Theorem 9.26.4 Any real finite dimensional division algebra is either isomorphic
to R or C or H.

Proof Suppose R is such a division algebra. We may assume that its dimension as a
vector space over R is greater than one. Since this dimension is finite, the elements
of R are algebraic over R in the sense that the field R[a] is an algebraic extension of
R for any a ∈ R.

Pick a ∈ R\R. Then R[a] is a proper algebraic extension of R, and since C is
algebraically closed, it must be a subfield of C. But [C : R] = 2, so R[a] ∼= C. Fix
a copy of C with an i in R, and view R as a vector space over C.

Let R+ = {b ∈ R | bi = ib} and R− = {b ∈ R | bi = −ib}. Now R+ ∩ R− = {0}
and

b = (2i)−1(ib + bi) + (2i)−1(ib − bi) ∈ R+ + R−

for any b ∈ R, so R = R+ ⊕ R− as complex vector spaces. By definition C ⊂ R+.
Any b ∈ R+ is a root of a real polynomial, so C[b] is an algebraic extension field of
C. Thus C[b] = C as C is algebraically closed, and R+ = C.
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Wemay assume that R− is non-trivial. Fix a non-zero element c ∈ R−. As d �→ dc
is a C-linear injection from R− to R+, the dimension of R− is 1 as a complex vector
space. So R has real dimension four.

Since c is algebraic over R, we must have c2 ∈ R + Rc, and since also c2 ∈ C,
we get c2 ∈ R. If c2 > 0, then c2 = r2 for r ∈ R. But then c = ±r ∈ R, which is
impossible. So c2 < 0. Then c2 = −r2 for some r ∈ R∗. Put j = c/r . Then j2 =
−1 = i2 and i j = − j i , so R is isomorphic as an algebra to R1 ⊕ Ri ⊕ R j ⊕ Ri j .

�
The division ring in the above theorem need not be finite dimensional over R,

all we needed was that its elements were algebraic over R. Recall that an algebra is
algebraic if its elements are algebraic over the underlying field. Note that an algebraic
unital algebra with no zero-divisors is automatically a division algebra. Indeed, any
non-zero element a of such an algebra over a field F will be a root of a polynomial.
Cancel a sufficiently many times so that a f (a) is a non-zero element b ∈ F for a
polynomial f ∈ F[x]. Then b−1 f (a) belongs to the algebra and will be the inverse
of a, so the algebra is a division ring.

Proposition 9.26.5 Elements of a division ring that commute with all commutators
of the ring belong to its center. In particular, if the commutators are central, then the
division ring is a field. A non-commutative division ring is generated as a division
ring by its center and its commutators.

Proof Let R be a division ring. If a /∈ Z(R), then ab �= ba for some b ∈ R. The
identity

a(ab) − (ab)a = a(ab − ba)

contradicts the first statement in the proposition, and it verifies the third statement.
�

Definition 9.26.6 An additivemap δ on a ring R is a derivation of the ring if δ(ab) =
δ(a)b + aδ(b). Themap δa : R → R given by δa(b) = ab − ba is a derivation called
an inner derivation.

Proposition 9.26.7 Suppose R is a division ring with characteristic different from
2. If S is a proper division subring of R that is invariant under the inner derivations
of R, then S ⊂ Z(R).

Proof We claim that any element a in the complement of S must commute with any
b ∈ S. To see this, note that

2aδa(b) = δ2a(b) + δa2(b) ∈ S.

If δa(b) is non-zero, then twice this element can be inverted in S, so a ∈ S, which is
impossible.

If c ∈ S∗, then both a and ac are in the complement of S, so they must commute
with b by the previous argument. Hence b commutes with c = a−1ac. All in all
b ∈ Z(R), so S is in the center of R. �
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Lemma 9.26.8 Suppose a is a non-central torsion element of a division ring R with
positive characteristic. Then there exists c ∈ R∗ such that cac−1 = an �= a for some
n ∈ N. This can moreover be done with a commutator c in R∗.

Proof Let F be the field generated by a, so |F | = pm for some prime number p,
and a pm = a. Since a is not central the inner projection δa is non-zero on R, but zero
on F , so it is F-linear on R considered as a vector space over F . We will show that
δa has an eigenvector.

Write δa = λ − ρ, where λ, ρ : R → R are F-linear maps given by λ(b) = ab
and ρ(b) = ba. Since λ and ρ commute, we get in characteristic p that

δ pm
a (b) = (λ − ρ)p

m
(b) = λpm (b) − ρ pm (b) = a pmb − ba pm = ab − ba = δa(b).

Consider the factorization
x pm − x =

∏

b∈F
(x − b),

which holds by Proposition7.7.2. This gives

0 = δ pm
a − δa =

∏

b∈F∗

(δa − b) · δa

and as δa �= 0, the map δa − b is not injective for some b ∈ F∗. So for some c ∈ R∗
we have δa(c) = bc, which says that c is an eigenvector of δa with eigenvalue b ∈ F∗.

As ac − ca = bc, we get cac−1 = a − b ∈ F\{a}. Now a and cac−1 have the
same order in the finite cyclic group F∗, so by Proposition4.7.4 they generate the
same cyclic subgroup. Hence cac−1 = an for some n ∈ N.

Replacing c by the commutator ac − ca �= 0 we still get cac−1 = an �= a. �

Theorem 9.26.9 A division ring is a field if every non-zero commutator has finite
order.

Proof If the center of such a division ring R is not all of R, there is by Proposi-
tion9.26.5 a commutator a /∈ Z(R). If R does not have characteristic 2, then as both
a and 2a are non-zero commutators, by assumption they have a common finite order
m, and

1 = (2a)m = 2mam = 2m .

This shows that R has positive characteristic. Since a is a non-central torsion element,
the lemma above yields a commutator c ∈ R∗ such that cac−1 = an �= a for some
n ∈ N. Since c is a non-zero commutator, by assumption it has finite order. Thus a
and c generate a finite subgroup of R∗, which by Corollary9.26.2 is cyclic, and this
contradicts cac−1 �= a. �

Corollary 9.26.10 If R is an infinite division ring with center F, then the division
subring generated by F and an element a of R is contained in an infinite subfield of
R. In particular, the centralizer {b ∈ R | ab = ba} of a in R is infinite.
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Proof Wemay assume that F �= R, that a /∈ F , and that the subring F(a) generated
by F and a is finite. By the lemma above there is c ∈ R∗ such that aca−1 = an �= a
for some n ∈ N. Since a has finite order the element cn commutes with a for some
n ∈ N. The division ring generated by a and cn and F is therefore a field E which
clearly contains F(a). And E is infinite because if c had finite order, then c and
a would generate a finite subgroup of R∗, and such a group would be cyclic by
Corollary9.26.2. This contradicts cac−1 �= a. �

Corollary 9.26.11 Any algebraic division algebra over a finite field F is an
algebraic field extension of F.

Proof The field generated by F and any non-zero element a of the division algebra is
finite, so a has finite order. Since this holds for all non-zero elements of the division
ring, it must certainly hold for non-zero commutators. By the theorem above the
division ring is commutative, and is thus an algebraic field extension of F . �

Thus algebraic division algebras over finite fields and over R are well understood.
Finite dimensional algebraic division algebras over Q have been classified, whereas
the situation for infinite dimensional ones is more open.

Definition 9.26.12 Elements of the type a−1b−1ab for invertible elements a, b of a
ring are called multiplicative commutators of the ring.

Proposition 9.26.13 Let R be a division ring. The center of R consists of all ele-
ments that commute with the multiplicative commutators of the ring. Thus if the
multiplicative commutators of R belong to Z(R), then R is a field. If S is a proper
division subring of R such that S∗ is a normal subgroup of R∗, then S ⊂ Z(R).
Any division ring is generated by the conjugates of any non-central element. If R is
non-commutative, it is generated as a division ring by its multiplicative commutators.

Proof Any c ∈ R that commutes with all multiplicative commutators of R and
satisfies ca �= ac for some a ∈ R contradicts the identity

a(a−1cac−1 − b−1cbc−1) = 1 − b−1cbc−1

with b = a − 1. This proves the first two claims.
Any a ∈ R\S and c ∈ S that do not commute will contradict the identity

a(a−1ca − b−1cb) = c − b−1cb

with b = a − 1. So such a and c must commute. If d ∈ S∗, then as ad /∈ S, we
conclude from the previous argument that d = a−1ad must commute with c. So
c ∈ Z(R) and S ⊂ Z(R).

If T is the division subring of R generated by the conjugates of a non-central
element r of R, then T∗ is a normal subgroup of R∗ since for any s ∈ R∗, the set
s−1T s is a division ring that will contain all conjugates of r , so T ⊂ s−1T s and
sT s−1 ⊂ T . Since r /∈ Z(R), the previous paragraph tells us that T = R.
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Suppose R is non-commutative. The group of non-zero elements of a division
subring of R that is generated by the multiplicative commutators of R is obviously
normal in R∗. The subring must be all of R since R is non-commutative, so there are
non-central multiplicative commutators by the second statement in the proposition,
and then the third statement forbids the subring to be proper. �

Theorem 9.26.14 A division ring is a field if and only if its multiplicative group is
nilpotent.

Proof If the division ring R is a field, then R∗ is abelian and nilpotent.
Conversely, if R∗ is nilpotent but non-abelian, then we may assume that there

is c /∈ Z(R) such that d−1cdc−1 ∈ Z(R∗) for every d ∈ R∗. Since c /∈ Z(R), there
is a ∈ R such that ca �= ac. This contradicts the first identity in the proof of the
proposition above since that identity forces a to be in the center of R. �

Proposition 9.26.15 If S is a proper division subring of a division ring R, then R
is finite if and only if R∗/S∗ is finite.

Proof Let u, v be right S-independent vectors in R, and define f : S → R∗/S∗ by

f (a) = (u + va)S∗.

This map is injective because if (u + va)S = (u + vb)S, then u + va = (u + vb)c
for some c ∈ S, so c = 1 and a = bc = b. If R∗/S∗ is finite, then S and hence R
must therefore be finite. �

Definition 9.26.16 If S is a division subring of a division ring R, then an S-conjugate
of a ∈ R is an element in R of the form bab−1 for b ∈ S∗.

Now such a ring S acts by conjugation on the set of S-conjugates of a, and the
isotropy subgroup of this transitive action is T∗, where T is the division subring of
S consisting of elements that commute with a. Thus the set of S-conjugates of a is
in one-to-one correspondence with S∗/T∗. The following result is then immediate.

Corollary 9.26.17 If a division subring S of a division ring R is infinite, then either
there is only one S-conjugate of a ∈ R, or there are infinitely many.

Corollary 9.26.18 A non-central element of a division ring has infinitely many
conjugates.

Proof A division ring R with a non-central element a is infinite by Theorem9.26.1,
and there cannot be only one R-conjugate of a. By the corollary above a must have
infinitely many conjugates. �



Chapter 10
Appendix

For cultural reasons, out of pure curiosity, we include here some classical results
from number theory that are a little bit beside the main focus of the book, such as
some analytic number theory, and the transcendentality of e and π , plus two results
by Liouville and Thue.

10.1 The Function π(x) for Large x

Obviouslywewant to studyπ(x) for large x . The infinity of the number of primes can
be expressed as limx→∞ π(x) = ∞, but there are more subtle ways of investigating
the behavior of a function at infinity; you can e.g. compare it to known functions.

To get an idea of this behavior, let us provide a probabilistic argument. Looking
for primes not greater than x , half of them are odd, and then 2/3 of these are not
divisible by 3 etc., so we arrive at the approximation formula

π(x) ≈ x
π(x1/2)∏

n=1

(1 − 1/pn),

which should be compared with the exact formula of Legendre.

Example 10.1.1

π(25) ≈ 25

(
1 − 1

2

) (
1 − 1

3

) (
1 − 1

5

)
≈ 6, 7
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and

25

(
1 − 1

2

)(
1 − 1

3

)(
1 − 1

5

)
= 25 − 25

2
− 25

3
− 25

5
+ 25

2 · 3 + 25

2 · 5 + 25

3 · 5 − 25

2 · 3 · 5 .

Most notably, we no longer truncate with the greatest integer function.

For large x we actually get a reasonable approximation. For instance, we know
that π(100) = 25 and according to tables π(1000) = 168, while the formula gives
respectively 23 and 153 up to the closest integers.

Since

1

2
ln x =

∫ x1/2

1

1

t
dt ≈

[√x]∑

n=1

1

n

and each n ≤ √
x can, by the fundamental theorem of arithmetic, be written uniquely

as a product of primes not exceeding
√
x , we see that for large x , the number 1

2 ln x
is roughly less than

∞∑

s1=···=su=0

1

ps11 · · · psuu =
u∏

k=1

(1 − 1/pk)
−1 ≈ x/π(x),

where u = π(
√
x), and we have used the summation formula for geometric series

together with rearrangement of terms under absolute convergence. Thus we see that
π(x) is approximately less than 2x/ ln x , if we buy the somewhat fishy probabilistic
argument.

Chebyshev proved the following estimates by honest methods.

Theorem 10.1.2 There exist constants 0 < A < 1 < B such that

A
x

ln x
< π(x) < B

x

ln x

for all x sufficiently large.

This result was soon subsumed in the famous prime number theorem.

Theorem 10.1.3

lim
x→∞

π(x)

x/ ln x
= 1.

So asymptotically there are x/ ln x primes less than x .
For example, 100/ ln 100 = 21, 714... and 1000/ ln 1000 = 144, 764..., which

is not too bad. The approximation does of course improve with larger x , but not
impressively fast. According to tables π(100000000) = 5761455 which should be
compared with 100000000/ ln 100000000 = 5428681, 024....

Another way of phrasing the prime number theorem is to say that statistically,
among the first n natural numbers with n large, only 1 in ln n numbers is a prime
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number. This means roughly speaking that the probability of a randomly picked
natural number being prime, is inverse proportional to its number of digits.

So prime numbers occur less and less frequently as we wander along the path to
infinity. This seems intuitively correct since there are more ways large numbers can
be decomposed into an increasing number of building blocks.

Since by the prime number theorem π(x)
x ln x tends to 1 as x → ∞, the fraction

π(x)
x must tend to zero equally fast as ln x tends to infinity. We will presently prove

the following much softer result:

Theorem 10.1.4

lim
x→∞

π(x)

x
= 0.

Or put differently, the prime numbers are sowidely spaced at large that the average
number of themwithin an interval stretching from the origin tends to zero as the length
of the interval goes to infinity.

One can prove this theorem by a careful inspection of Legendre’s formula, but
we rather give a proof using techniques of Chebyshev.

Proof Consider an integer n > 1. Observe that a prime number p divides n! if and
only if p ≤ n. So any prime number p ∈ 〈2n−1, 2n] divides 2n! and cannot divide
2n−1!. But then the binomial coefficient

(
2n

2n−1

)
= 2n!

2n−1!(2n − 2n−1)! = 2n!
2n−1!2n−1!

will also be divisible by p as this prime number sits as a factor in the nominator and
not in the denominator. Therefore the product of all distinct primes p ∈ 〈2n−1, 2n]
has to divide this binomial coefficient, which obviously means that this product is
smaller than the binomial coefficient itself. The number of factors in this product is
π(2n) − π(2n−1), and the product will be larger than the one where all the primes
are replaced by their lower bound 2n−1. At the other extreme the binomial coefficient
under consideration occurs in Newton’s expansion formula for (1 + 1)2

n
and hence

must be smaller than the latter. In conclusion we get the inequality

(2n−1)π(2n)−π(2n−1) < 22
n
,

which for the exponents of 2 on each side means that

π(2n) − π(2n−1) <
2n

n − 1
.

Hence

π(22m) − π(22) =
2m∑

n=3

(π(2n) − π(2n−1)) <

2m∑

n=3

2n

n − 1
,
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and trivially π(22) < 22, so

π(22m) <

2m∑

n=2

2n

n − 1
=

m∑

n=2

2n

n − 1
+

2m∑

n=m+1

2n

n − 1
≤

m∑

n=2

2n +
2m∑

n=m+1

2n

m
,

having replaced the denominators in the last two sums by the smallest ones, namely
1 and m, occurring in the sums. Since

∑k
r=0 2

r = 2k+1 − 1 < 2k+1, and 2m+1 <

22m+1/m as m < 2m , we therefore get

π(22m) < 2m+1 + 22m+1/m < 2 · 22m+1/m = 22m · 4/m.

Now every real number x ≥ 2 obviously belongs to some 〈22m−2, 22m] for a unique
natural number m since such increasingly larger intervals partition the segment of
the real axis stretching from 1 to infinity. But then

π(x)/x < π(22m)/22m−2 < 16/m,

which clearly tends to zero as x and subsequently m goes to infinity. �

The following result, known as Bertrand’s postulate, is obtained using similar
techniques.

Theorem 10.1.5 For any integer n larger than 1, the interval 〈n, 2n〉 will always
contain a prime number.

In the discussion prior to Chebyshev’s result we incidentally proved, resorting
to the divergence of the harmonic series, that the product

∏
(1 − 1/p)−1 over the

primes is infinite. This gives the following result by Euler:

Proposition 10.1.6 The sum
∑

1/p over all primes diverges.

Proof Let S = ∑
1/p. If we take the logarithm of the corresponding product

∏
(1 −

1/p)−1 and Taylor expand around 1, we get

ln
∏

p

(1 − 1/p)−1 = −
∑

p

ln(1 − 1/p) = S +
∑

p

∞∑

n=2

1/npn

< S +
∑

p

∞∑

n=2

1/pn < S +
∞∑

m=1

1/m2

as ∞∑

n=2

1/pn = p−2(1 − 1/p)−1 = 1

p(p − 1)
<

1

(1 − p)2
.

This is only possible if S is infinite because
∑∞

m=1 1/m
2 is finite. �
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Thedivergence of
∑

1/p not only shows in yet anotherway that there are infinitely
many primes (there exist more than a dozen of proofs of both results), but this
divergence also suggests that the primes are denser than the squares.

It is in fact conjectured that for any natural number n > 1, there exists a prime
number between n2 and (n + 1)2.

The following result by Brun shows that there are infinitely fewer twins than
primes.

Theorem 10.1.7 The sum of the reciprocals of all twins is finite.

10.2 The Riemann Zeta Function

Much of what has been said is tied in with the Riemann zeta function

ζ(s) =
∞∑

n=0

1/ns .

Euler considered the zeta function as a function of a real variable, and got the
famous product formula

ζ(s) =
∏

(1 − 1/ps)−1

relating the zeta function to the prime numbers by the following simple procedure:
Divide ζ(s) by 2s and subtract this from ζ(s) to obtain

(1 − 1/2s)ζ(s) = 1 + 1/3s + 1/5s + · · · .

Next, dividing this identity by 3s and subtracting from the same identity gives

(1 − 1/2s)(1 − 1/3s)ζ(s) = 1 + 1/5s + 1/7s + 1/11s + · · · .

Continuing this way there will eventually be no terms left on the right hand side
except 1, and we arrive at the desired formula

∏
(1 − 1/ps)ζ(s) = 1.

Euler did not let reservations about convergence get in the way for clever arguments
and great results. He has of course been credited many results which he proved only
formally, i.e. by disregarding problems with limits, a notion that was not properly
pinned down at the time, so he could hardly be blamed. Also formal calculations can
sometimes be an advantage because they bring out the essence in an argument, and
are often valid in much greater generality.
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It should be noted that Euler’s argument for the product formula reminds a lot of
Eratosthenes sieve, in that first all the terms of the zeta function with n divisible by
2 are discarded, then those terms with n divisible by 3 are removed, and so on. It
is also striking that this derivation does not use directly the fundamental theorem of
arithmetic, which is perhaps the most commonway of deducing the product formula:
Every n will appear exactly once in a typical term 1/ns of the infinite product

∏
(1 − 1/ps)−1 =

∏
(1 + 1/ps + 1/p2s + 1/p3s + · · · ),

as is readily seen by multiplying out the latter product.

10.3 Bernoulli Numbers

Euler solved Basel’s problem by showing that

∞∑

m=1

1/m2 = π2/6.

In fact, he calculated the zeta function ζ(s) for every even natural number, not
only for s = 2. His calculation was rather formal. He argued that just like any monic
polynomial in x can be decomposed into its irreducibles x − α formed by its complex
roots α, so can an analytic function like

sin x = x − x3/3! + x5/5! − · · ·

be factored into similar bits, being so to speak a polynomial of infinite degree having
infinitely many roots. Now sin x equals zero exactly when x is an integer multiple
of π , so we therefore get the decomposition

sin x = x
∞∏

n=1

(1 − (x/nπ)2).

Taking the logarithm of this infinite product and differentiating termwise, we get

cot x = (ln(sin x))′ =
(
ln x +

∞∑

n=1

ln(1 − (x/nπ)2)

)′
= 1

x
− 2x

π2

∞∑

n=1

1

n2
(1 − (x/nπ)2)−1.

Inserting (1 − (x/nπ)2)−1 = ∑∞
m=0(x/nπ)2m and swapping summation under

absolute convergence yields
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x cot x = 1 − 2
∞∑

m=1

( ∞∑

n=1

1/n2m
)
x2m/π2m .

On the other hand

x cot x = i x
eix + e−i x

eix − e−i x
= i x + 2i x

e2i x − 1
= i x +

∞∑

m=0

Bn(2i x)
n/n!,

where Bn are the Bernoulli numbers.

Definition 10.3.1 Let Bn be the numbers determined by the identity

∞∑

n=0

Bnz
n/n! = z/(ez − 1).

Comparing coefficients of powers of x in the two expressions above for x cot x
gives Euler’s formula, which has later been proved more rigorously:

Proposition 10.3.2 The formula

∞∑

n=1

1/n2m = (−1)m+122m−1π2m

(2m)! B2m

holds for every natural number m.

Further comparison gives B0 = 1, B1 = −1/2 and Bm = 0 for all odd integers
m > 1. Now all the Bernoulli numbers can be computed inductively from the formula

Bm = −(m + 1)−1
m−1∑

k=0

(
m + 1

k

)
Bk,

which is derived by comparing coefficients of powers of z after multiplying up ez − 1
and expanding the exponential function. This gives the recursive identities

0 = 1 + 2B1 = 1 + 3B1 + 3B2 = 1 + 4B1 + 6B2 + 4B3 = 1 + 5B1 + 10B2 + 10B3 + 5B4 = . . .

and B2 = 1/6, B4 = −1/30, B6 = 1/42, . . . .
Hence ∞∑

n=1

1/n4 = π4/90 and
∞∑

n=1

1/n6 = π6/945,

etc.
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Bernoulli who failed to determine any of these sums, introduced his numbers to
find an efficient expression for the sum of the m-th power of the first n − 1 natural
numbers.

Proposition 10.3.3 The formula

n−1∑

k=1

km = (m + 1)−1
m∑

k=0

(
m + 1

k

)
Bkn

m+1−k .

is valid for any natural numbers n and m.

For m = 1 we recover the formula in Sect. 1.1, which was verified by induction,
and for m = 2, we get

12 + · · · + (n − 1)2 = n(n − 1)(2n − 1)/6.

Proof A short proof of the general formula consists of comparing coefficients of the
powers of x in the first and last expressions of

∞∑

m=0

(

n−1∑

k=1

km)xm/m! =
n−1∑

k=0

ekx = enx − 1

x
· x

ex − 1
=

∞∑

k=1

nk
xk−1

k!
∞∑

i=0

Bi
xi

i ! ,

and then use Newton’s binomial formula. �

Remark 10.3.4 It was Riemannwho first considered zeta as a function of a complex
variable and extended its domain by analytic continuation. This turned out to be an
extremely fruitful idea. By pushing the whole area into the realm of complex analysis
stunning results could be obtained thanks to the powerful tools suddenly at hand,
including Cauchy’s theorem.

Riemann’s eighth page short memoir with its ingenuity and radical ideas paved
the way for the proofs by Hadamard and de la vallee Poussin of the prime number
theorem which had defied elementary approaches of Chebyshev and others.

It therefore came as a surprise when Selberg and Erdös fifty years further down
the road proved the same theorem by so called elementary means, i.e. by avoiding
complex analysis. Still there is no reason to doubt the utility of the zeta function in any
investigation of the distribution of primes. It suffices to mention the sharp estimates
obtained relating to the error in the prime number theorem, with the sharpest such
possible being realized if and only if the Riemann hypothesis holds.

All of this concerns the location in the complex plane of the zeros of the extended
Riemann zeta function. Riemann’s main contribution was to set up an amazing cor-
respondence between these zeros and the distribution of the primes. The more you
know about the location of the zeros, the more you know about the primes. Rie-
mann hypothesized that all the zeros of the zeta function (except some obvious ones)
lie on the vertical line one-half to the right of the imaginary axis. This conjecture
has withstood the efforts of the brightest minds ever since and is by now the most
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famous and also regarded as the most important unsolved problem in mathematics.
The prime number theorem amounts to verifying that none of the zeros are located
on the vertical line at distance one to the right of the imaginary axis.

Generalizations of the Riemann zeta function play a crucial role in e.g. class field
theory and in Dirichlet’s theorem on primes in arithmetic progression. The branch of
mathematics centered around this function and which freely uses complex analysis
is called analytic number theory.

10.4 Transcendentality of e and π

We include Hilbert’s proof of the following result.

Theorem 10.4.1 The number e is transcendental.

Proof Suppose there are integers ai with a0 + a1e + · · · + anen = 0 and a0 �= 0.
Let f (x) = xm((x − 1) · · · (x − n))m+1e−x for any natural number m. Multiply-

ing the equation above with
∫ ∞
0 f (x)dx/m!, and splitting up the integral, gives

A + B = 0, where

A = a0

∫ ∞

0
f (x)dx/m! + a1

∫ ∞

1
f (x)dx/m! + · · · + ane

n
∫ ∞

n
f (x)dx/m!

and

B = a1

∫ 1

0
f (x)dx/m! + · · · + ane

n
∫ n

0
f (x)dx/m!.

Using the identity
∫ ∞
0 xle−xdx = l!, we see that for k ≥ 1, the number

ek
∫ ∞

k
f (x)dx =

∫ ∞

0
f (y + k)dy

is an integer divisible by (m + 1)!. Similarly, the first term in A is also an integer, with
the lowest power of x in ex f (x) contributing to

∫ ∞
0 f (x)dx with ((−1)nn!)m+1m!,

and where the other terms are divisible by m + 1. Hence A is an integer and A ≡
a0((−1)nn!)m+1 (mod (m + 1)). Whenm is a prime number greater than both a0 and
n, we thus see that A is non-zero.

On the other hand, using the mean value theorem for integrals, we see that

ak

∫ k

0
f (x)dx/m! = ak f (c)k/m!

for some c ∈ [0, k]. As | f (c)| ≤ kmnm+1, the absolute value of ak f (c)k/m! can be
made arbitrary small for large enough m, so |B| < 1 for large enough m. Since there
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are infinitely many primes, this contradicts A + B = 0 as A is a non-zero integer for
a large enough prime m. �

The transcendentality ofπ is harder to check, and is a consequence of the following
theorem by Lindemann and Weierstrass.

Theorem 10.4.2 The exponentials ea1 , . . . , ean of pairwise distinct algebraic num-
bers ai are linear independent over the algebraic numbers.

Proof Suppose we have a vanishing linear combination of the complex numbers eai

with algebraic numbers as coefficients which are not all zero. Pick a Galois extension
E ⊂ C of Q containing these coefficients and the ai ’s. We may also assume that all
the ai ’s are non-zero. Otherwise we could multiply the vanishing linear combination
with e−a j for some a j �= 0 when n ≥ 2 to get another vanishing linear combination
of the same form where all ai �= 0.

Let E[E] be the group ring over E of the group E considered as an additive
group, so the elements of E[E] are finitely supported E-valued functions with point-
wise addition and convolution product. The formula �( f ) = ∑

a∈E f (a)ea defines
a unital homomorphism � : E[E] → C. Its kernel is an ideal of E[E] which by
assumption contains a non-trivial element f ∈ ker�.

Using the lexicographic order on C considered as a set of ordered pairs of real
numbers, one sees that E[E] is an integral domain. Therefore the finite product

g =
∏

σ,η∈G(E/Q)

η f σ ∈ ker�

is a non-zero function. By the fundamental theorem in Galois theory it takes values
inQ since ηg = g for all η ∈ G(E/Q). Multiplying g by a large enough integer, we
may assume that it is integer valued.

Pick a ∈ E such that g(a) �= 0, and define h ∈ E[E] with h(−b) to be g(a)

when b = σ(a) for some σ ∈ G(E/Q), and otherwise zero. Then gh ∈ ker� is
integer-valued and (gh)(0) = ∑

b+c=0 g(b)h(c) = kg(a)2 �= 0, where k is the num-
ber of elements in the G(E/Q)-orbit of a. Also, since gσ = g and hσ = h, we
see that (gh) ◦ σ = gh, so the function gh assigns the same values to σ(a) for all
σ ∈ G(E/Q). In other words, we have a vanishing sum

b0 + b1
∑

σ

eσ(a1) + · · · + bn
∑

σ

eσ(an) = �(gh) = 0,

where bi are integers with b0 �= 0, and where σ runs over G(E/Q) in each sum.
Take any polynomial u(x)with integer coefficients such that u(σ (ai )) = 0 �= u(0)

for all σ ∈ G(E/Q) and i . For any prime number p define a polynomial by
v(x) = x p−1u(x)p/(p − 1)!, so for any integer q ≥ p, its q-th derivative v(q)(x) is
a polynomial with integer coefficients divisible by p. The finite sum w(x) = v(x) +
v′(x) + v′′(x) + . . . defines a polynomial w with the property that w(σ(ai )) =
v(p)(σ (ai )) + v(p+1)(σ (ai )) + . . . and such that w(0) = v(p−1)(0) + v(p)(0) + . . .
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is an integer not divisible by sufficiently large p. Moreover, for any a ∈ E of the
form σ(ai ) and with r the maximum of all |σ(ai )|, we have

|w(a) − eaw(0)| = |ea| · |e−aw(a) − e−0w(0)| ≤ rermax{|(e−xw(x))′ | |x | ≤ r}
≤ rermax{| − e−xv(x)| | |x | ≤ r}.

Thus there is a constant c independent of p such that

|w(σ(ai )) − eσ(ai )w(0)| ≤ cp/(p − 1)!

for all σ and i .
Pick a natural number m �= p such that mai are all algebraic integers. This is

always possible. Just let m be larger than the product of all the denominators of
the rational coefficients of a monic polynomial h for which all the ai ’s are roots.
Then h1(x) = mdeg(h)h(x/m) is a monic polynomial with integer coefficients and
h1(mai ) = 0 for all i .

Let d = deg(u) and define

A = mdp−1(w(0)b0 + b1
∑

σ

w(σ(a1)) + · · · + bn
∑

σ

w(σ(an))).

Sincemdp−1 ∑
σ w(σ(ai )) is a G(E/Q)-invariant element of E , it is a rational num-

ber. But it is also an algebraic integer since it is an integer linear combination of
powers of mai and the algebraic integers form a ring much in the same way as the
algebraic numbers form a field. By Proposition7.1.6 it is therefore an integer. This is
true for all i , so A is an integer. Since the integers mdp−1 ∑

σ w(σ(ai )) are all divis-
ible by p, whereas mdp−1w(0)b0 is not for sufficiently large p, we see that A �= 0,
so |A| ≥ 1 for such p.

On the other hand, subtracting

w(0)mdp−1(b0 + b1
∑

σ

eσ(a1) + · · · + bn
∑

σ

eσ(an)) = 0

from A, gives

|A| ≤ mdp−1
∑

i

|bi |
∑

σ

|w(σ(ai )) − w(0)eσ(ai )|

≤ nmaxi |bi | · |G(E/Q)|mdp−1cp/(p − 1)! < 1

for large enough p, which is a contradiction. �

Corollary 10.4.3 The number π is transcendental.

Proof Since eiπ + e0 = 0, the number π cannot be algebraic. �

We state the following deep result bu Gelfond and Schneider without proof.



440 10 Appendix

Theorem 10.4.4 If a and b are algebraic numbers such that log a and log b are
linear independent over Q, then they are also linear independent over the algebraic
numbers.

In particular, if p and q are distinct primes, then log p and log q are linear indepen-
dent over the algbraic numbers becausewhenever a log p + b log q = 0 for a, b ∈ Q,
then paqb = 1, so a = b = 0 by the fundamental theorem of arithmetic.

A more striking consequence of the theorem is that Hilbert’s αβ-conjecture
follows:

Corollary 10.4.5 If α and β are algebraic numbers with α different from 0 and 1
and with β irrational, then αβ is transcendental.

Proof If a logα + b log(αβ) = 0 for a, b ∈ Q with b �= 0, then

β = log(αβ)/ logα = −a/b ∈ Q,

which is absurd. So logα and log(αβ) are linear independent over Q. If αβ was an
algebraic number, then 0 �= β logα − logαβ = 0, which is impossible. �

In particular, the numbers 2
√
2 and eπ = (e−iπ )i = (−1)i are transcendental.

Let us also mention a result by Apery which says that ζ(3) is irrational.

10.5 Proof of Liouville’s Theorem

We prove the following theorem.

Theorem 10.5.1 For any irrational algebraic number a of degree n > 0 there is a
real number c > 0 such that |a − p

q | > c
qn for all integers p, q with q > 0.

Proof Let f (x) be the minimal polynomial of a over Q, so f has no rational roots,
while f (a) = 0. If |a − p

q | < 1, let c > 0 be less than the minimal value of the
continuous function x �→ |1/ f ′(x)| over the compact interval [a − 1, a + 1]. Then
by the mean value theorem, there is some b between a and p/q such that | f (a) −
f (p/q)| = | f ′(b)(a − p/q)|. Hence

|a − p/q| = | f (p/q)/ f ′(b)| > c| f (p/q)| = (c/qn)|qn f (p/q)| ≥ c/qn

as qn f (p/q) is a non-zero integer. �
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10.6 Thue’s Theorem

The following remarkable result is due to Axel Thue.

Theorem 10.6.1 Let f (z) = anzn + · · · + a1z + a0 be an irreducible polynomial
over Q with n ≥ 3 and integer coefficients ai with an > 0. If for any real number
ε ∈ 〈0, n − 2〉 and any complex root a of f , there is a real constant c > 0 such that
|a − p/q| > c/qn−ε for all integers p, q with q > 0, then the homogeneous equation
yn f (x/y) = m has only finitely many integer solutions (x, y) for each integer m.

Proof We factorize f over C, say

am(x/y − b1) · · · (x/y − bn) = m/yn,

and let A be the minimal distance between any two distinct roots bi and b j . For any
solution (x, y) with y �= 0 we can have |x/y − bi | < A/2 for at most one root bi
since otherwise the distance between any two such roots would be less than A by
the triangle inequality. If moreover, both x and y are integers, then by the assumed
estimate, we get

|m/yn| > am(A/2)n−1c/|yn−ε|.

Hence |y| is bounded, and for each fixed y there are only finitely many possibilities
for x . �

Already Thue’s own improvements on the lowering of the exponential in Liou-
ville’s theorem gives the following immediate corollary, where we finally use
irreducibility of f .

Corollary 10.6.2 The Diophantine equation

anx
n + an−1x

n−1y + · · · + a1xy
n−1 + a0y

n = m

given by the theorem above has only finitely many solutions.

So for instance, the equation x3 − 2y3 = 1 has only finitely many integer
solutions, while the Pell equation x2 − 2y2 = 1 has infinitely many.

Thue’s theorem with its method of proof sparked what soon became heavy
investigations on the relationship between Diophantine equations and Diophantine
approximations.

The most spectacular result in this direction is perhaps the one by Baker, which
says that the integer solutions (x, y) of the Diophantine equation in the corollary
above satisfy max{|x |, |y|} < ed , where d = (nmax{|m|, |a1|, . . . , |an|})105 . This
huge bound has turned out to be effective in ruling out possible integer solutions
of certain classical Diophantine equations.



Bibliography

1. C. Adams, The Knot Book (AMS, 2004)
2. V. Chari, A. Pressley, Quantum Groups (Cambridge University Press, 1994)
3. A. Connes, Noncommutative Geometry (Academic, 1994)
4. F. Diamond, J. Shurman, A First Course in Modular Forms, GTM, vol. 228 (Springer, 2005)
5. C.T.J. Dodson, P.E. Parker, A User’s Guide to Algebraic Topology, Mathematics and its appli-

cations, vol. 387 (Kluwer Academic Publisher, 1997)
6. A. Einstein, The Principle of Relativity (Dover Publications, 1952)
7. D. Eisenbud, Commutative Algebra, GTM, vol. 150 (Springer, 1991)
8. W. Fulton, J. Harris, Representation Theory, GTM, vol. 129 (Springer, 2000)
9. G.H. Hardy, E.M. Wright, The Theory of Numbers (Oxford University Press, 1938)
10. K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, GTM, vol. 84

(Springer, 2000)
11. C. Kassel, Quantum Groups, GTM, vol. 155 (Springer, 1991)
12. A.W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140
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A
Abelian, 134
Absolutely semisimple, 410
Absolute value, 76
Action of a group, 154
Additive group, 134
Adjoint A∗, 103
Algebra A over a field, 99
Algebraic, 261, 403, 423, 424
Algebraic closure, 75, 265
Algebraic equation, 70
Algebraic extension, 261
Algebraic multiplicity, 362
Algebraic numbers, 267
Algebraic over F , 403
Algebraic product of the vector spaces, 92
Algebraic real number, 70
Algebraic version ofMackey’s theorem, 226
Alternating, 111
Alternating group, 145
Annihilator of a subset X of a module, 311
Antiendomorphism, 309
Antisymmetric, xi
Archimedean property, 7
Archimedian value, 69
Arcwise connected, 191
a ∈ R divides b ∈ R, 250
Arithmetic function, 22
Arithmetic progression, 16
Artinian, 384
Ascending chain condition, 252, 383
Associate, 250
Associated eigenvalue, 118
Associated matrix, 351
Associated norm, 128

Associative, 134
At most countable, 81
Augmented matrix, 104
Automorphism, 138
Axiom of choice, xi

B
Baer’s criterion, 321
Balanced, 324, 382
Basis, 316
Bernoulli numbers, 435
Bertrand’s postulate, 432
B-flat, 339
Bicommutant, 373
Bidual of an abelian group, 206
Bijective, x
Bimodule map, 325
Binary operation on a set, x
Binomial coefficients, 12
Boolean ring, 390
Braid group, 195
Burnside’s theorem, 156, 374
Butterfly lemma, 170

C
Cancellation property, 51, 135, 233
Cardinality, 81
Cardinal number, 85
(Cartesian) product, ix
Cauche complete, 62
Cauchy-Schwarz inequality, 128
Cauchy sequence, 60
Cauchy’s theorem, 161
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Cayley–Hamilton theorem, 359
Cayley-Hamilton theorem, 123
Cayley’s theorem, 145
Center of a group, 142
Center of a ring, 233
Centralizer, 142
Central series, 174
Chain in a partially ordered set, xi
Chain of generalized eigenvectors of A of

length n, 121
Change of the base ring, 339
Characteristic equation, 120
Characteristic function, xi
Characteristic of a ring, 234
Characteristic polynomial, 359
Characteristic subgroup, 178
Characteristic zero, 56
Character of a group, 205
Character of π , 212
Chinese remainder theorem, 21
Choice function, xi, xii
Class formula, 156
Class function, 213
Classical Gauss sum, 217
Class of nilpotency of the group, 173
Cofactor, 115
Cokernel, 330
Column vector, 104
Commutant, 373
Commutative, 134, 232
Commutative algebra, 99
Commutative ring with identity, 53
Commutators, 171
Complement, ix
Complemented in the module, 311
Complete group, 147
Completely reducible, 386
Complex conjugate, 75
Complex conjugate Ā, 103
Complexification of a real vector space, 327
Complex numbers, 75
Complex symplectic group, 153
Composite number, 4
Composition series, 167, 388
Congruence (or residue) classes, 19, 135
Conjugacy problem, 188
Conjugate, 147, 156, 319
Constructable, 271
Content, 254
Continuum Hypothesis, 84
Contragredient representation, 201
Convolution product, 214, 236
Correspondence theorem, 143

Correspondence theorem for rings, 242
Coset, 137
Countable, 81
Coxeter presentation, 188
Cramer’s rule, 114
Cycle, 109
Cycles, 193
Cyclic extension of F , 294
Cyclic group, 136
Cyclic module, 310
Cyclotomic polynomial, 291

D
Defect, 123
Degree degp of a non-zero polynomial p

over a ring, 248
deMorgan’s laws, ix
Derivation of the ring, 424
Derivative, 274
Derived group, 171
Descending chain condition, 384
Determinant, 112
Determinant of a linear operator, 114
Diagonal, 118
Diagonalizable, 118, 365
Diamond isomorphism theorem, 143
Dihedral group, 146
Dimension, 96
Dimension of an algebra, 379
Dimension of the module, 372
Direct product of groups, 139
Direct sum, 92
Direct summand of the module, 311
Direct sum of representations, 201
Dirichlet’s theorem, 16
Discriminant, 304
Disjoint cycles, 109
Distance, 127
Divisible, 322
Division algorithm, 8
Division ring, 232
Domain, x
Double cosets, 225
Double dual, 341
Dual basis, 127, 342
Dual group, 205
Dual module, 341
Dual space, 127

E
Eigenvector, 118
Element, ix
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Elementary divisors, 361
Elementary matrix, 108
Elementary row operations, 104
Elementary symmetric function, 300
Elementary tensor, 130
Embedding, 138, 233
Endomorphism, 138
Enough injectives, 322
Enough projectives, 322
Entry, 99
Epimorphism, 138, 233
Equivalence class, xi
Equivalence relation, xi
Equivalent, 351
Equivalent representations, 199
Equivalent series, 168, 388
Equivariant, 154
Euclidean algorithm, 10
Euclidean domain, 248
Euclid’s lemma, 8
Euler’s criterion, 30
Euler’s phi-function, 23
Evaluation, 238
Even permutation, 111
Exact, 312
Exact at Ai , 312
Expansion of det(A) according to the i th

row, 115
Extension field, 260
Extension of a field F by radicals, 296
Extension of scalars, 327

F
Factors, 167, 388
(Faithfully) flat, 335
Faithful module, 373
Faithful (or effective) action, 155
Faithful representation, 199
Fermat number, 37
Fermat prime, 37
Fermat’s last theorem, 38
Fermat’s little theorem, 20
Fibonacci numbers, 44
Field, 56, 232
Finite, 81
Finite dimensional vector space, 96
Finitely cogenerated, 385
Finitely generated, 240, 261
Finitely generated group, 136
Finitely generated module, 310
Finitely presented module, 332
Finite presentation, 187

Finite simple continued fraction, 57
First isomorphism theorem, 140
First principle of induction, 5
First version of Frobenius reciprocity, 223
Five-lemma, 333
Fixed field of G, 283
Fixed point, 154
Flat for B, 339
Flip, 130
Flip map, 326
Formal Laurent series, 239
Formal power series, 239
Fourier coefficients, 129, 207
Fourier inversion formula, 207
Fourier transform, 207
Fractional linear transformations, 185
Free abelian group, 184
Free action, 155
Free group generated by a set, 182
Free module, 316
Free presentation, 317
Free product of the groups, 182
Free ring, 244
Frobenius endomorphism, 278
Function, ix
Fundamental group, 191
Fundamental homomorphism theorem for

rings, 242
Fundamental theorem for finitely generated

abelian groups, 179
Fundamental theorem of algebra, 74
Fundamental theorem of arithmetic, 4

G
Galois extension, 287
Galois group of a polynomial, 286
Gaussian integers, 249
Gauss-Jordan elimination, 105
Gauss’ lemma, 31
Gauss’ quadratic reciprocity law, 33
Gauss sum, 216
Generalized geometric multiplicity, 362
Generalized Jordan block, 364
Generalized polyhedron, 191
General linear group, 150
Generator, 233, 310, 382
Generators of G, 136
Geometric series, 64
Geometric version of Mackey’s theorem,

224
G-invariants, 212
Goldbach conjecture, 17
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Gram-Schmidt orthonormalization, 129
Graph, x
Grassmannian, 158
Greatest common divisor, 8, 251
Group, 134
Group algebra, 214
Group ring, 236
G-spaces, 154, 199

H
Haar integral, 203
Hilbert basis theorem, 391
Hilbert ring, 411
Homogeneous space, 154
Homogeneous system, 103
Homology group, 193
Homomorphism, 138, 233
Homotopy, 191
Hopf-fibration, 159
Hopkins-Levitzki theorem, 402

I
Ideal, 240
Ideal generated by a subset, 240
Idempotent in a ring, 313
Identity, 232
Identity matrix, 101
Image, 98
Imaginary axis, 75
Independent, 346
Independent transcendental elements, 301
Index, 126, 137
Index of a relative to a primitive root b, 28
Induced representation, 221
Infinite descent, 39
Infinite dihedral group, 187
Infinite dimensional, 96
Infinite order, 137
Infinite simple continued fraction, 66
Infinum, 63
Inhomogeneous system, 103
Injective module, 320
Inner automorphism, 147
Inner derivation, 424
Inner product, 127
Integral domain, 55, 232
Integral operator, 215
Integral root test, 259
Internal direct sum, 98
Intersection, ix
Intertwiner, 199

Invariant factors of the matrix, 354
Invariant factor theorem, 349
Invariant inner product, 202
Invariants, 358
Invariant subset of a G-space, 154
Inverse element, 134
Inverse image, xi
Inverse map, x
Invertible, 99
Involution on a ring, 414, 415
Irreducible, 199, 250
Isomorphic vector spaces, 97
Isomorphism, 138, 233
Isomorphism of G-spaces, 154
Isomorphism problem, 188
Isotropy (stabilizer) group, 155

J
Jacobson radical, 396
Jacobson’s density theorem, 373
Jordan block, 361
Jordan blocks, 122
Jordan canonical form, 122, 362
Jordan–Chevalley decomposition, 367
Jordan-Chevalley decomposition of A, 126

K
Kernel, 98, 138, 215
Kernel of a homomorphism, 242
kth convergent, 57

L
Lagrange’s theorem, 137
Laurent polynomials, 239
Leading coefficient, 248
Leading columns, 105
Leading entry in a row, 105
Least upper bound property, 63
Left inverse, 134
Left (or right) ideal, 240
Left (right) zero divisor, 233
Left unit, 134
Legendre’s formula, 23
Legendre symbol (a/p), 30
Length of a series, 388
Length of an element, 352
Lexicographical order, 189
Linear basis, 93
Linear combination, 93
Linear dependent, 93, 316
Linear Diophantine equation, 10
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Linear independent, 93, 316
Linear isomorphism, 97
Linear operator, 97
Linear transformation, 97
Liouville number, 70
Liouvilles’s constant, 71
Local field, 81
Locally finite groups, 403
Loop, 191
Lower central series, 174

M
Map, ix, x
Matrix, 99
Matrix coefficients, 200
Matrix of A ∈ End(V,W ) with respect to

bases, 100
(Matrix) product, 101
Matrix representation, 200
Matrix unit, 102
Maximal, 143
Maximal ideal in a ring, 246
Member, ix
Mersenne prime, 14, 36
Metric, 127
Minimal polynomial, 262, 358
Möbius function, 22
Möbius inversion formula, 23
Modular group, 185
Module, 309
Module homomorphism, 309
Module map, 309
Module over a ring, 309
Modules over algebras, 379
Monic, 248
Monoid, 134
Monomorphism, 138, 233
Morphism of G-spaces, 154
Morphisms, x
Multilinear or m-linear, 111
Multiplication, 232
Multiplicative, 22
Multiplicative commutators of the ring, 426
Multiplicative Jordan–Chevalley decompo-

sition, 369
Multiplicity, 203, 274
Multiplicity of the simple module in A, 373

N
Nakayama’s lemma, 399
Natural map, 373
Newton’s binomial formula, 12

n-factorial, 12
Nil ideal of a ring, 392
Nilpotent, 126, 173, 366, 392
Nilpotent matrix, 365
Noetherian, 383
Noetherian (artinian) ring, 384
Non-archimedean, 76
Non-generator, 398, 399
Norm, 127
Normal extension, 272
Normal form, 75
Normalizer, 142
Normal series, 167
Normal subgroup, 139
n-th center of a group, 172
n-tuples, x

O
Octic group, 146
Odd permutation, 111
Opposite product, 309
Orbit, 154
Orbit decomposition, 155
Orbit decomposition formula, 156
Order, xi
Ordered domain, 54
Ordered field, 56
Ordered pairs, ix
Order homomorphism, 189
Order ideal, 311
Order of a group, 134
Order of a modulo b, 25
Order of an element, 137
Order ordp a of the prime element p, 254
Orientation, 193
Orthogonal, 128, 313, 365
Orthogonal group, 152
Orthogonal matrix, 152
Orthogonal projection, 205
Orthonormal basis, 129
Orthonormal k-frames, 158
Outer conjugacy classes, 147

P
p-adic absolute value, 77
p-adic expansion, 79
p-adic integers, 80
Parallelogram law, 128
Parseval identity, 129
Partial denominators, 57
(Partially) ordered, xi, 189
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Partition, xi
Partition of a natural number, 181
Pascal’s rule, 12
Pascal’s triangle, 12
Pell’s equation, 71
Perfect, 35, 278
Permutation group, 144
Permutation representation, 215
Permutations, 109, 144
p-group, 160
p′-group, 416, 417
Plancherel’s formula, 207
Poisson summation formula, 208
Polarization identity, 128
Polynomial ring, 244
Polynomial ring in n indeterminates xi with

coefficients in R, 237
Pontryagin dual, 322
Pontryagin’s duality theorem, 206
Positive cone for a group, 189
Power set, xi
Presentation for a group, 187
Prime, 250
Prime number, 4
Prime number theorem, 430
Prime subfield, 234
Primitive, 38, 254
Primitive nth root of unity in a field, 291
Primitive root, 26
Principal ideal, 240
Principal ideal domain, 248
Product, x
Projection map, 139
Projections, 319
Projective group, 150, 153
Projective module, 318
Proper, 233
Proper ideal, 240
Proper subgroup, 135
Proper submodule, 309
Pure braid group, 195
Pushout of two module maps, 320
Pythagoras’ identity, 129
Pythagorean triangle, 39
Pythagorean triple, 38

Q
Quadratic congruence, 21
Quadratic residue (non-residue) of an odd

prime, 30
Quaternions, 235
Quotient group, 139

Quotient map, 140, 241
Quotient module, 310
Quotient ring, 241
Quotient set, xi

R
R-algebra, 407
Rank-nullity theorem, 98
Rank of an m × n-matrix A over a PID, 355
Rank of the group, 180
Rank of the module, 310
Rational canonical form, 358
Rational functions in n indeterminates, 238
Rational integers, 80
Real and complex projective spaces, 159
Real and imaginary parts, 75
Real axis, 75
Real numbers, 61
Reduced echelon form, 105
Reduced form, 183
Reducible, 250
Reducible over a field, 258
Reduction map, 339
Refinement of a normal series, 170
Refinement of a series, 388
Reflexive, 341
Regular function, 200
Regular n-polygon, 141
Regular representation, 204
Relation between the generators, 187
Relation on a set, ix
Relatively prime, 8, 251
Representation, 199
Representation of the algebra F[G], 215
Resolvent cubic, 303
Riemann sphere S2, 159
Riemann zeta function, 433
Right actions, 157
Right cosets, 137
Right inverse, 134
Right regular representation, 204
Right R-module, 309
Right unit, 134
Ring, 232
Ring over R generated by the elements of X

subject to the relations Y , 244
R-linear combination, 316
R-module, 309
R-module map, 309
Root, 258
Row equivalent, 104
RS-bimodule, 325
R-submodule, 309
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S
Scalar product, 101
Schur’s lemma, 204
S-conjugate, 427
Second principle of induction, 6
Second version of Frobenius reciprocity, 223
Semidirect product, 148
Semigroup, 134
Semisimple, 367, 371
Semisimple ring, 376
Separable, 278
Separable element, 278
Separable extension, 278
Sequence, x
Set, ix
Short extact, 312
Sieve of Eratosthenes, 18
Sign of a permutation, 110
Similar, 351
Similar matrices, 101
Simple, 367
Simple extension fields, 261
Simple group, 140
Simple left ideals, 380
Simple module, 370
Simple ring, 246
Simple root, 274
Simplicial complex, 191
Simply connected, 191
Simultaneously diagonalizable, 365
Smith normal form, 354
Snake diagram, 331
Snake lemma, 331
Solvable, 171
Solvable by radicals, 296
Span of a subset of a vector space, 93
Spans, 93
Special linear group, 151
Special orthogonal group, 152
Special unitary group, 152
Spectrum, 415
Split exact, 312
Split the sequence, 313
Splitting field, 271
Splitting field of a family, 272
Standard basis, 95
Standard inner product, 128, 204
Standard representation, 221
Stiefel manifold, 158
Subgroup, 135
Subgroup generated by X , 136
Submodule 〈X〉 generated by X , 310
Submodules stabilizes, 384

Subrepresentation, 199
Subring, 233
Subring generated by, 233
Subset, ix
Subspaces, 91
Supremum, 63
Surjective, ix
Sylow p-subgroup, 163
Sylow’s first theorem, 162
Symmetric, xi
Symmetric function, 300
Symmetric group, 145
Symmetry, 146
Symmetry group, 146
Symplectic bilinear form, 152
Symplectic group, 153
System ofm linear equations in n unknowns

xi with coefficients ai j in a field F ,
103

T
Tensor product, 324
Tensor product of representations, 201
Tensor product of two vector spaces, 129
Third (or double quotient) isomorphism the-

orem, 144
Torsion element, 312
Torsion-free group, 178
Torsion-free module, 312
Torsion module, 312
Torsion part of the group, 180
Torsion submodule, 312
Trace, 103
Trace formula, 215
Transcendental field, 268
Transcendental number, 268
Transcendental over a field, 268
Transcendental real numbers, 70
Transfer homomorphism, 177
Transitive, 154, 298
Transpose, 102
Transposition, 109
Transversal, 176
Triangular numbers n(n + 1)/2, 40
Triangulation, 191
Trivial, 233, 240
Trivial absolute value, 76
Trivial homomorphism, 139
Trivial representation, 200
Trivial subgroup, 135
Trivial units, 418
Trivial vector space, 96
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Twins, 15
Twisted group ring, 245
Type of the group, 180
Type of the torsion part, 180

U
Uncertainty principle, 207
Union, ix
Unipotent, 369
Unique factorization domain, 254
Unit, 250
Unital, 232
Unital algebra, 99
Unitary group, 151
Unitary matrix, 151
Unit element, 134
Universal property, 325
Upper central series, 173
Upper (lower) triangular matrix, 236

V
Valuation, 76

Vandermonde determinant, 117
Variable, 238
Vectors, 90
Vector space, 90
Von Neumann regular, 404
Von Neumann regular ring, 404

W
Waring’s problem, 43
Wedderburn radical, 402
Wedderburn’s theorem, 374
Well-ordering principle, 7
Weyl algebra, 244
Wilson’s theorem, 21
Word of length n, 183
Word problem, 188
Wreath product, 149

Z
Zero divisor, 233
Zorn’s lemma, xi, xii
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